

Electronics and
Microprocessing
for Research,
2nd Edition

Electronics and
Microprocessing
for Research,
2nd Edition:

You Can Make It

By

David Dubins

Electronics and Microprocessing for Research, 2nd Edition:
You Can Make It

By David Dubins

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2019 by David Dubins

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

ISBN (10): 1-5275-3929-6
ISBN (13): 978-1-5275-3929-7

To Robert B. Macgregor, Jr., Gregory Man Kai Poon, Rashid
Abu-Ghazalah, and to our late lab nights, past and future.

Epigraph by Remy Dubins

TABLE OF CONTENTS

List of Figures.. xvii

List of Tables ... xxx

Acknowledgements .. xxxiv

Preface ... xxxv

Section 0 .. 1
Introduction and Course Objectives

Introduction .. 1
Why Microprocessing? .. 2
Course Objectives .. 3

Section 1 .. 5
Introduction to Electricity

What is Electricity? .. 5
Charge .. 6
Voltage ... 7
Power ... 10

The Generalized Power Law .. 11
Resistance .. 11

Ohm’s Law ... 12
Resistors ... 13

Measuring Voltage, Resistance, and Current 14
Using a Multimeter to Analyze Your Complicated Circuit 14
Measuring Overall Circuit Power Consumption

and Overall Circuit Resistance ... 15
Electrical Ground ... 17

DC Ground ... 17
AC Ground ... 18
Different Ground Symbols ... 19
Types of Returns .. 19

Voltage Sources: Series vs. Parallel ... 22
Batteries in Series ... 22

Table of Contents

viii

Batteries in Parallel .. 22
Circuit Configurations ... 23
Kirchhoff’s Voltage Law (KVL) ... 24

The Voltage Divider Equation ... 26
Kirchhoff’s Current Law (KCL) .. 28

The Current Divider Equation .. 31
Calculating Current-Limiting Resistor Values for LEDs 33

Anode vs. Cathode: Devices with Polarity ... 34
Introduction to Switches .. 35
Breadboarding .. 37

Circuit Diagram Etiquette Example: Light Theremin 38
Activity 1-1: 9V Battery + LED + 10K Resistor 39
Activity 1-2: 9V Battery + 10K Resistor + 100K Resistor 41
Demo: Light Theremin .. 42
Learning Objectives for Section 1 ... 42

Section 1 - Station Content List ... 43

Section 2 .. 44
Capacitance, Power and Logic

Capacitors .. 44
Capacitor Circuit Diagram Symbols .. 45
Capacitor Ratings ... 45
Capacitors in Series and Parallel .. 46
Capacitors: Typical Uses .. 46
Capacitor Equations ... 48
Charging a Capacitor through a Resistor .. 48
Discharging a Capacitor Through a Resistor 50

Voltage Divider Design: 10% Rule ... 50
Other Options for Delivering Lower Voltage 52
Datasheet Example: LM317 (Variable Linear Voltage Regulator) 53
How Hot Will My Chip Get? Heat Dissipation Calculations 56

Thévenin’s Theorem .. 57
Thévenin’s Theorem by Measurement (Using a Multimeter) 58
Mesh Current Method .. 61
Thévenin’s Theorem Method (Theoretical) 64

Integrated Circuits (ICs) .. 67
PDIP/DIP.. 67
Surface Mount Technology .. 69

Logic Circuits .. 69
AND Gate: (e.g. 74HC08) .. 69
OR Gate: (e.g. 74HC32) ... 72

Electronics and Microprocessing for Research, 2nd Edition ix

NOT Gate: (e.g. 74HC04) .. 73
Combining Logic Circuits .. 74

Activity 2-1: Capacitor Charging and Discharging 78
Activity 2-2: LM317 Voltage Regulator .. 79
Activity 2-3: Logic Gates ... 81
Learning Objectives for Section 2 ... 82
Section 2 - Station Content List ... 83

Section 3 .. 84
Introduction to Programming in the Arduino C++ Environment

Introduction to the Arduino Uno Microcontroller Board 84
Connecting a Serial LCD Module to the Arduino Uno 85
Your First Sketch ... 88

Basic Programming Concepts .. 89
Commenting Your Code .. 89
Storing and Accessing Data in Variables 91

Declaring and Using Variables .. 93
Integers ... 93
Long Integers ... 95
Global Space, Setup Function, and Loop Function 96
Float Variables ... 97
If…Then…Else Statements (and Logical Expressions) 98
Bool Variables .. 101
Boolean Operators .. 102
Byte Variables .. 103
String and Char Variables .. 103
Casting Variable Types .. 105

Arrays of Variables .. 107
Char Array .. 108
Data Types: More Complicated Conversions 109

Defining Programming Loops in Arduino ... 111
For Loops ... 111

C++ Shorthand Increment Expressions .. 112
Do…While Loops .. 112
While Loops ... 114
For, Do...While, or While? ... 115
Ommitting Curly Brackets ... 115
The Break Command ... 115
Switch Case .. 116

General Programming Tips .. 118
Activity 3-1: Programming Challenge ... 119

Table of Contents

x

Learning Objectives for Section 3 ... 120
Section 3 - Station Content List ... 121

Section 4 .. 122
Arduino Pins, and Writing Functions

Byte Variables and Digital Pins ... 122
What is a Digital Pin? ... 124
Digital OUTPUT Mode Example ... 125
Pulse Width Modulation (PWM) Example 126
Digital Input Mode Example .. 128

Analog Pins .. 131
Using Analog Pins as Digital Output Pins 132
Analog Read Example .. 132
External Analog Reference: AREF Pin ... 134

Arduino Pin Conflicts .. 135
Arduino Digital and Analog Pins: Summary Tables 136
The Serial Monitor ... 137
The Serial Plotter ... 138
Subroutines and Functions ... 138

Properties of Functions ... 139
Void Functions ... 139
Call-by-Value vs. Call-by-Reference ... 141
Float Functions ... 142
Integer (and other) Functions ... 144
Function DOs and DON’Ts .. 144

#define and #ifdef Statements .. 145
General Programming Etiquette ... 147

Activity 4-1: NTC Thermistor Circuit ... 148
Calibrating a Thermistor .. 149
Two-Term Exponential Thermistor Equation 149

Learning Objectives for Section 4 ... 153
Section 4 - Station Content List ... 154

Section 5 .. 155
Switching Higher Power Devices: Relays, Transistors, TRIACs

Voltage and Current Limitations of the Arduino Uno 155
Relays .. 157

High Side Switching vs. Low Side Switching 160
Powering a Relay with a Separate Supply 161
Vin Pin: Arduino Uno .. 161

Diodes (P-N Junction, or Rectifier Diodes) 162

Electronics and Microprocessing for Research, 2nd Edition xi

Transistors .. 165
Bipolar Junction Transistors (BJTs) ... 165
NPN Transistors: Selecting a Base Resistor Value 167
NPN Transistors in the Active Region ... 170
Darlington Pairs ... 172
Current Gated vs. Voltage Gated ... 173
MOSFETs .. 174

TRIACs .. 177
BT139-600E (TRIAC) ... 180

Protecting your Circuit from DC Motors ... 180
Protection Diode ... 180
Reducing DC Motor Noise with Capacitors 181

Activity 5-1: Hot Plate Thermostat .. 182
Activity 5-2: Transistor as a Switch for a DC Motor 184

Parsing Serial Data ... 187
Activity 5-3: MOSFET as a Switch for a DC Motor 187
Learning Objectives for Section 5 ... 188
Section 5 - Station Content List ... 190

Section 6 .. 191
Process Control

When “Close Enough” Isn’t Close Enough 191
How a DC Motor Works .. 192
Using an H-Bridge to Control Motor Speed and Direction 192

L298N H-Bridge Motor Driver Module 194
Stepper Motors ... 197

28BYJ-48 Stepper Motor with ULN2003 Motor Driver 198
Nema-17 Stepper Motor with A4988 Motor Driver 200

Servo Motors.. 205
System Control Strategies .. 206
Open-Loop Control .. 206
Feed Forward Control .. 208
Feedback Control ... 211

On-Off Controller ... 212
Proportional (P) Controller ... 213
Proportional-Integral (PI) Controller .. 217
Proportional-Integral-Derivative (PID) Controller 219
Combining Feedback Strategies ... 222

Activity 6-1: L298N Motor Driver Controlling a DC Motor 224
Activity 6-2(a): 28BYJ-48 Stepper Motor ... 225
Activity 6-2(b): Nema-17 Stepper Motor .. 226

Table of Contents

xii

Activity 6-3: SG90 Servo Control ... 228
Activity 6-4: PID Control of a 12V CPU Fan 230
Learning Objectives for Section 6 ... 231
Section 6 - Station Content List, Activities 6-1 & 6-3 233
Section 6 - Station Content List, Activities 6-2(a,b), 6-4 234

Section 7 .. 235
Operational Amplifiers

Introduction .. 235
Open Loop Configuration (Comparator) ... 236
Closed Loop Configuration .. 237

Buffer ... 237
Op-Amp Characteristics ... 239

Output Short-Circuit Current .. 239
Gain in dB (decibels) .. 239
Headroom ... 239
Slew Rate ... 242
Unity Gain Bandwidth ... 243

Inverting Amplifier .. 243
Biasing the Output of an Inverting Amplifier 246

Non-Inverting Amplifier .. 247
Biasing the Output of a Non-Inverting Amplifier 249

Differential Amplifier .. 250
Summing Amplifier (Inverting) ... 251
Summing Amplifier (Non-Inverting) ... 252

Summing Amplifier (Non-Inverting) Equations Solved 253
Negative Voltage? .. 260

Solution 1: Using a Virtual Ground.. 260
Solution 2: Negative Voltage Generator 261
Solution 3: Negative Supply Line from an ATX Power Supply .. 262

Op-Amps Can Do Calculus ... 262
Signal Attenuation: Reducing the Voltage ... 263
Activity 7-1: Load Cell Scale .. 263
Activity 7-2: pH Meter ... 267
Learning Objectives for Section 7 ... 271
Section 7 - Station Content List, Activity 7-1 272
Section 7 - Station Content List, Activity 7-2 273

Section 8 .. 274
Data Filtering, Smoothing, and Logging

Data Filtering ... 274

Electronics and Microprocessing for Research, 2nd Edition xiii

Low-Pass Filters (LPFs) ... 275
High-Pass Filters (HPFs) .. 280

Inverting AC Amplifier .. 281
Blocking the DC in your Signal: Charge Coupling 283
Higher Order Filters ... 284

Band-Pass Filters .. 284
Second Order Low-Pass and High-Pass Filters 286

Operational Amplifiers: Practical Considerations 287
Impedance Considerations: Op-Amp Inputs 288
Impedance Considerations: Op-Amp Output 288
Measuring Output Impedance .. 290
Measuring Input Impedance ... 290

Practical Strategies to Reduce Signal Noise 291
Measuring Noise .. 294
Data Smoothing ... 295

Mean Filter ... 295
Median Filter .. 296
Mode Filter ... 297
Mean Filter with Threshold Rejection .. 298

Data Logging ... 300
Arduino TimeLib.h Library ... 301

Using millis() Instead of delay() .. 302
Logging through the Serial Port ... 304
Logging to an External microSD Card .. 305

Logic Shifters ... 305
Activity 8-1: Noise Reduction ... 307
Activity 8-2: Data Smoothing .. 307
Activity 8-3: Data Logging to an SD Card .. 309
Learning Objectives for Section 8 ... 311
Section 8 - Station Content List ... 312

Section 9 .. 313
Design Project Guidance

Introduction .. 313
Design Project Selection .. 313

Design Project Assessment .. 313
What if my design project doesn’t work? 317

Code Snippets and Examples ... 318
Serial Monitor Menu .. 318
Using EEPROM: Memory that Doesn’t Forget! 320
Generating Beeps to Alert your User: Arduino Tone Library 323

Table of Contents

xiv

Programming One Button with Multiple Functions 324
Measuring Light Intensity .. 325

Photoresistors ... 325
Photodiodes .. 328
Phototransistors .. 329
Integrated Packages .. 330

Measuring Time Duration with Interrupts ... 336
Op-Amp Comparator with Bias Voltage: Turning an Analog

Signal into a HIGH or LOW Digital Level 337
Matrix Keypads and LED Matrix Displays 338

Charlieplexing LEDs .. 341
Need More Digital Pins? .. 343

Shift-Out Registers ... 343
Shift-In Registers.. 345

Bareduino – Running the ATmega328 Alone 348
Learning Objectives for Section 9 ... 351

Section 10 .. 352
Advanced Topics in Programming

Controlling MCU Registers, Interrupts and Timers 352
Bitwise Operations ... 352

Bitwise AND (&) ... 353
Bitwise OR (|) ... 354
Bitwise NOT (~) ... 355
Bitwise XOR (^) ... 356
Shifting Bits with “<<” and “>>” ... 357
Bitwise Operators: Short Forms ... 358

Introduction to Port Manipulation .. 360
Worked Example: Fast Analog Read ... 361
Fast Digital Read and Write ... 365

Interrupts .. 368
Internal (Pin Change) Interrupts ... 370
Never Miss a Button Push Again ... 371
Rules for Writing an Interrupt Service Routine 372

Customized Frequencies for PWM .. 373
Timer 0 ... 374
Timer 1 ... 377
Timer 2 ... 379

Timing your Interrupt Service Routines with CTC Mode 382
Sleep Mode .. 386

Wake on Pin Change .. 386

Electronics and Microprocessing for Research, 2nd Edition xv

Wake on Timeout of Watchdog Timer ... 387
Resetting the MCU .. 389

Reset with a Watchdog Timer .. 389
Hard Wiring a Digital Pin to the RESET Pin 390

Advanced Formating and Variable Type Conversions 391
Secrets of Serial.print() .. 391
Additional String Conversion Commands 394
Comparing Strings.. 394
Arrays of Strings and Arrays of Char Arrays 395
Using Special Characters ... 396
Char Arrays: Advanced Functions ... 397

Structures ... 399
Unions .. 402
Increment Operators as Array Index Values 403

Appendix ... 405

Troubleshooting Guide .. 405
Troubleshooting Flowchart .. 409
Troubleshooting Zones ... 409
UTF-8 and ASCII Tables ... 410

Tips to Optimize Sketch Memory .. 414
Using a 555 Timer as an External Clock ... 420
Common Fixed Resistor and Capacitor Values 422
.ino Files .. 423

triacDimmer.ino (Section 5) ... 423
Thermostat.ino (Section 5) ... 423
4WStepper.ino: 4-Wire Stepper Control (Section 6) 425
4WStepper_noLib: 4-Wire Stepper Control

(no library required) .. 425
PID.ino (Section 6) ... 427
QuickStats.h (Section 8) ... 429
TimedISR_N.ino (Section 10) .. 432

Derivation for Vin(+) (Section 7) ... 433
Arduino Uno Pin-out Diagram ... 436
ATmega328 Pin-out Diagram .. 437
ATtiny85 Pin-out Diagram .. 437
Ohm’s Law Equation Table ... 437
List of Circuit Diagram Symbols ... 438
Variable Type Conversion Chart ... 439
List of Abbreviations ... 440

Table of Contents

xvi

Bibliography .. 442

Index .. 451

LIST OF FIGURES

Figure 1-1. Mobile valence electron in the outer shell of a copper atom. 5
Figure 1-2. Different ways of illustrating wire connections

on a circuit diagram. .. 6
Figure 1-3. A battery provides a constant voltage source. 7
Figure 1-4. Conventional current vs. actual flow of electrons. 8
Figure 1-5. Cathode and anode reactions of an alkaline battery.

(Besenhard 1999) ... 8
Figure 1-6. Circuit symbols and voltage vs. time diagrams for Direct

Current (DC) and Alternating Current (AC) voltage sources. 10
Figure 1-7. Using DC batteries in series. ... 10
Figure 1-8. Resistance is the proportional current of electrons induced

by a difference in voltage. For an ohmic device like a fixed-value
resistor, this relationship is linear. ... 12

Figure 1-9. Circuit diagram symbols for fixed-value resistors. 13
Figure 1-10. Measuring voltage (left), resistance (middle),

and current (right) using a digital multimeter. 14
Figure 1-11. Measuring the overall voltage, current, and power

consumption of your circuit. .. 15
Figure 1-12. Circular and linear methods of drawing the same circuit. 18
Figure 1-13. AC household power outlet (North America). AC cable wire

colours are indicated for North America and the United Kingdom. 18
Figure 1-14. Common symbols for earth ground (left),

chassis ground (middle), and floating ground (right). 19
Figure 1-15. Floating return, drawn as it would be wired (left),

using circular circuit diagram format (middle), and linear circuit
diagram format (right). ... 20

Figure 1-16. Chassis return. Note that optionally, the chassis can also be
connected to earth ground, to reduce shock hazard in case of an
accidental short circuit. .. 21

Figure 1-17. Earth return. Even though most battery-powered devices
are floating, circuit diagrams tend to use the earth ground symbol
for them regardless. .. 21

Figure 1-18. Voltage is additive, and total current capacity remains
constant when batteries are wired in series. ... 22

List of Figures

xviii

Figure 1-19. Current capacity is additive, and voltage remains
constant when batteries are wired in parallel. 23

Figure 1-20. Three ways of connecting electronic components:
basic, in series, and in parallel. .. 23

Figure 1-21. Kirchoff’s Voltage Law applied to resistors in series. 24
Figure 1-22. Derivation of the voltage divider equation. 25
Figure 1-23. The voltage divider equation. The voltage across

each resistor is proportional to the ratio of its contribution
to the total resistance, R1+R2. ... 26

Figure 1-24. Worked example for the voltage divider equation. 27
Figure 1-25. Kirchoff’s Current Law example. ... 28
Figure 1-26. KCL applied to resistors in parallel. Note that the

drawing on the left is equivalent to the drawing on the right
electrically. Resistors in parallel can be represented either way. 28

Figure 1-27. KCL for two resistors in parallel. .. 30
Figure 1-28. The current divider equation, for two resistors in parallel. ... 31
Figure 1-29. Worked example for the current divider equation. 32
Figure 1-30. Calculating the resistance of a current-limiting resistor

for an LED. The LED symbol is labelled D1 (for diode 1)
in the circuit diagram. .. 33

Figure 1-31. LED & resistor circuit, with anodes and cathodes labeled. ... 34
Figure 1-32. Circuit diagram symbol (left) and example (right) of a

latching on/off switch. ... 35
Figure 1-33. Momentary switch connections. ... 36
Figure 1-34. Breadboard layout (top). Transparent arrows show how the

power rails are connected by row, and middle pins are connected by
column. The adhesive backing was peeled from the underside of a
breadboard, revealing directionality of the internal rails (bottom). 37

Figure 1-35. Light theremin circuit diagram. If a legend is used, values
next to the circuit diagram symbols may be omitted. 38

Figure 1-36. Schematic for Activity 1-1. Note: the longer wire
on the LED is the positive side (anode). .. 39

Figure 1-37. Schematic for Activity 1-2. ... 41
Figure 1-38. Section 1 station setup. ... 43
Figure 2-1. Electron build-up and flow upon capacitor charging

and discharging. ... 45
Figure 2-2. Circuit symbols for different types of capacitors. 45
Figure 2-3. Electrolytic (left) and ceramic (right) capacitors. 46
Figure 2-4. Calculating total capacitance of capacitors in parallel

and in series. .. 46

Electronics and Microprocessing for Research, 2nd Edition xix

Figure 2-5. A charge-discharge circuit. Holding down SW1
charges the capacitor. Once charged, holding down SW2
discharges the capacitor. .. 47

Figure 2-6. Capacitors can remove high frequencies from a signal
(e.g. in an RC low-pass filter), low frequencies (e.g. in a CR
high-pass filter), rectify an AC signal to DC, and reduce
fluctuations in a noisy power supply. ... 47

Figure 2-7. A circuit to illustrate charging and discharging a
capacitor through a resistor. ... 48

Figure 2-8. It takes about three time constants (3×) for a capacitor
to charge through a resistor. ... 49

Figure 2-9. It takes about three time constants (3×) for a capacitor
to discharge through a resistor. .. 50

Figure 2-10. Solving for R2 using the voltage divider equation. 50
Figure 2-11. Calculating the value of the bleed resistor, using the

10% Rule. .. 51
Figure 2-12. Solved circuit using the 10% Rule. 52
Figure 2-13. Split supply. .. 53
Figure 2-14. LM317 pin-out diagram (left) and pin assignments (right). .. 54
Figure 2-15. LM317 used as an adjustable regulator circuit with

improved ripple rejection. (Texas Instruments Inc 2016a) 55
Figure 2-16. LM317 used as a current limiter.

(Texas Instruments Inc 2016a) ... 56
Figure 2-17. Circuit diagram symbol for a 10 mA current source. 56
Figure 2-18. Heat sink for TO-220 package. The silicon layer and

plastic nut keep the body of the package insulated from the
heat sink, to reduce the chances of a short circuit. 56

Figure 2-19. Thévenin’s Theorem in a nutshell. Any complicated
network of resistors, capacitors, and sources from the perspective
of a single component (at connections a and b) may be represented
as a voltage source in series with a resistor. ... 58

Figure 2-20. Example circuit for Thévenin’s Theorem. First step:
identify two terminals of interest, and label them a and b. 59

Figure 2-21. Remove the load from the example, and measure Vab. 59
Figure 2-22. Measure isc across terminals a and b. 59
Figure 2-23. Thévenin Equivalent Circuit. .. 60
Figure 2-24. Thévenin Equivalent Circuit with load replaced. 60
Figure 2-25. Short all voltage sources, remove all current sources,

then measure RTH. .. 61
Figure 2-26. Norton Equivalent Circuit. .. 61
Figure 2-27. Example for the Mesh Current Method. 62

List of Figures

xx

Figure 2-28. Number each inside loop, draw current arrows,
and label each junction. .. 62

Figure 2-29. Perform KCL on junction A. ... 63
Figure 2-30. Perform KCL on junction B. ... 63
Figure 2-31. Identify points a and b around the load. 65
Figure 2-32. Remove the load, then calculate the voltage difference

between points a and b. .. 65
Figure 2-33. Circuit diagrams can be deceptive. These four circuits

all depict two resistors in parallel, from points a to b. 66
Figure 2-34. Thévenin Equivalent circuit, with load replaced. 67
Figure 2-35. DIP chips are great for prototyping with breadboards. 67
Figure 2-36. Pin numbering for DIP chips runs counterclockwise,

starting from the bottom left pin. ... 68
Figure 2-37. Logic symbol for an AND gate. .. 69
Figure 2-38. Pinout diagram for the 74HC08 AND chip. 70
Figure 2-39. Circuit diagram to test out the functionality of an

AND gate. Pull-down resistors protect against floating pin
states when the DIP switches are open. ... 70

Figure 2-40. Venn diagram for a 2-input AND gate. 71
Figure 2-41. Logic symbol for a 2-input OR gate (top). Pinout

diagram for the 74HC32 OR chip (bottom). .. 72
Figure 2-42. Circuit diagram to test out the functionality of an OR gate. . 72
Figure 2-43. Venn diagram for a 2-input OR gate. 73
Figure 2-44. Logic symbol for a NOT gate (top). Pinout diagram

for the 74HC04 NOT chip (bottom). ... 73
Figure 2-45. Schematic to test out the functionality of a NOT gate. 73
Figure 2-46. Venn diagram for a NOT gate. .. 74
Figure 2-47. An AND gate combined with a NOT gate is equivalent

to a NAND gate. .. 74
Figure 2-48. Venn diagram for a 2-input NAND gate. 74
Figure 2-49. An OR gate combined with a NOT gate is equivalent

to a NOR gate. ... 75
Figure 2-50. Venn diagram for a 2-input NOR gate. 75
Figure 2-51. XOR gate, meaning “exclusive OR”. 75
Figure 2-52. Venn diagram for a 2-input XOR gate. 76
Figure 2-53. XNOR gate, meaning “NOT exclusive OR”, or

“exclusive NOR”. .. 76
Figure 2-54. Venn diagram for a 2-input XNOR gate. 76
Figure 2-55. Symbolic logical representation of Example 1(a). 77
Figure 2-56. Venn diagram for Example 1(a). ... 77
Figure 2-57. Symbolic logical representation of Example 2(a). 77

Electronics and Microprocessing for Research, 2nd Edition xxi

Figure 2-58. Venn diagram for Example 2(a). ... 77
Figure 2-59. Circuit diagram for Activity 2-1. .. 78
Figure 2-60. Schematic for Activity 2-2. Note: Pin 3 of

the 1K trim is not connected. ... 80
Figure 2-61. Circuit diagram for Activity 2-3

(from Figures 2-38 and 2-39). .. 81
Figure 2-62. Section 2 station setup. ... 83
Figure 3-1. Arduino Uno R3 board layout (DIP version). 85
Figure 3-2. Connecting the MCU to a serial LCD module. 86
Figure 3-3. Arduino Uno (SOIC version) connected to serial LCD

module and laptop. ... 86
Figure 3-4. Arduino IDE sketch window... 87
Figure 3-5. Our first Arduino Uno sketch, with section and

line comments. ... 91
Figure 4-1. Digital and analog pins of the Arduino Uno MCU. 123
Figure 4-2. Schematic to connect an LED to the Uno’s digital pin 6,

using a breadboard. .. 125
Figure 4-3. Circuit diagram for schematic in Figure 4-2. 126
Figure 4-4. Pulse width modulation (PWM), illustrated with

different duty cycles. .. 127
Figure 4-5. Gaining and shifting the sin() function to the working

PWM range [0-255]. .. 128
Figure 4-6. LED circuit (left) and momentary switch circuit (right). 130
Figure 4-7. LM35 temperature sensor. (Texas Instruments Inc. 2017) ... 132
Figure 4-8. A potentiometer can be set up as a variable resistor

(rheostat), or a voltage divider. The wiper (middle pin) sweeps
across a length of resistive material. .. 133

Figure 4-9. LED circuit (left) and potentiometer set up as a
voltage divider (right). ... 133

Figure 4-10. The AREF pin lets you set the voltage of the highest
div (1023). Range: 0-5V. ... 134

Figure 4-11. Thermistor + LED circuit. Resistor R1 is the
sense resistor. ... 151

Figure 4-12. Section 4 station setup. ... 154
Figure 5-1. A high voltage induces a magnetic field, pulling

a switch closed. .. 156
Figure 5-2. Relay circuit diagram symbol (Single Pole,

Double Throw - SPDT). ... 157
Figure 5-3. Two common types of relays: DPST and DPDT. 158
Figure 5-4. Internal circuit diagram of a SPDT relay module.

An opto-coupler isolates the Arduino Uno from the relay supply.

List of Figures

xxii

Some relay modules allow for a separate ground for the supply
powering the relay, although in the lab we will power the relay
module using the Arduino +5V pin. (ELECFREAKS wiki 2015) 158

Figure 5-5. Using a SPDT relay as a normally open (NO) switch vs. a
normally closed (NC) switch. The switch terminals have been sketched
into the relay module boxes to help illustrate switching direction. 159

Figure 5-6. The relay module on the left is wired as a high side
switch (above the load). The relay module on the right is wired
as a low-side switch (below the load). ... 160

Figure 5-7. The relay module on the left is powered using the
Arduino Uno, which can introduce a lot of switching noise to your
measurements. The relay module on the right is powered using a
separate +5V DC adapter. .. 161

Figure 5-8. The Vin pin gives you access to the power supply voltage used
to power the Uno, before the on-board 5V voltage regulator. 162

Figure 5-9. Diode symbols: LED (left), and general diode
symbol (right). ... 162

Figure 5-10. Anatomy of a diode. Silicon has 4 outer valence electrons.
When doped with boron (3 outer valence electrons), a space is formed
capable of temporarily accepting an electron (left). When doped with
phosphorus (5 outer valence electrons), there is an extra electron,
capable of flowing (right). ... 163

Figure 5-11. When conventional current tries to flow from anode to
cathode, a diode is forward biased, and electrons can jump
across the P-N junction. ... 163

Figure 5-12. When conventional current flows from cathode to anode,
a diode is said to be reverse biased, and electrons can no longer
cross the P-N junction. ... 164

Figure 5-13. 1N4007 diode. A stripe indicates the brick wall
(location of N-terminal). .. 164

Figure 5-14. Circuit to illustrate how a transistor works.
Q1 is a 2N2222 NPN transistor in a TO-92 package.
(ON Semiconductor Corp 2013) .. 165

Figure 5-15. Worked example for the 10% Current Rule. 168
Figure 5-16. An NPN transistor configured as a common

emitter amplifier. ... 170
Figure 5-17. Calculating the voltage changes around the three

terminals of a bipolar junction transistor used as a common
emitter amplifier in Figure 5-16. .. 171

Figure 5-18. A Darlington pair of NPN transistors.................................. 172
Figure 5-19. A regular LED as a light sensor. ... 173

Electronics and Microprocessing for Research, 2nd Edition xxiii

Figure 5-20. When VGS(th) is applied to the gate terminal, an N-channel
MOSFET allows conventional current to flow from drain to source. 175

Figure 5-21. Pin-out diagram for 2N7000 N-channel MOSFET. 176
Figure 5-22. Circuit diagram symbol for a TRIAC. 177
Figure 5-23. A TRIAC, controlled by microcontroller digital pin

for a resistive load connected to 60 Hz, 120V AC power.
This circuit can interrupt the hot wire in the middle of an
extension cord, to create a high-side switch. 177

Figure 5-24. TRIAC with zero-crossing detector, for an inductive
or resistive load. This circuit is a low-side AC dimming switch. 179

Figure 5-25. Forward phase dimming (left) and reverse phase dimming
(right) with a TRIAC. The TRIAC is switched on and off strategically
to chop an AC supply into narrower widths to dim a resistive load.
(Coleman 2015) ... 179

Figure 5-26. Protection diode on a DC motor. In this configuration,
the DC motor can only spin in one direction. 181

Figure 5-27. Noise-reducing capacitor on “Bob”, the laboratory video
rover. These capacitors fixed his nasty resetting problem. 182

Figure 5-28. Circuit diagram for Activity 5-1: hot plate thermostat. 183
Figure 5-29. Schematic for Activity 5-2: NPN transistor-controlled

DC motor. .. 185
Figure 5-30. Floppy drive connector of an ATX power supply,

capable of supplying up to 3 amps. ATX power supplies are
salvageable from old desktop computers. .. 185

Figure 5-31. Circuit diagram for Activity 5-3: MOSFET-controlled
DC motor. .. 188

Figure 5-32. Section 5 station setup. ... 190
Figure 6-1. The rotor coil of a motor (left) will spin according to

Fleming’s left hand rule (right). ... 192
Figure 6-2. Simple H-Bridge configuration. .. 193
Figure 6-3. Protection diodes for an H-bridge. .. 194
Figure 6-4. L298N H-bridge module. This module comes with an on-board

regulator that you can also use to power the logic side of your circuit.
Check the top and underside of the module to confirm pin and screw
terminal identities, as some modules may vary.................................. 195

Figure 6-5. Pin jumpers in the open position (top), and in the closed
position (bottom), L298N module. .. 196

Figure 6-6. A Nema-17 bipolar stepper motor with 5mm shaft coupler. . 197
Figure 6-7. Circuit diagram symbols for unipolar (left) and bipolar (right)

stepper motors. A unipolar stepper motor can be controlled by 4

List of Figures

xxiv

switches, whereas a bipolar stepper motor requires two
H-bridges to operate. .. 198

Figure 6-8. A 28BYJ-48 stepper motor, with ULN2003 driver module. . 198
Figure 6-9. Connecting a Nema-17 to a microprocessor with an A4988

stepper motor driver. Build this circuit with the power off. 201
Figure 6-10. A4988 motor driver. White arrow points to trim

potentiometer. .. 202
Figure 6-11. MG995 servo with shaft attachments. 205
Figure 6-12. Functional block diagram of toaster control system. 207
Figure 6-13. Toaster setting dial – an example of open-loop feedback

control. ... 208
Figure 6-14. Adding a sensor to a system on an INPUT stream and

using that information to adjust DRIVE is a feed-forward strategy. .. 209
Figure 6-15. Example of a feed forward control system. 210
Figure 6-16. Example of a feedback control system. 211
Figure 6-17. Example of a proportional feedback control system. 213
Figure 6-18. Undamped feedback response. .. 214
Figure 6-19. Over-damped feedback response. 215
Figure 6-20. Under-damped feedback response, illustrating the

concepts of rise time, overshoot, and settling time. 216
Figure 6-21. Finding a critically-damped feedback response. 217
Figure 6-22. Over-damped feedback response illustrating the effects

of an integral gain. This response overshoots a little, because of
integral wind-up. .. 218

Figure 6-23. Adjusting the derivative gain to attain the setpoint. 221
Figure 6-24. A simple PID control algorithm. ... 222
Figure 6-25. Circuit diagram for Activity 6-1. .. 224
Figure 6-26. Circuit diagram for Activity 6-2(a): 28BYJ-48

stepper motor with ULN2003. ... 225
Figure 6-27. Circuit diagram for Activity 6-2(b): Nema-17

stepper motor with A4988. .. 227
Figure 6-28. Circuit diagram for Activity 6-3. .. 229
Figure 6-29. Circuit diagram for Activity 6-4. .. 230
Figure 6-30. Functional block diagram for Activity 6-4. 231
Figure 6-31. Station setup for Activities 6-1 and 6-3. Not shown:

ATX power supply. .. 233
Figure 6-32. Station setup for Activities 6-2 and 6-4. Not shown:

ATX power supply. .. 234
Figure 7-1. Circuit diagram symbol for an operational amplifier. 236
Figure 7-2. Open-loop configuration of an operational amplifier. 236
Figure 7-3. Buffer (or voltage follower) configuration of an op-amp. 237

Electronics and Microprocessing for Research, 2nd Edition xxv

Figure 7-4. The voltage output of an ideal buffer follows the
voltage input (Vout=Vin). .. 238

Figure 7-5. Maximum peak output voltage vs. frequency for the TL07x
op-amp series (RL=2k , T=25 ºC). (Texas Instruments Inc 2017) 240

Figure 7-6. The op-amp on the right can swing higher because larger
voltages are provided to the power rails. ... 240

Figure 7-7. Op-amp headroom means that the output of the op-amp
can’t swing all the way to the power rails. This is an illustration
of the TL07x series, when the op-amp is supplied with ±5V. 241

Figure 7-8. The output of a typical op-amp will not be able to swing
all the way to ground, if the negative rail is connected to ground. 241

Figure 7-9. A rail-to-rail op-amp is able to swing its output within
microvolts of the power rails (virtually no headroom)....................... 242

Figure 7-10. Inverting amplifier configuration of an op-amp. 243
Figure 7-11. An op-amp’s Vout is constrained by the voltage

connected to its power rails. ... 244
Figure 7-12. Input and output of an inverting amplifier (gain of 2). 245
Figure 7-13. Configuration (left) and performance (right)

of an inverting amplifier (unity gain). .. 245
Figure 7-14. Biasing an inverting amplifier. .. 246
Figure 7-15. Using a voltage divider to generate a bias voltage

for an inverting amplifier. .. 247
Figure 7-16. Configuration (left) and example performance (right)

of a non-inverting amplifier. .. 248
Figure 7-17. Calculating Vout for a non-inverting amplifier. 248
Figure 7-18. Configuration (left) and example performance (right)

of a non-inverting operational amplifier, with a bias voltage. 249
Figure 7-19. Differential amplifier configuration (left)

and equations (right). ... 250
Figure 7-20. Calculating Vout example for a differential amplifier. 251
Figure 7-21. Inverting summing amplifier configuration (left) and

equations (right). .. 251
Figure 7-22. Calculating Vout example for an inverting

summing amplifier. .. 252
Figure 7-23. Non-inverting summing amplifier configuration

(left) and equations (right). .. 252
Figure 7-24. Calculating Vout example for a non-inverting summing

amplifier. .. 253
Figure 7-25. This non-inverting summing amplifier shifts and

gains the signal, Vin. ... 253
Figure 7-26. Voltage at the non-inverting input, Vin(+). 255

List of Figures

xxvi

Figure 7-27. Shifted and gained pH electrode voltage signal. Vb shifts the
signal positive, and after amplifying, the total shift is +1.65V. 256

Figure 7-28. Solved non-inverting summing amplifier for pH meter. 257
Figure 7-29. The bias voltage is generated using a voltage divider, and

then buffered before adding it to the (buffered) probe voltage. 259
Figure 7-30. How do you supply negative volts? 260
Figure 7-31. Splitting a power supply (top) and using a voltage divider

(bottom) for supplying a negative voltage to the bottom rail of an op-
amp. ... 261

Figure 7-32. ICL7760 wired as a negative voltage generator
(5V out on pin 5).. 261

Figure 7-33. Differentiator (left) and integrator (right) op-amp
configurations. ... 262

Figure 7-34. Attenuating a probe signal using a voltage divider,
then buffering the output. ... 263

Figure 7-35. Structure of a Wheatstone bridge. 263
Figure 7-36. Circuit diagram for Activity 7-1 (load cell scale). 265
Figure 7-37. Experimental setup for Activity 7-1 (load cell scale).......... 266
Figure 7-38. Circuit diagram for Activity 7-2 (pH meter). 269
Figure 7-39. Station setup for Activity 7-1. ... 272
Figure 7-40. Station setup for Activity 7-2. ... 273
Figure 8-1. The effect of a carefully designed low-pass filter (LPF). 275
Figure 8-2. Bode Magnitude Plot for a first-order LPF. 277
Figure 8-3. Calculation of the gain of an LPF, one decade higher

than the cutoff frequency. .. 278
Figure 8-4. Worked example for an LPF, fc=200 Hz. Left: passive LPF,

right: active LPF with unity gain. .. 279
Figure 8-5. The effect of a carefully designed high-pass filter (HPF). 280
Figure 8-6. Bode Magnitude Plot for a first-order HPF. 281
Figure 8-7. Inverting AC amplifier. Capacitor C1 filters out frequencies

two decades below fc. If V+=+5V, the output signal will be
gained by RF/R1, and oscillate about +2.5V. 282

Figure 8-8. Inverting amplifier example: electret microphone
preamplifier. ... 282

Figure 8-9. A coupling capacitor transmits AC and blocks DC. 283
Figure 8-10. An example band-pass filter (top) and corresponding Bode

Magnitude Plot (bottom). ... 285
Figure 8-11. Twin-T Notch Filter (left) and Bode Magnitude Plot (right).

(Carter 2006, 19-26) .. 286
Figure 8-12. Passive second-order HPF. ... 286
Figure 8-13. Non-inverting, amplifying second-order LPF. 287

Electronics and Microprocessing for Research, 2nd Edition xxvii

Figure 8-14. Properties of an ideal op-amp. .. 287
Figure 8-15. Balancing the inputs of an inverting op-amp with a

compensating resistor... 288
Figure 8-16. Matching the output impedance of an op-amp with the input

impedance of the next stage (in this case, the MCU’s analog pin). ... 289
Figure 8-17. The 16 MHz crystal oscillator on the Arduino Uno,

responsible for microprocessor speed. ... 300
Figure 8-18. RTC module for keeping track of epoch time. 301
Figure 8-19. Circuit diagram (left) of a logic shifter (photo right), safely

bridging a 3.3V microSD card module to the hotter 5V logic-level
MCU. ... 306

Figure 8-20. Section 8 station setup. ... 312
Figure 9-1. Piezoelectric elements. .. 323
Figure 9-2. Piezoelectric buzzer plugged directly into the

Arduino Uno. ... 323
Figure 9-3. Photoresistors of various sizes (5 to 12 mm). 325
Figure 9-4. Voltage divider for a photoresistor. 326
Figure 9-5. A transimpedance amplifier (left) converts current, Iin to

voltage, Vout with a gain of RF. An example (right) shows the
LM358 amplifying the current through an LDR, with a bias voltage
Vb to raise the signal into the output voltage swing of the amp
(~0.1 V – 3.9V for op-amp supplies V+=+5V and V =GND). 327

Figure 9-6. The PD638C photodiode. .. 328
Figure 9-7. A photodiode wired in the voltage divider configuration

with sense resistor (left), and as an input for a transimpedance
amplifier (right). ... 328

Figure 9-8. The PT334-6C phototransistor (right),
wrapped in electrical tape (left). .. 329

Figure 9-9. A phototransistor wired in the voltage divider configuration
with sense resistor (left), and as an input for a transimpedance
amplifier (right). ... 329

Figure 9-10. TSL235R light-to-frequency converter. 330
Figure 9-11. Toshiba TCD1304AP linear CCD. 332
Figure 9-12. BH1750 Light Sensor module. .. 333
Figure 9-13. Low-cost laser light receiver. .. 334
Figure 9-14. TCS3200 colour detection module...................................... 334
Figure 9-15. A comparator op-amp with a carefully-selected bias voltage

changes a small signal response into a digital signal
(HIGH or LOW). ... 338

Figure 9-16. Mapping the pins of a matrix keypad to rows
and columns. .. 338

List of Figures

xxviii

Figure 9-17. A custom LED matrix display. ... 340
Figure 9-18. A SN74HC595 shift-out register, with digital output

pins Q0 – Q7. ... 343
Figure 9-19. A SN74HC165 shift-in register, wired to send the pin states

from digital input pins Q0 – Q7. In this configuration, pin 15 has been
wired to ground, so the chip is constantly enabled, requiring one less
control wire from the MCU. .. 346

Figure 9-20 Configuring the ATmega328 chip outside the Arduino Uno.
Pin numbers follow the physical layout of the DIP chip (Pin 1 is
RESET). ... 349

Figure 9-21. USBtinyISP chip programmer, useful for re-burning the
bootloader onto an MCU, uploading a sketch through the ICSP header
on the Arduino Uno, or programming an MCU directly through the
appropriate pins. ... 350

Figure 10-1. Using port registers to set and read digital pin 12 (PB4), in
Bank B. .. 367

Figure 10-2. Momentary switch connected to INT0 (digital pin 2). 369
Figure A-1. Troubleshooting flowchart: developing resilience. 409
Figure A-2. Potential areas to consider troubleshooting. Many problems

are multifaceted, involving more than one area. 409
Figure A-3. A 50% duty cycle square wave generator configuration for the

555 timer (LMC555 CMOS version required above ~400 kHz).
Ranges for fout were obtained experimentally using a LMC555
timer and monolithic capacitors. .. 421

Figure A-4. Voltage divider network at an op-amp input: solving for the
input voltage. ... 433

Figure A-5. Pin-out diagram for a generic Arduino Uno r3. Pin numbers
(2 to 28) correspond to the pin numbers on the ATmega328 chip.
(Atmel Corporation 2016) .. 436

Figure A-6. Pin-out diagram for the ATmega328 28-pin (DIP). Pin labels
for the Arduino IDE are indicated in blue (~ indicates PWM-capable).
(Atmel Corporation 2016) .. 437

Figure A-7. Pin-out diagram for the ATtiny85 8-pin (DIP version).
Pin labels for the Arduino IDE are indicated in blue
(~ indicates PWM-capable). (Atmel Corporation 2013) 437

Figure A-8. List of circuit diagram symbols used in this text. Note that
many variants of these symbols are common. LDRs, LEDs,
photodiodes, transistors, and MOSFETs often appear in circuit
diagrams without circles. ... 438

Electronics and Microprocessing for Research, 2nd Edition xxix

Figure A-9. Summary conversion chart for common variable types. Grey
lines: casting (see Table 3-5). Black lines: see Table 3-6 for examples.
See Table 10-23 for advanced formatting with Strings. 439

LIST OF TABLES

Table 1-1. Typical voltages and current capacities for various

battery types and chemistries. (Wenzel 2017) 16
Table 1-2. Current capacity for common wire gauges.

(Scherz and Monk 2016) .. 17
Table 1-3. Summary chart: resistors in series vs. resistors in parallel. 32
Table 1-4. Measured and calculated values for Activity 1-1. 40
Table 1-5. Measured and calculated values for Activity 1-2. 41
Table 2-1. Recommended operating conditions for the LM317 voltage

regulator (TO-220 package). (Texas Instruments Inc 2016a) 54
Table 2-2. Some electrical characteristics of the NE555 chip.

(Texas Instruments Inc 2014b) .. 68
Table 2-3. Logic tables for a 2-input AND gate. “0V” is the same as

“ground”, and this table assumes that logic level for your
circuit is +5V. .. 71

Table 2-4. Two-input AND logic table. ... 71
Table 2-5. Two-input OR logic table. .. 73
Table 2-6. NOT logic table. ... 74
Table 2-7. Two-input NAND logic table. .. 74
Table 2-8. Two-input NOR logic table. ... 75
Table 2-9. Two-input XOR logic table. ... 75
Table 2-10. Two-input XNOR logic table. .. 76
Table 2-11. Logic table for Example 1(a). ... 77
Table 2-12. Logic table for Example 2(a). ... 77
Table 2-13. Experimental results from Activity 2-1. 79
Table 3-1. Bit depth size chart. .. 92
Table 3-2. Mathematical operators and functions in C++. 94
Table 3-3. Relational operators in C++. .. 100
Table 3-4. Table of logical (Boolean) operators. 102
Table 3-5. How to cast between common variable types,

with examples .. 106
Table 3-6. More complicated variable conversions involving

String and char ... 110
Table 3-7. C++ shorthand. ... 112
Table 3-8. Three major types of loops performing the same task. 115
Table 4-1. Wiring a momentary switch to a digital input pin. 129

Electronics and Microprocessing for Research, 2nd Edition xxxi

Table 4-2. Digital pin summary table. ... 136
Table 4-3. Analog pin summary table. .. 136
Table 4-4. Selectable baud rates (bps) in the Arduino

IDE serial monitor. .. 137
Table 4-5. Common types of functions. .. 139
Table 4-6. Example sketches for call-by-value (left)

vs. call-by-reference (right). .. 142
Table 4-7. DOs and DON’Ts in writing functions. 145
Table 4-8. Advantages and disadvantages of thermistors. 148
Table 4-9. Table for Experimental Results in Activity 4-1...................... 152
Table 5-1. NPN and PNP Bipolar Junction Transistors (BJTs). 166
Table 5-2. hFE values of P2N2222A (TO-92)

(ON Semiconductor Corp 2013) .. 169
Table 5-3. N-Channel MOSFET vs. P-Channel MOSFET. 174
Table 6-1. An H-bridge can switch the polarity across a motor

by changing the states of four switches.. 193
Table 6-2. L298N H-bridge control of two independent DC motors. 195
Table 6-3. Suggestions for 4-Wire stepper motor colour codes. 201
Table 6-4. Vref settings (in mV) for A4988 motor drivers. 202
Table 6-5. The process of toasting bread in a toaster, described without

(left) and with (right) control system terminology. 207
Table 7-1. Calculating the expected op-amp output across the expected

input range. .. 247
Table 7-2. Gaining and shifting a pH probe signal to a convenient

range for the analogRead() function (longer method). 255
Table 7-3. Gaining and shifting a pH probe signal to a convenient

range for the analogRead() function (quicker method). 258
Table 8-1. First-order passive and active low-pass filters.

(Texas Instruments Inc 2013, 1-26) ... 275
Table 8-2. First-order passive and active high-pass filters.

(Texas Instruments Inc 2013, 1-26) ... 280
Table 8-3. Measuring the output impedance of a signal.

(Andy Collinson 2018) .. 290
Table 8-4. Measuring the input impedance of the input pin of a device

(e.g. a microprocessor). (Andy Collinson 2018) 291
Table 8-5. Ten practical tips for noise reduction and prevention. 291
Table 8-6. Calculating the median of a data set. 297
Table 8-7. Calculating the mode of a data set. ... 297
Table 8-8. Comparison of four data smoothing methods. 299
Table 9-1. Some Design Project Ideas ... 313
Table 9-2. Charlieplexing LEDs. ... 342

List of Tables

xxxii

Table 9-3. Connecting the 6-pin ICSP connector from the USBtinyISP to
the ATmega328, or the ATtiny85. The red cable shows which side Vcc
is on. ... 349

Table 10-1. Example bitwise AND comparison: finding out a pin state. 354
Table 10-2. Example bitwise OR comparison: setting a specific

pin HIGH. .. 355
Table 10-3. Example bitwise AND comparison: setting a pin LOW. 355
Table 10-4. XOR logic table. ... 356
Table 10-5. Example bitwise XOR comparison: toggling a

pin state HIGH. .. 356
Table 10-6. Example bitwise XOR comparison: toggling a

bit state LOW. .. 357
Table 10-7. Boolean operators vs. bitwise operators in C++. 358
Table 10-8. Short forms for common bitwise operations,

with examples. ... 359
Table 10-9. Structure of the ADCSRA, the ADC control

and status register (Atmel Corporation 2016) 362
Table 10-10. Setting the ADC Prescaler value using the ADPS0,

ADPS1, and ADPS2 bits (Atmel Corporation 2016) 362
Table 10-11. ATmega328 pin banks. (Atmel Corporation 2016) 365
Table 10-12. DDR, PORT, and PIN registers for the three pin banks of the

ATmega328. Bit DDD1=1 if the serial monitor is needed, otherwise it
can be cleared. (Atmel Corporation 2016) ... 366

Table 10-13. Trigger options for interrupt service routines. 372
Table 10-14. Fast mode PWM frequencies in Hz for Pin 5 (Timer 0)..... 375
Table 10-15. Fast mode PWM frequencies in Hz for Pin 6 (Timer 0)..... 376
Table 10-16. Fast mode PWM frequencies in Hz for Pin 10 (Timer 1). .. 378
Table 10-17. Fast mode PWM frequencies in Hz for Pin 9 (Timer 1)..... 378
Table 10-18. Fast mode PWM frequencies in Hz for Pin 3 (Timer 2)..... 380
Table 10-19. Fast mode PWM frequencies in Hz for Pin 11 (Timer 2). .. 381
Table 10-20. Some C++ escape sequences you can use in strings

and char variables. ... 391
Table 10-21. Custom output formats for Serial.print()

and Serial.println(). .. 392
Table 10-22. Additional commands that can help you

manipulate Strings. .. 392
Table 10-23. Functions to convert other variable types to Strings. 394
Table 10-24. Commands that test the contents of a char variable. 399
Table A-1. Troubleshooting questions and suggested

follow-up actions. .. 406

Electronics and Microprocessing for Research, 2nd Edition xxxiii

Table A-2. UTF-8 character table, with decimal, hexadecimal, and binary
codes. The ASCII column is the corresponding ASCII character
resulting from the same code. .. 410

Table A-2. UTF-8 and ASCII character table (continued). 411
Table A-2. UTF-8 and ASCII character table (continued) –

extended character set. ... 412
Table A-2. UTF-8 and ASCII character table (continued) –

extended character set. ... 413
Table A-3. ATmega328 variable sizes, and the ranges of

values they can store. ... 415
Table A-4. Some microprocessors and their memory limits.

(Arduino.cc 2018; Stör et al. 2017; Paul Stoffregen 2019) 419
Table A-5. Common fixed resistor values. .. 422
Table A-6. Common fixed capacitor values. ... 422
Table A-7. Pin-out of 20-pin and 24-pin versions of the ATX

main power connector. (Fisher 2019) .. 435
Table A-8. Ohm’s Law equations, re-arranged for each term. 437

ACKNOWLEDGEMENTS

Many people assisted in the inception and development of this text.
Dr. Robert B. Macgregor, Jr. inspired this work by encouraging me to

turn a fixed USP dissolution apparatus into an undergraduate course, and
he helped me offer it within a short time span of six months.

Andrew Cooper patiently taught me much of the tacit and practical
knowledge in this text, for example, Practical Strategies to Reduce Signal
Noise (Table 8-5) and providing a virtual ground for a probe (Figure 7-31).

Dr. Will Cluett kindly reviewed and provided comments for the
process control content in Section 6.

Many students taking my electronics courses have helped to refine and
improve this work immensely: Abigail D’Souza, Celeste Vicente, Brittany
Epp-Ducharme, Nabeel Tariq, Jack Bufton, and Hamed Tinafar. Your
enthusiasm and keen eyes for detail are warmly appreciated.

I would like to thank Adam Rummens at Cambridge Scholars
Publishing, for his knowledge, help and expertise with the first edition.

Lastly, I would like to thank the institution in which I work, the Leslie
Dan Faculty of Pharmacy at the University of Toronto for providing a
positive and supportive educational environment and infrastructure, and
plenty of batteries.

PREFACE

It’s not supposed to work.

One of the things I hope you will discover throughout this course is
that we take our technology for granted. This attitude is deeply embedded
in our consumer culture. As end users, we are intentionally blinded to
failures during product development. We demand quality, taking good
design for granted. We purchase the latest gizmos at our favourite
technology stores, and after a year or two of using them, either they break
and we buy new ones, or we toss them aside because we are bored and
done with them, wanting newer gizmos. We are accustomed to the idea
that a device is supposed to work. Why shouldn’t it? After all, we paid
good money for it. It comes in a box, with a guarantee. If it doesn’t work,
we get a refund after a flustered sales person squints apologetically at the
original store receipt.

These gizmos work because of careful design, quality parts, automated
assembly processes, meticulous QC checks, and market research—
something that engineers, scientists, manufacturers, and business people
spend their entire careers working on. As a novice then, you will very
likely become frustrated early on that the circuit you are building does not
light up an LED, measure the temperature, or send text to a screen.
Perhaps little components will produce strong-smelling blue smoke.
Although a lay person might call this “broken”, “screwed up”, or
“horrible” and feel discouraged about their abilities, this frustration is
more appropriately called the design and testing phase–where things
necessarily won’t work. Why should they? The circuit doesn’t even exist
yet, let alone function flawlessly enough to sell in a store.

As a designer then, it is your job to put on an optimistic hat, and
sharpen your troubleshooting skills. I can promise you that during the
activities in this course, you will hit a dead end where you feel that you
have tried everything you can, yet your circuit still doesn’t work. You
might feel frustrated, discouraged, or defeated. I can promise you this
because it happens to me all the time.

However, I can also promise that if you hang in there, when you finally
do figure out a critical piece of the puzzle that makes your project spring
to life, all that frustration will dissipate (after the urge to kick yourself
passes). It will be replaced by a feeling of relief, satisfaction, pride,

Preface

xxxvi

happiness, and perhaps the thrill that drew me to this area of study in the
first place. Building electronic circuits is addictively fun!

SECTION 0

INTRODUCTION AND COURSE OBJECTIVES

Introduction

We are taught at a very early age to start counting at 1. However, with
computer programming in microprocessing, we need to get into the habit of
starting to count from zero. It is only fitting then to begin the introduction of
this course with Section 0 accordingly–starting ex nihilo, from nothing.

As scientists, we tend to use very sophisticated equipment, containing
circuits that we barely understand and take for granted. Understanding and
designing your own electronic circuits can allow you to control equipment on
the microsecond scale. With sensors and switches, you can use electronics to
build your own scientific equipment, and to record measurements. This course
will introduce you to programming, electronics, data acquisition, system
control strategies, and data analysis techniques.

The goal of this course is to introduce you to theoretical and applied
concepts in electronic circuitry, for the purpose of collecting and analyzing
experimental data. As the curriculum was developed at the Leslie Dan
Faculty of Pharmacy, University of Toronto, many of the examples are
rooted in pharmaceutics, the science involved in drug formulation design.
The concepts discussed are nonetheless applicable to many quantitative
research contexts where measurement and data collection are important.
The course discusses introductory circuit design, with an emphasis on how
common components work (e.g. resistors, capacitors, diodes, transistors,
motors, operational amplifiers, and a variety of sensors) in scientific and
manufacturing instrumentation.

Practical and mathematical aspects of circuit design are discussed (e.g.
Ohm’s Law, voltage dividers, analog vs. digital signals). There is a heavy
emphasis on programming in C++ in the Arduino IDE platform, taught at
an introductory level, which complements learning activities. Mathematic
models are kept intentionally simple, using practical techniques where
applicable (e.g. Thévenin’s Theorem). Programs are intentionally short.

Section 0

2

Why Microprocessing?

With the recent advent of low-cost, consumer-level microprocessors (e.g.
the ATtiny and ATmega family, ESP8266, and new microprocessors
continually being developed), affordable and accessible microprocessing has
empowered researchers with resources to take experimental designs to new
heights. Such microprocessors are relatively simple compared to the
complexities of today’s computers; but have sufficient speed and power to
control sophisticated equipment such as scientific instrumentation and 3D
printers. Previously, ADCs (Analog-to-Digital Converters) were thousands of
dollars, requiring high programming aptitude to bridge the gap between
instrument and computer. Serial communication ports were reliable only at
slower speeds (e.g. 1200 bps). Serial communication was finicky, requiring
access to equipment subroutines not always readily available. However, the
climate has now changed for experimental design. Hobbiest platforms such
as Arduino, and Raspberry Pi support a growing community. Libraries are
readily available facilitating microprocessor control in many languages, such
as C++, Python, and MatLab®. Interfaces are more intuitive. Components are
inexpensive, and readily available. A large open source community has
evolved to support scientists and hobbyists alike. It has never been easier to
build your own equipment. Knowledge of programming and circuitry will
provide a solid foundation not only in experimental design and analysis for
research, but in many other areas as well.

The development and commercialization of prototype boards such as
Arduino, Raspberry Pi, ESP8266, and Teensy have empowered the
electronics community with quicker and easier circuit prototyping. Due to
economies of scale, electronic components have become very inexpensive
over websites such as eBay, Alibaba, Newegg, and Amazon, and through
electronics manufacturers and retailers such as Texas Instruments Inc. and
Digi-Key. The Internet of Things has driven the development of modular
electronic components marketed for general purposes, compatible with
open-source platforms at +3.3V and +5V logic levels (e.g. opto-isolator
power relay circuits, H-bridge motor controllers, and frequency-matched
RF transmitter/receiver units). Circuits that previously needed to be built
from scratch are readily available and packaged as low-cost, ready-to-use
modules. This course will examine some of these modules and their
usefulness in circuit design.

This text has been improved considerably since the first edition. A new
design project section is provided with example sketches for LED and
button matrix devices, light sensors, and other useful methods that may find
their way into student projects. The appendix grew so large with the

Introduction and Course Objectives

3

inclusion of topics such as registers, interrupts, and timers, that Section 10
was created to pull together advanced programming concepts. Some
embarrassing errors and typos in the first version have been identified and
corrected (for instance, a decade above a 440 Hz tone is not an A note, it’s
much closer to a C#). The fast-paced nature of electronics means that even
as you hold this text in your hands brand new, parts of it will already be
outdated. However, the fundamentals in this text are not subject to fashion.
They won’t go out of style. Your investment in learning electronics
components, programming, and especially troubleshooting will appreciate
over time regardless of the platform or project.

Course Objectives

The course uses mixed teaching methods, with the first half of each
lecture as small-group didactic teaching, and the second half as laboratory
exercises to experiment with and illustrate the concepts covered. As such,
Sections 1 to 8 were designed as three-hour combined lecture/lab periods.
These sections loosely follow different “themes” in electronics. Section 9
provides guidance and tips for individual student design projects. Section
10 covers some advanced control over the ATmega328 microprocessor,
providing sketches to control MCU registers, interrupts, and timers. It also
includes more advanced concepts in programming, such as how to declare
a structure, and more complicated variable type conversions. Learning
objectives are defined at the end of every section to help guide your studies.
Over-arching these learning objectives are the following course objectives.

After taking this course, you will …
1) Be able to properly interpret other people’s circuit diagrams and

draw your own diagrams in a manner that will enable you to
accurately record and share your work with others. You will be able
to draw circuit diagrams with enough detail so that others can build
the same project. You will develop a foundation for “circuit diagram
literacy”. Many diagrams in this manual were intentionally hand-
drawn to reinforce that drawing a circuit diagram shouldn’t require
special software.

2) Have a working knowledge of some basic building blocks in
electronics: resistors, capacitors, relays, transistors, MOSFETs,
motors, op-amps, voltage regulators, etc. This course will not expose
you to all the fundamentals (e.g. inductors, Zener diodes,
transformers, and diode bridges have been intentionally omitted).
However, the course provides enough background to start you off
designing your own circuits, hopefully pointing you in a helpful

Section 0

4

direction. Whereas a cook follows recipes, a chef creates them.
Understanding how electronic components fit together will enable
you to go beyond following other people’s circuit diagrams,
synthesizing your own modules and ideas.

3) Become proficient in C++ programming, which is a wonderful segue
into learning other programming languages. Once you learn how to
code in one language, learning another is often a matter of
translation, which is much faster to pick up (e.g. Python, Matlab®,
and R-project). You will learn the basics of writing a computer
program. You will have many opportunities to write and compile
your own code. You will learn proper programming etiquette,
including commenting, selecting and working with appropriate
variable types, writing subroutines, functions, and declaring local
and global variables. After you are finished this course, you will be
able to write, compile, and upload code for the Arduino Uno’s
microprocessor, the ATmega328, using the open-source Arduino
IDE. These skills are transferrable to programming other
microprocessors.

4) Be able to design, create, assemble, and test your own projects and
scientific equipment, from raw sensor output to data filtering and
logging.

5) Be able to develop and refine your troubleshooting skills, and
become more confident in your circuit building and testing abilities.
You will be empowered to diagnose and solve your own problems.
You will recognize the value and complexity in commercial
electronics around you.

6) By learning the fundamentals, you will no longer see an electronic
device as a single black box that works or doesn’t work, but rather
as a sum of parts that can be repaired, and failing that, at least
salvaged for working parts.

7) Be able to design and build circuits safely and carefully, always
being mindful of the dangers of high voltage.

8) Have fun with electronics and programming!
The activities in this course have been carefully designed and prepared

assuming that you will work independently. There will be many
opportunities to help troubleshoot each other’s work; however, you are
expected to perform these exercises on your own to help develop your skills
at circuit designing and programming.

SECTION 1

INTRODUCTION TO ELECTRICITY

What You’ll
Be Learning

Lecture: Introduction to electricity and circuit diagrams. Ohm's
Law, General Power Law, Power (AC vs. DC). Voltage, current,
resistance, and how to measure them. Electrical ground.
Kirchhoff's Laws. Voltage and current dividers. Anode vs.
cathode. Switches. Introduction to breadboarding.

What You’ll
Be Doing

Activity 1-1: 9V LED - resistor circuit. Measuring voltage,
current, resistance. Calculating power. Adding a momentary
switch.
Activity 1-2: Set up a simple voltage divider circuit. Confirm
the voltage divider equation by measuring the voltage difference
across each resistor.
Demo: Light Theremin

Files you
will need

Not applicable.

What is Electricity?

Electricity, in the sense that we will be
thinking about it, can be described as the
movement of electrons. Metals that have a
portable, or free electron, can conduct
electricity. Copper is one such metal, and
consequently is commonly used to make
wire. It has one free electron per atom. A
cloud of these free electrons holds the metal
together, giving rise to metallic bonds. In any
conductive metal, the free electrons move in
Brownian-like random pathways. When there
is a charge gradient across the metal, electrons
generally move from an area of negative (–) charge to an area of positive
(+) charge, or thinking about it differently, from a higher to lower
concentration of negative charge.

Figure 1-1. Mobile valence
electron in the outer shell of
a copper atom.

Section 1

6

If electrons flow into one end of a copper wire, the outer-most electron
of the copper atom leaves the orbit and flows to adjacent copper atoms,
causing a chain of electrons hopping from atom to atom. Although the actual
flow of electrons is slower, the signal created by electrons moving across a
gradient is close to the speed of light.

We use a straight line (with corners, as necessary) to depict a wire. Every
point on the wire should ideally have the same electric potential. So, if you
used a voltmeter to measure the change in voltage across any continuous
wire, it should read zero, or close to it (within measurement noise).

When two bare wires touch each other metal-to-metal, electrons can
flow across that junction as if they were a single, continuous wire. There are
different ways of illustrating wires crossing on a circuit diagram: (Gibilisco
2013)

Figure 1-2. Different ways of illustrating wire connections on a circuit diagram.

A circuit diagram shows how electronic components are connected. A wire
is our first circuit diagram symbol. For a list of all circuit diagram symbols
used in this text, see Figure A-8 in the appendix.

Charge

Electrons carry a tiny amount of charge, which we measure in Coulombs
(from Charles Augustin de Coulomb). We use the letter “Q” to represent
charge. (Scherz and Monk 2016)

Introduction to Electricity 7

 1 electron = 1ē = -1.602 × 10-19 C (Coulombs) = Qelectron
 1 C = the charge from 6.242 × 1018 ē
 A lightning bolt: ~15 C
 AA battery: 5 kC = ~5000 C

At first glance, it looks like an AA battery has a lot more energy in it
than a lightning bolt. However, charge and energy are different ideas, as you
will see when we talk about power. An AA battery containes more charge
than a lightning bolt.

Voltage

To get electrons to flow in a current,
there needs to be a difference in voltage
between two points. You can have a
difference in voltage without current
flowing, but you can’t have current flowing
without a difference in voltage. This is
almost like saying you need water in order
to have a waterfall.

If we want our circuit to do any work,
we need a voltage source. A battery is a
type of voltage source that maintains a constant voltage across its terminals.
It is a DC (direct current) voltage source. Figure 1-3 illustrates the circuit
diagram symbol for a battery.

In order to get current to start flowing, we need to make a closed loop
(or circuit), by connecting a device like a light bulb between the positive
and negative terminals of the battery. Below is a very simple circuit: a
battery connected to an incandescent light bulb. Which way does the current
flow? We always think of the current as flowing from the positive terminal
of the battery (cathode) to the negative terminal (anode). This is called the
direction of conventional current, based on Benjamin Franklin’s
understanding of electricity. However, sometime later, Joseph Thomson,
discoverer of the electron, realized that current actually flows the other way
(from the negative side to the positive side of the battery). Unfortunately, it
was too late to fix this misunderstanding, and all the equations developed
that far worked just as well backwards. So, we go with Benjamin, pretending
that the current of electrons flows from positive to negative in an electronic
circuit. This ends up being a source of confusion for new electronics
students, and a permanent item at the top of this field’s wish list for do-
overs. (Scherz and Monk 2016)

Figure 1-3. A battery
provides a constant voltage

Positive side:
Cathode

Negative side:
Anode

Section 1

8

Benjamin Franklin: “father of
electricity”
(positive charge carriers)

Joseph Thomson: “father of the electron”
(negative charge carriers)

Figure 1-4. Conventional current vs. actual flow of electrons.

In a single-cell alkaline battery, the positive terminal (cathode) is

manganese (IV) oxide, and the negative terminal (anode) is zinc. Both
metals are in powder form to maximize reaction surface area, suspended in
a matrix of potassium hydroxide–which acts as a conductive electrolyte.
The chemical reaction that occurs when you connect an alkaline battery to
a load is:

Figure 1-5. Cathode and anode reactions of an alkaline battery. (Besenhard 1999)

This chemical reaction is not reversible. Both reactant metals are

consumed. When alkaline batteries leak, we typically think that fluid is
battery acid. However, it’s not–this is the potassium hydroxide electrolyte
leaking from the battery, causing a white residue, and then corrosion, on the
battery terminals and inside your equipment. This misunderstanding likely
comes from car batteries, which commonly use sulfuric acid as the
electrolyte.

When the circuit in Figure 1-5 is connected, the speed of electrons
(called drift velocity) is quite slow. At the current capacity limits of the
average wire gauges presented in Table 1-2, this works out to about 0.208

A load is a component, or
set of components that
will consume power (e.g.
a lightbulb, or laptop)

Alkaline battery

Introduction to Electricity 9

mm/s for copper wire. (Scherz and Monk 2016) However, the signal
(electrons moving across a gradiant vs. electrons moving randomly) is
propagated very close to the speed of light. Think of a big conga line
stopping all at once when the music stops. This is the signal we will make
use of most in this course (“ON vs. OFF”).

James Joule was responsible for characterizing the unit for voltage,
which can be thought of as the amount of energy per unit charge. We
measure voltage in Volts (in honour of Italian physicist Alessandro Volta),
and use the letter “V”. (Maloberti and Davies 2016) Voltage is a relative
measure, which makes it somewhat unique and interesting. Voltage is
expressed as a difference, measured between two points. In this manual,
when we solve for or measure “V” (in volts), the measurement implies a
difference in voltage (V), usually the difference from where the circuit is
at its lowest relative voltage. The voltage of a single point with no reference
has no meaning. This might not make any sense at face value, but think
about it this way: it’s a bit like gravity. If I were to ask you, “which way is
up?” you might point towards the sky. However, that “up” is relative to the
ground. Which way is up when you are floating in space? Gravity provides
a great analogy, because things fall towards the ground, and that’s the
direction we picture conventional current flowing. In a DC circuit, we
measure the voltage difference of a given point in the circuit relative to the
lowest voltage point in the circuit (the negative terminal), and we somewhat
arbitrarily call the lowest voltage point ground. A voltage measurement is
the amount of energy a coulomb’s worth of electrons will change as they
travel between those two points of interest.

For our specific purposes, voltage is the difference in energy per unit
charge of the electrons in two different points of a circuit:

V = Voltage (Volts) = Joules / Coulomb
1 V = 1 J/C

Voltage sources create a difference in voltage between their terminals.
There are two main types of voltage sources: DC (Direct Current) and AC
(Alternating Current).

Section 1

10

Direct Current (DC) Alternating Current (AC)

 “Safer”, less noisy
 Great for logic (on or off is easy to

measure)
 High loss of power over long

distances (every wire has some
resistance)
 Not so great for supplying power

(eg: 12V × 1A = 36W not a whole
lot of power, for a lot of current)

 In Canada, 120V (RMS), 60 Hz
 In Europe, 220V (RMS), 50 Hz
 Less energy loss over great

distances
 Great at supplying power

(eg: 120V × 1A = 120W lots of
power)
 VPeak = VRMS×√2
 Voltage can vary by region and time

of day

Figure 1-6. Circuit symbols and voltage vs. time diagrams for Direct Current (DC)
and Alternating Current (AC) voltage sources.

DC voltage sources are additive

in series:
 You usually call ground the

lowest voltage point in the
circuit (V=0).

 Some circuits require
“negative” voltage. You can
define your ground in the
middle of these two batteries,
and call it a common return
or virtual ground. This
strategy is called a split supply.

Power

Power can be thought of in terms of how much of it your circuit requires
to run properly, or conversely how much of it your voltage source can
supply. Power is the rate of energy transferred. We measure power in Watts,
from James Watt, and use the symbol “P”:

P = Power (Watts) = Joules / Time
1 W = 1 J/s

Figure 1-7. Using DC batteries in series.

Introduction to Electricity 11

If you remember the units for Volts (J/C) and Amps (C/s) then you will
never forget the following very easy (and very handy) relationship.

The Generalized Power Law

Power = Voltage Current
P = V I
Watts Volts Amps
(J/s) (J/C) (C/s)

Example 1: A 10W halogen lightbulb will be connected directly to a
12V DC voltage. What will the current be?

Answer: We can re-arrange the Power Law: = × → = = 10 12 = 0.833

Example 2: A laboratory hot plate, powered by 120V AC power, is
labelled “750W”. What is the current draw of the hot plate?

Answer: AC voltage is usually specified as RMS (root mean square) of
the voltage vs. time curve over one period, out of convenience for a quick
power calculation. You can think of the RMS voltage (VRMS) as how much
a resistive load “feels” in an alternating current. The AC Power Law for a
purely resisitive load powered by AC uses the RMS votage and current
(Scherz and Monk 2016): = × → = = 750 120 = 6.25

Note that for a sinusoidal curve shape, the actual peak voltage for 120V
AC will be:
 = × √2 = 120 × 1.414 = 170
and that the AC voltage will swing from -170 to +170V (see Figure 1-6).

Resistance

The path of electrons through a circuit can be a bumpy one. Electrons
collide with other electrons, impurities in the metal, and lattice ions–these
interactions can impede the flow of electrons. With many materials, there is
a predictable relationship of how much current flows through a material
when a voltage difference is applied across it, and we call this resistance.
We measure resistance in Ohms (), from Georg Simon Ohm, and use the
symbol “R”:

Resistance (Ω) = Joule second/Coulomb2

Section 1

12

If the current through a device varies linearly with the voltage difference
applied (which isn’t always the case), we call it an ohmic device, because it
follows Ohm’s Law.

Ohm’s Law

Resitance = Voltage / Current =
Resistance is a property of the material or device, which is why the

equation above has resistance on the left side. In ohmic devices, resistance
is independent of voltage, as long as you respect the ratings of the device.
However, Ohm’s Law is more frequently written in terms of voltage:

Voltage = Current Resistance
V = I R
Volts (V) Amps (A) Ohms ()

We know that electrons can flow when there is a voltage difference, and
the bigger the voltage difference, the larger the current. We can think of
resistance as a bottleneck in the stream. A material or device with a low
resistance will result in a much larger current than a material or device with
a high resistance. Figure 1-8 illustrates the voltage vs. current plots for
various fixed-value resistors. Resistance is the slope of this graph.

Figure 1-8. Resistance is the proportional current of electrons induced by a
difference in voltage. For an ohmic device like a fixed-value resistor, this
relationship is linear.

Conductors: low voltage
results in high current
(slope = resistance)

Insulators: high voltage
required to get current moving
 (slope = resistance)

Introduction to Electricity 13

The linear relationships in Figure 1-8 only apply to ohmic materials (e.g.
a diode does not follow Ohm’s law). However, many devices (e.g. fixed-
value resistors) do follow Ohm’s law, as long as you use them within their
maximum ratings. Most devices have documented limits on voltage,
current, and power.

Resistors

Resistors are semiconductors. The flow
of electrons is somehow impeded as
intentional impurities are introduced in
conductive materials like metal. For
instance, carbon composition resistors (the
type we will be using in class) involve
mixing different proportions of finely
powdered carbon and non-conductive
ceramic. A lower carbon ratio means more
resistance to electron flow (and
consequently a higher resistance value). A
fixed-value resistor (Figure 1-9) has a
constant resistance value. A potentiometer
allows you to change its resistance value by
rotating a knob or pushing a slider. To a certain extent, every component in
your circuit will act at least somewhat like a resistor. Even copper wire has
a non-zero resistance, which can be important if you plan on running a large
length of it.

Figure 1-9 illustrates two ways of drawing fixed-value resistors on
circuit diagrams. Decimal points are difficult to see on circuit diagrams,
particularly when there is a lot going on. To clarify a resistance value, a one-
letter unit replaces the decimal point, based on the resistance value unit. For
instance, a resistance of 2.4 Ω could be written as “2R4” on a circuit
diagram, 1.3 kΩ as “1K3”, and 3.3 MΩ as “3M3”.

You can count on a resistor to only allow specific, and predictable
current through it depending on the voltage across the resistor. If you hook
a resistor up to a given difference in voltage, you can readily predict the
current using Ohm’s law. Some devices (e.g. LEDs and laser diodes) don’t
behave the same way. They can burn out quite quickly when a voltage is
applied across them. You need to limit the current going through them,
using a carefully selected resistor. The resistor will then act as a current
limiting device, letting through an amount of current that is safe for the non-
ohmic component. For example, a 1K resistor could be used to limit current

resistor label

Figure 1-9. Circuit diagram
symbols for fixed-value
resistors.

resistance
value

Section 1

14

through a typical LED with a voltage source of 5V, although larger
resistance values would work as well. See Calculating Current-Limiting
Resistor Values for LEDs for a more rigorous method.

Measuring Voltage, Resistance, and Current

Measuring voltage, current, and resistance is relatively simple, using a
digital multimeter. We will be using multimeters in class. If a multimeter is
set to measure voltage, we call it a voltmeter. If it is set to measure
resistance, we call it an ohmmeter. If it is set to measure current, we call it
an ammeter. The following symbols are used to represent these devices in
circuit diagrams:

 Voltmeter Ohmmeter Ammeter

Measuring voltage
across R1. Voltage
must be measured
with the power ON,
and your circuit
undisturbed.

Measuring resistance
across R1. Resistance
is measured across the
resistor removed from
the circuit, with the
power OFF.

Measuring current between
R1 and R2. Current must be
measured with the power
ON, diverting the circuit
through the ammeter.

Figure 1-10. Measuring voltage (left), resistance (middle), and current (right) using
a digital multimeter.

Using a Multimeter to Analyze Your Complicated Circuit

We can make use of these relationships and a multimeter to measure
(and calculate) some very useful properties of a complicated DC circuit. We
can measure the total voltage of the battery, for a few reasons. Firstly, even
though a 9V battery has “9V” printed on it, it will likely not give a 9V
reading. Why?

 As the battery ages, it has a natural drain rate. The voltage will slowly
drop over time.

 A fresh, unused 9V battery should read approximately 9V. As the
battery gets used, the voltage across its terminals will drop. When
the voltage falls below 8V, it likely won’t provide enough current

Introduction to Electricity 15

for your circuit, and should probably be replaced, although your
circuit might work a while longer.

Measuring Overall Circuit Power Consumption
 and Overall Circuit Resistance

Example: Let’s say you measure the voltage across the 9V battery in
Figure 1-11 with a voltmeter, and find that the voltage is 8.86 V. Then with
an ammeter, you measure a current of 0.412 A. What is the total power the
circuit is drawing from the battery?

Figure 1-11. Measuring the overall voltage, current, and power consumption of your
circuit.

To solve this problem, we can use the Generalized Power Law (P=VI).
If we substitute Ohm’s Law into the Generalized Power Law, we also

have two new ways to calculate power:
 = → = () → = = → = → =

Using Ohm’s Law, we calculate P=VI = 8.86 V × 0.412 A = 3.65 W.
We can also calculate the total resistance of the circuit, as R=V/I = 8.86 V /
0.412 A = 21.5 . We therefore already know a lot about this complicated
circuit without even knowing the identities of the components, or how they
are connected.

One common question arises, particularly when you design a battery-
powered circuit: how long will the device last with fresh batteries installed?
This becomes an important design parameter in a practical sense, because
replacing batteries is expensive, and annoying. To estimate the answer, we
need to know the current capacity of the voltage source, or how many mAh
(milliamp hours) are provided by the batteries we are using. One alkaline

There are many useful ways to
re-arrange Ohm’s Law. See
Ohm’s Law Equation Table in
the appendix for common
mathematical re-arrangements.

Section 1

16

9V battery can typically provide ~400 mAh. To estimate total operating
time, divide the battery mAh by total current drawn: = = 400 ℎ412 = 0.97 ℎ

Our circuit in Figure 1-11 would not last very long if powered using a
9V battery, and left on continuously. A 9V DC power adapter might be a
better idea, one that can provide at least 500 mA (power adapters always list
their voltage and maximum current on the label). Table 1-1 provides typical
current capacities for some common battery types. Actual capacities will
vary between brands, battery chemistry, temperature, and also with drain
rate.

Table 1-1. Typical voltages and current capacities for various battery
types and chemistries. (Wenzel 2017)

Battery Type Chemistry Typical Current
Capacity (mAh)

Voltage
(V)

6V Lantern alkaline 11000 6
D alkaline 13000 1.5
C alkaline 6000 1.5

18650 rechargeable NiMH 3400 3.7
AA alkaline 2400 1.5

AA rechargeable NiMH 2000 1.2
AAA alkaline 1000 1.5

AAA rechargeable NiMH 800 1.2
N-type alkaline 650 1.5

9V rechargeable NiMH 600 8.8
9V alkaline 400 9

CR2032 alkaline ~240 3
LR44 button cell alkaline ~160 1.5

It’s not a good idea to power a circuit with two different types of

batteries concurrently or mix fresh batteries with partially discharged or
dead ones.

Now that we know a little about power and current, it’s important to
mention that every device has limits, even copper wire. Limits of a device
may be specified in terms of voltage, current, power, and often all three. If
your circuit will be using a higher current, you need to choose an
appropriately thicker gauge wire, or the wire could overheat and melt–
potentially causing smoke, fire, or burns on your fingers. Table 1-2 will help
you select a wire gauge, measured in AWG (American Wire Gauge).
Similar to needles, a larger gauge number means a thinner wire. For most

Introduction to Electricity 17

of the applications throughout this course, solid core breadboard hookup
wire (AWG 22) is appropriate, unless otherwise specified. It can handle
close to one amp of current, which is sufficient for most of the applications
in this course.

Table 1-2. Current capacity for common wire gauges. (Scherz and
Monk 2016)

Electrical Ground

It is difficult to talk about circuits without an understanding of electrical
ground. This concept is important, and somewhat abstract at first. We have
already mentioned ground as being a reference point for voltage. There is
more to it than just that. This section will focus on different types.

DC Ground

In a DC circuit, ground is usually defined as the lowest voltage reference
point, however as mentioned before, with a split supply (depicted in Figure
1-7) you can set your ground in the middle of the supply so that you can
make use of “negative” voltage (or, less abstractly, current running the other
way). There are two common ways to draw a simple DC circuit, shown in
Figure 1-12.

Section 1

18

In a circle: (the traditional way) In a vertical line: (the quick way)

Figure 1-12. Circular and linear methods of drawing the same circuit.

Either way of drawing a circuit is valid. The ground symbol on the right

is the traditional symbol for earth ground, meaning that a metal rod is
driven into the ground and connected to the circuit; however, people tend to
use this as an all-purpose ground symbol. A DC circuit rarely has a true
earth ground, and is typically floating (not connected to the earth at all).
Sometimes, people draw the ground symbol on the left diagram regardless,
attached to the bottom of the circuit.

AC Ground

Ground for AC circuits is a bit different. A household power outlet in
North America usually looks like this:

Figure 1-13. AC household power outlet (North America). AC cable wire colours
are indicated for North America and the United Kingdom.

Earth ground is defined as a reference point for zero voltage. Earth

ground should be connected to a rod driven into the earth (as described
above). In older houses, earth ground is sometimes electrically connected to
the large network of copper plumbing pipes. Ground is necessarily not the
lowest voltage point in an AC circuit, because AC voltage swings from

Any point along
this bottom wire

is 0V, or ground.
ground
symbol

HOT (“live”, North
America: black wire,

UK: brown wire)

EARTH GROUND (“earth”
North America: green or bare

wire, UK: Green+Yellow wire)

NEUTRAL
(“return”, North America:
white wire, UK: blue wire)

Introduction to Electricity 19

negative to positive (120V AC swings from ~ -170V to +170V). Ground is
in the middle (see Figure 1-6).

Inside your electrical equipment, the ground wire is often connected to
the equipment’s frame. This is called a chassis ground. The point of
grounding equipment properly is that if you get a short circuit (e.g. a hot
wire touches the equipment frame), the current has a safer pathway to go,
rather than going through your body to the floor.

We usually don’t need an earth ground for DC circuits, which is
convenient, because we tend to like our DC devices to be portable. AC
circuits use much higher voltages than the DC circuits we will be tinkering
with in class, and as such they are more dangerous. Be extremely careful
when handling AC power. Never tinker with an AC circuit when it is
plugged in to wall power.

What’s a Short Circuit?

A short circuit, (also called a short) is what happens when a high voltage
point in your circuit finds another way to ground that is shorter than the one
you intended. It doesn’t travel through the devices you planned. Connecting
a high voltage point directly to ground is the absolute shortest path, and it
should not be done! We will discuss the consequences of short circuits later
in this text.

Different Ground Symbols

Figure 1-14. Common symbols for earth ground (left), chassis ground (middle), and
floating ground (right).

Types of Returns

We call the type of ground in a circuit a return, because we think about
this as the last step in conventional current: the end of the line (when in fact,
it’s the beginning!). There are different types of returns. In this course, we

Earth Ground
(standard)

Frame or Chassis
Ground

Floating or Common Return
(can number the triangle for
different floating grounds)

Section 1

20

will mainly building DC circuits, so the returns will mostly be floating. The
earth ground symbol is used throughout this text for DC floating ground.

When you are powering your circuit using a laptop, if the laptop is
plugged into the wall using a 3-pronged laptop charging cable, your system
will be earth-grounded. If it is running on battery power, it will be floating.
You can often see a difference in sensor behaviour between the two.

Floating Return

In a floating return, the ground wire is not connected to an external earth
ground, or anything else for that matter. Floating returns are used in portable
DC circuits.

Figure 1-15. Floating return, drawn as it would be wired (left), using circular circuit
diagram format (middle), and linear circuit diagram format (right).

Chassis Return

In a chassis return, the ground wire is connected to the metal frame of
the equipment. This provides a more consistent ground if you are measuring
something sensitive. The chassis itself can provide some shielding against
external noise. Chassis grounds are present in both DC and AC circuits. A
car’s electrical system is powered by a large 12V DC car battery. The
negative terminal is chassis grounded to the car’s steel frame.

Introduction to Electricity 21

Figure 1-16. Chassis return. Note that optionally, the chassis can also be connected
to earth ground, to reduce shock hazard in case of an accidental short circuit.

Earth Return

The safest type of return is an earth return, where the circuit ground is
connected to the third prong of an AC power outlet. It may look odd, but
with some DC circuits, a single wire connected to the third prong of a power
outlet can help reduce signal noise. Earth returns are used most commonly
with AC circuits.

Figure 1-17. Earth return. Even though most battery-powered devices are floating,
circuit diagrams tend to use the earth ground symbol for them regardless.

Single Point vs. Ground Bus

If you are planning a chassis ground, it’s important to connect all
planned ground points to the same point on the chassis. Otherwise, the
distance between grounded points can accidentally cause grounds to be at
different voltage levels–because the frame won’t be a perfect conductor.
This is known as ground looping, and can cause noise in your system.

Alternately, if the equipment layout makes a single chassis ground point
inconvenient, you can also make use of a ground bus, which is a thick wire
for grounding of low resistance, connected to the chassis and dedicated to
ground. Then, a wire connected to the ground bus will effectively be at the

Section 1

22

same voltage. The “blue” line on a breadboard is essentially a ground bus
(more on breadboards later).

Voltage Sources: Series vs. Parallel

You have likely noticed that lots of your battery-powered devices run on
more than one battery. You’ve probably noticed it more when you put a
battery in the wrong way, and the device doesn’t power on. Arranging
batteries in series and parallel have different effects on the voltage and
current they can provide to a circuit.

Batteries in Series

When batteries are connected in series (one after the other) the voltages
in the batteries are added together, however, their combined current
capacity remains the same (Figure 1-18).

Figure 1-18. Voltage is additive, and total current capacity remains constant when
batteries are wired in series.

Batteries in Parallel

Batteries can also be connected in parallel (positive terminals connected
to each other, and negative terminals connected to each other). When this
happens, the voltages are not added. In the example in Figure 1-19, the
highest voltage is still 9V. However, the current capacities are added, and
the circuit will run four times longer.

= = (3 × 9)

Current capacity = 400 mAh
 (3 9V batteries in series)

Introduction to Electricity 23

Figure 1-19. Current capacity is additive, and voltage remains constant when
batteries are wired in parallel.

Make sure when wiring batteries in parallel that they are of the same

type, and that they are all fresh batteries.

Circuit Configurations

There are many ways to connect circuit components other than batteries.
However, there are three basic ways to connect single components to a
power supply. Let’s look at different ways of connecting incandescent
lightbulbs to a DC power supply (not LEDs–they would require current-
limiting resistors):

Basic In Series In Parallel

 Connecting the light

bulb will turn on the
light.

 Each bulb is 1/3 as
bright.
 Bulbs draw 1/3×

current of basic
circuit from the
battery.

 Each bulb is as bright as
the basic circuit bulb.
 Bulbs draw 3× current of

basic circuit from the
battery.

Figure 1-20. Three ways of connecting electronic components: basic, in series, and
in parallel.

= = () Current capacity = 3 400 mAh

 = 1200 mAh
 (3 9V batteries in parallel)

Section 1

24

An incandescent lightbulb acts like a resistor when powered. As the
current flows through the tungsten element, potential energy (voltage) is
converted to kinetic energy, in the form of light and heat. However, the
lightbulbs behave quite differently when connected in basic, series, or
parallel configurations.

Why do resistive loads behave differently in series and in parallel?
Gustav Kirchhoff, a German physicist, addressed this question, when he
came up with a set of laws named after him. (Maloberti and Davies 2016)
In order to solve the voltage drop across components in series, we will start
with Kirchhoff’s Voltage Law.

Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s Voltage Law (KVL) is
essentially a conservation of voltage. The
idea is that if you look at the voltage gains
and drops around a closed loop in a circuit,
then the sum of them should be equal to
zero. (Scherz and Monk 2016) Worded
another way: if you were to start at one
point of your circuit, and go around a loop,
adding or subtracting the voltage
differences across the components as you
went along, then by the time you get back
to where you started, all of those voltage
differences should cancel out leaving you
at the exact same voltage level as you
started. For example, for the following
circuit with a battery supplying Vs, and
three resistors in series:

(1) KVL: ∑ = 0
Going around clockwise:

(2) + − − − = 0
(3) = + +

From (3), we can see the total voltage drop across all three resistors is
equal to Vs. We can then calculate the total resistance of the circuit, as if
there were only one resistor:
Ohm’s Law: (4) =

(4) (3):
(5) = + +

Figure 1-21. Kirchoff’s Voltage
Law applied to resistors in
series.

Introduction to Electricity 25

It’s worthwhile to note at this point that the current going through each
separate resistor is equal to the current going through the loop. In other
words, in a single closed loop:

(6) = = =
(6) (3):
 (7) = + +

Equation (7) is generalizable to any n number of resistors in series: = + + ⋯+ = ∑ Resistors in Series
This equation has a practical consequence. If you are hunting through

your resistor box and you can’t find a 2K resistor, you can just wire two 1K
resistors in series, and their combined resistance value will be equal to 2K.

Let’s look at a simpler example, with only two resistors. We now know
that the combined resistance of two resistors in series (R1 and R2) will be
equal to their sum. But what about the voltage drop across each resistor?
Let’s consider the simple circuit in Figure 1-22. It has one DC voltage
source, connected to two resistors in series.

What is the voltage drop across each resistor in this circuit? We can use
KVL to solve it.

Firstly, we can draw the
equivalent circuit, below it, knowing
from the previous example that
resistance in series is additive.

We can now solve for the total
current (I) through the circuit:

(1) =

(2) = = ()
As mentioned before, the current
going through a single closed loop is
constant, so the current calculated in
(2) will be flowing through each
resistor. Since a resistor is an ohmic
device, if we know the current
flowing through each resistor, we can
calculate the voltage drop using
Ohm’s law:
 Figure 1-22. Derivation of the voltage

divider equation.

Section 1

26

= × = + = + = × = + = +

To check our work, our solved values for V1 and V2 should respect KVL in
this single loop:

(3) ∑ = 0

(4) − − = 0

 (6) = +

 (7) = () + () = + =

The math works out. Both voltages V1 and V2 add up to Vin, and we can
say the sum of all voltages is equal to 0. We have now expressed the voltage
drops across R1 and R2 completely in terms of our known values, Vin, R1,
and R2. Here is our final “solved” circuit. We have just derived the voltage
divider equation.

The Voltage Divider Equation

Figure 1-23. The voltage divider equation. The voltage across each resistor is
proportional to the ratio of its contribution to the total resistance, R1+R2.

We can now also calculate the power loss across each resistor:
(9) =
(10) =
(11) = = +

Or alternately,

Introduction to Electricity 27

(12) = + = +
Example: Calculate the voltage and power drop across each resistor

when placed in series, with a 5V DC voltage supply:

Figure 1-24. Worked example for the voltage divider equation.

It’s interesting to note that it’s the ratio of R2/(R1+R2) that’s important,

so any pair of resistors with the same ratio of resistance above (e.g. R1=10K,
R2=33K) will produce the same voltage split as in the example. However,
higher value resistors will result in less current (I) through the circuit.

Voltage dividers are great for providing reference voltages, and useful
in many other contexts. In general, although it may be tempting, you should
not use a voltage divider to step down the voltage in order to power a circuit.
There are several reasons for this:

 It’s a waste of power. It’s the least efficient way of lowering voltage,
as the R1 resistor will convert the volts to heat. Whereas linear
voltage regulators can be packaged to handle that heat dissipation,
lower power-rated resistors will roast and smoke.

 The divider can act unpredictably, since whatever you are hooking
up between R1 and R2 will also have its own resistance and upset the
voltage split.

 This strategy is unregulated, meaning that if the supply voltage
spikes, dips, or ripples, so will V2.

Section 1

28

 There are better strategies to supply the correct voltage, like voltage
regulators, buck/boost converters, and finding a supply/battery at the
desired voltage.

 If you must use a voltage divider to supply power, see Voltage
Divider Design: 10% Rule.

Kirchhoff’s Current Law (KCL)

Kirchhoff’s current law is the conservation of electric charge, which
amounts to a conservation of current. If we can picture one branching point
(or node) in our circuit diagram, the sum of all currents entering the node
should be equal to the sum of all currents leaving. Picture a river, splitting
into two paths. The water must go somewhere.

To illustrate this, consider the following somewhat complicated
intersection in a circuit:

 KCL: ∑ = 0 + − − = 0

(currents for I1 and I4 are flowing out of the
node, so they are negative) + = +

Figure 1-25. Kirchoff’s Current Law example.

Using KCL, we can calculate the currents that flow through resistors in

parallel:

Figure 1-26. KCL applied to resistors in parallel. Note that the drawing on the left is
equivalent to the drawing on the right electrically. Resistors in parallel can be
represented either way.

Introduction to Electricity 29

At the top node where the labeled currents intersect, Iin is entering the
node, and I1, I2, I3 are leaving the node. Applying KCL, we can write:

(1) KCL: ∑ I = 0
(2) I = I + I +I
(3) Ohm’s Law: V=IR I=V/R
(3) (2): (5) = + +

However,
(4) V1 = V2 = V3 = Vin
The voltage drop across each resistor is the same, since they all connect

the same two wires. In fact, anything you connect directly to the positive
and negative side of the battery will have a voltage drop equal to Vin. That’s
why it’s very important not to short circuit the battery (more on that later).

(4) (5): (6) = + +

Vin: (7) = + +

Taking the reciprocal of this equation:

(7) R = + +

Equation (7) is generalizable to any n number of resistors leaving the
node: = + + + ⋯+ = ∑ Resistors in Parallel

For only two resistors, the equation simplifies somewhat, and we can
express R1 in parallel with R2 as:

 R = || = + =

The double-pipe symbol “||” in this context means that the two
components are wired in parallel. This equation is worth memorizing. Like
the voltage divider equation, it comes up again and again in electronics.

Note: A resistor in parallel with itself results in half the value: || = + = 2 = 2

There is a simplified formula for three resistors in parallel as well:

 R = || || = + + =

For two resistors in parallel, what is the current across each resistor (I1
and I2)?

Section 1

30

Figure 1-27. KCL for two resistors in parallel.

(1) KCL: ∑ I = 0
(2) Iin = I1 + I2
(3) Ohm’s Law: V = IR I = V/R
(3) (2): (4) Iin = V1/R1 + V2/R2

However,
(5) V1 = V2 = Vin
(5) (4): (6) Iin = Vin/R1 + Vin/R2

(7) = +

Re-arranging (7) to solve for Vin:

(8) = = + =

Now if we write Ohm’s Law just across R1:
(9) = =

(8) = (9): (10) =

Simplify: (11) =

Similarly: (12) =

 We have now expressed the current split into R1 and R2 completely in
terms of our known values, Iin, R1, and R2. Here is our final “solved” circuit,
and we have derived the current divider equation.

Introduction to Electricity 31

The Current Divider Equation

Figure 1-28. The current divider equation, for two resistors in parallel.

We can now also calculate the individual power losses across each

resistor: = = = = + = +
Power across R1: = = +

Power across R2: = = +

 Example: Calculate the voltage and power drop across each resistor
when placed in parallel, with a 5V power source:

= + = +

Section 1

32

Figure 1-29. Worked example for the current divider equation.

Table 1-3. Summary chart: resistors in series vs. resistors in parallel.

Resistors
in Series

 The current through each resistor in series is the same.
 The voltage is split proportionally to the resistor values (higher
resistance values get larger voltage drops across them).

 The equivalent overall resistance is the sum of all the resistance
values in series.

 Two equal value resistors in series have a total resistance of 2×R.
Resistors
in
Parallel

 The voltage drop across each resistor in parallel is the same.
 The current is split proportionally to the resistor values (lower
resistance values have higher currents through them).

 The equivalent overall resistance is less than any single resistor
separately.

 Two equal value resistors in parallel have a total resistance of R/2.

Introduction to Electricity 33

Calculating Current-Limiting Resistor Values for LEDs

LEDs (light emitting diodes) are not ohmic devices. They require a
current limiting resistor to keep them from burning out. What resistor value
is appropriate? The answer depends on the power supply, and the rating of
the LED. The following worked example illustrates some of the design
considerations involved in selecting a resistor for this specific application.

Example: An LED has an advertised current of 20 mA, and a forward
voltage drop of 3.4V. What resistor should you use to limit the current, if
you are using a 9V battery to power the LED?

Answer: The voltage drop across the
resistor will be 9V-3.4V = 5.6V
(KVL). The required resistance will
be: = = 5.60.020 = 280

Figure 1-30. Calculating the resistance of a current-limiting resistor for an LED. The
LED symbol is labelled D1 (for diode 1) in the circuit diagram.

A resistor value of 280 would be appropriate.

Now that we have an “answer”, there is the practical matter of selecting
a fixed resistor value, its maximum power rating, and its tolerance, so we
can purchase the correct resistor for our circuit. Common Fixed Resistor and
Capacitor Values in the appendix lists some common fixed resistor values.
Notice that there isn’t a 280 resistor in the chart. The closest values are
270 , and 300 . Which value should you select? It would be more
conservative to select 300 , as it would result in a lower (safer) current to
the LED. This means the current in the circuit won’t be limited by a 280
resistor, it will be limited by a 300 resistor. Our actual current then will
be I = V/R = 5.6 V/300 = 18.7 mA.

We can calculate that the power dissipated by this resistor will be P =
VI = 5.6 V 0.187 A = 0.1045 W. To select an appropriate power rating for
the resistor, double this value to be conservative (0.209 W). Resistors are
commonly available in 1/8 W, 1/4 W, 1/2 W, and 1 W power ratings. The
larger power rating resistors are physically larger, because they need to
dissipate more heat. For this application, a 1/4 W resistor would be best
suited. A lower power rating could end up overheating the resistor. Going

Section 1

34

with a higher power rating would still work, but the higher value will take
up more space than necessary, and would be a more expensive component.

We also need to select the tolerance of a resistor. The concept of
tolerance is somewhat is analogous to drug potency. Just like a 200 mg
Advil will not contain exactly 200 mg of ibuprofen, a resistor will not have
a measured resistance value exactly equal to its label claim. Resistor
tolerances are typically available at 1% and 5% tolerances. If precision
around the resistance value isn’t critical, you would purchase a 5% tolerance
resistor, and that would be fine. This means the actual resistance of the
resistor would fall between 95% 300 and 105% 300 (or 285 to 315

). The 5% tolerance fixed resistors in our lab are beige, with coloured
stripes to indicate their resistance values. If you require a more precise
resistance value (e.g. for an op-amp gain–more on that later), then you
would use a 1% tolerance resistor. This means the actual resistance of the
resistor would fall between 99% 300 and 101% 300 (or 297-303).
For this example, a 5% tolerance is appropriate, since we are already
rounding up from 280 to 300 , and we do not require more precision to
power LEDs.

Final answer: An LED with a current of 20 mA and forward voltage of
3.4 V would require a 300 , 1/4 W, 5% tolerance resistor if powered using
a 9V battery. If you find the LED is too bright, it is safe to use a higher value
resistor (e.g. 1 K or 10 K). This will result in longer LED and battery life
for this circuit.

Anode vs. Cathode: Devices with Polarity

There are devices for which the
direction of current flow does not
matter. For instance, fixed resistors
are reversible. They work the same
way wired in either direction.
However, an LED is a polarized
device, meaning that just like a
battery, it is designed with an
intended polarity in mind. It will
only light up when the current flows
through it in the correct direction.
We will go into more detail about
this in our discussion about diodes. For now, we will focus on identifying a
device’s anode and cathode, a concept which can be quite confusing. A
cathode is thought of as a charge emitter, in the sense of conventional

Figure 1-31. LED & resistor circuit,
with anodes and cathodes labeled.

Introduction to Electricity 35

current. The cathode is the part of a device that emits “positive charge”.1
We can picture positive charge leaving the battery in Figure 1-31 from its
positive terminal. This terminal is known as the battery’s cathode. The other
side of the battery is where the “positive charge” flows into–this is known
as the anode. From the perspective of the LED, the roles are switched. Have
a look at the LED in the circuit diagram of Figure 1-31. The charge emitter
then is still the cathode. The LED is not producing energy, it’s using it up.
The anode and cathode terminals therefore reverse signs. The LED’s anode
is positive, taking on the role as the charge acceptor, and the LED’s cathode
is negative, taking on the role of the charge emitter. The roles are the same,
but the polarity is reversed.

How do we know which way to hook up the LED, if only one way
works? The convention in electronic devices is to make one wire (or leg) of
a polarized device longer than the other. In general (but not always) the
longer wire means “please hook me up to positive”. Most LEDs and
polarized capacitors use this convention. If the legs are snipped equally, the
cylindrical ridge on the side of the LED is flattened on the cathode side, to
help you distinguish polarity. If you find it confusing to identify the anode
and cathode, just remember that the longer wire is connected to the higher
(positive) voltage, or if all else fails, just try reversing the LED terminals if
it doesn’t light up. On a circuit diagram, the little triangle inside an LED
symbol points in the direction of conventional current.

Introduction to Switches

We will be going into more detail for
switches. Switches can be quite complicated.
However, the simplest of circuits usually have
an on/off switch. When the switch is open, there
a physical gap (or discontinuity) in the wire,
making the circuit no longer a closed circle, but
an open dead end. This results in essentially no
electrons flowing, zero current, and no power
being drawn from the source–because the circle
is broken, and electrons generally don’t jump
through the air very well. When the switch is
closed, terminals inside the switch touch,

1 We know that the actual direction of current is opposite – the positive side of a
battery (cathode) receives electrons, and the negative side (anode) emits them.
However, we are using conventional current definitions for this discussion.

Figure 1-32. Circuit
diagram symbol (left) and
example (right) of a
latching on/off switch.

Section 1

36

allowing current to flow through. We call this a closed switch. This is
somewhat counter-intuitive, because when we shut off a light in a room, we
are really opening the switch (and consequently the circuit).

A switch is typically represented in a circuit diagram as a break in the
wire. The switch in Figure 1-32 is drawn as a latching, or toggle switch.
This means when you flip the switch, it stays in the position to which it is
flipped (like a light switch on your wall).

For a power switch, we generally interrupt the positive terminal of the
power source on a DC circuit, and the hot (or live) wire on an AC circuit.
This cuts power to the whole circuit when the switch is in the off position,
reducing the chances of a short circuit when the switch is open. This is called
high side switching. We will discuss this more in detail in Section 5.

Another type of basic, and useful
switch is a momentary switch, the simplest
and most popular type being “normally
open, held closed” (NOHC). This switch
only completes the circuit as long as the
switch is held closed, or in other words, as
long as the button is pushed down. The
moment you let go, the switch opens again.
A momentary switch can be used to power
a circuit for a short period of time, or
transmit information (such as a user
command). A popular example of a NOHC
switch is a car horn.

Figure 1-33 shows the four-pin
momentary switches we will be using
throughout this course. In Figure 1-33,
pushing the momentary switch electrically
connects all four of the pins together, effectively making them all the same
continuous wire. When the button is not pushed, only the opposite pins are
connected.

This can be somewhat confusing at first. How can you tell the difference
between the pins when looking at the switch? See if you can figure this out
by inspecting Figure 1-33. If in doubt, the switch will always be wired
correctly as a momentary switch if you connect it to the circuit using
diagonally-opposing pins, and there is only one way a momentary switch
will physically fit nicely across the ravine of a breadboard (shown in Figure
1-34).

Figure 1-33. Momentary switch
connections.

Introduction to Electricity 37

Breadboarding

If you are trying to design and test a circuit for the first time, using a
breadboard is a great way to go. Circuit connections are made by plugging
your wires and devices into a temporary scaffolding. This means you don’t
have to solder any wires to test a circuit, and changes are easily made.

When looked at lengthwise, the inner columns of a breadboard (also
called terminal strips) are electrically connected. To connect a wire, push
the bare end deep in the pin hole of a column straight in, without bending
the tip. Now, any other hole in the same column will be connected to that
wire, making it easy for you to connect two or more wires or devices.

The top half of the breadboard is not electrically connected in any way
to the bottom half. The top and bottom halves are separated by a big groove,
also called a ravine. When connecting an integrated circuit or component
with 0.1” (2.54mm) pin spacing to a breadboard, to access all the pins, you
place the component lengthwise across the ravine (as pictured in Figure 1-
34). This allows you to connect wires to every single pin of the chip, and
avoids shorting out pins across from each other.

Figure 1-34. Breadboard layout (top). Transparent arrows show how the power rails
are connected by row, and middle pins are connected by column. The adhesive
backing was peeled from the underside of a breadboard, revealing directionality of
the internal rails (bottom).

momentary
switch

Power rails

Power rails connected horizontally
by row. Rows are independent of
each other (not connected).

 DIP chip Middle pins
are connected
by column.
Columns are
independent
of each other.

ICs and DIP components (2.54 mm or
0.1” pitch) are placed across the ravine.

Ravine
separates top
from bottom
(space for DIP
components).

 Power Rails

Terminal Strips

Ravine

Section 1

38

The power rails run horizontally. You would normally connect the
positive terminal of a battery or voltage source to a red (+) rail, and the
negative terminal or ground to a blue () rail. Since the top set of rails are
not connected to the bottom set, you need to connect them with wires if
you’d like to use them as power rails. Once the power rails are connected to
the battery, you can conveniently connect components from any column to
the battery from anywhere on the closest rail. It takes a little practice, but
this breadboard layout makes putting circuits together very convenient. Be
careful not to bend pins on momentary switches or integrated circuits, as
they are fragile and are easily damaged.

Putting all these concepts together, we can now look at the basic
structure of a circuit diagram. An example of a fun project, a light theremin,
is provided in Figure 1-35. This circuit emits a tone that changes pitch based
on the amount of light received by a photoresistor. (Steve Hobley 2012)

Circuit Diagram Etiquette Example: Light Theremin

Figure 1-35. Light theremin circuit diagram. If a legend is used, values next to the
circuit diagram symbols may be omitted.

Introduction to Electricity 39

A circuit diagram should contain enough detail for someone to assemble
the device described using the correct components, resulting in a functional
circuit. In many ways, a circuit diagram is a visual protocol. The convention
is for higher voltages to be drawn above lower voltages. Process inputs are
drawn on the left (e.g. a button or sensor), and outputs are drawn on the right
(e.g. a light or speaker). Ground is at the bottom, although for simplicity’s
sake, sometimes short ground symbols are drawn from a single pin (e.g.
pin 1 of IC1, above). (Gibilisco 2013) Circuit diagrams reside at the fun
interface of art and science. Your ability to draw them will affect how well
you share your ideas. There are many ways to represent the same component
in a circuit diagram. What is most important when drawing a circuit diagram
is that the reader understands your ideas, and is able to make the correct
connections with the appropriate parts.

Many of the circuit diagrams in this manual have been intentionally
hand-drawn. There are a variety of free software packages available for
drawing circuit diagrams. However, when it comes to drawing small
circuits, a ruler, mechanical pencil, and unlined sheet of paper will serve
you well.

Activity 1-1: 9V Battery + LED + 10K Resistor

Goal: In this activity, we will introduce a
simple circuit for you to assemble and test,
using a breadboard.

Materials:
 Digital multimeter
 1 x Breadboard
 1 x 9V Battery + Snap-on Connector
 1 x 10K resistor
 1 x LED
 4 or 5 Male/Male Jumpers
 1 x Momentary Switch

Procedure:

a) Measure and record the voltage across the disconnected battery with
a voltmeter.

b) Measure the resistance across the disconnected resistor with an
ohmmeter.

c) Build the circuit above, connecting the battery last.
d) With the LED light on, measure the voltage across the LED.

Figure 1-36. Schematic for
Activity 1-1. Note: the longer
wire on the LED is the positive
side (anode).

Section 1

40

e) Measure the current at different parts of the circuit (e.g. before
resistor, after resistor, after LED) and verify the current is constant/
the same everywhere in the loop.

f) Complete the Table 1-4 with your measured and calculated values.

Table 1-4. Measured and calculated values for Activity 1-1.

 Resistor R1 LED Battery
Voltage (V)
(measured)

Current, I (mA)
(measured)

Power, P (mW)
(Calculated: P=VI)

g) Replace the 10K resistor with a 100K resistor. What happens to the

brightness of the LED?
h) What happens to the overall power of the circuit when you replace

the 10K resistor with a 100K resistor? Hint: Battery voltage ×
current = power supplied by the battery.

i) Try adding a momentary switch to your circuit in series with the
LED and resistor, to turn on the LED when pushed.

HELP! My circuit isn’t working!

Right about now, you likely have a small pile of components in front of

you that aren’t doing what you expected. Here are some general tips on
building and troubleshooting for your first activity:

 Try to make connections as simple as possible (fewer connections =
less chances for errors).

 Build slowly and carefully, with the circuit diagram in front of you.
HIGHLIGHT the connections you make on the circuit diagram with
a highlighter, as you go along. This will help you keep track of
what’s left to do.

 If you plug both legs of an LED into the same column, the current
won’t flow through the LED.

 If you forget to wire the 10K resistor in series with the LED, the LED
will burn out.

Introduction to Electricity 41

 Connecting your battery last will give you a chance to correct
mistakes you make along the way, and protect your components
from damage. You should never build a circuit with the power
connected.

 Have a look at the Troubleshooting Guide in the appendix for some
helpful tips on getting your circuit working.

 Advice for later: Don’t try to build your circuit all at once. If your
design is modular, work on and test one section at a time.

Activity 1-2: 9V Battery + 10K Resistor + 100K Resistor

Goal: In this activity, we will confirm the voltage divider equation.

Materials:
 Digital multimeter
 1 x Breadboard
 9V Battery + Snap-on Connector
 1 x 100K resistor
 1 x 10K resistor
 4 or 5 Male/Male Jumpers

Procedure:

a) Measure and record the actual
resistance values of the 10K and 100K
resistors.

b) Assemble the circuit according to the circuit diagram, connecting the
battery last.

c) Measure the voltage across the components separately: battery, R1,
and R2.

d) If the remaining current capacity of the 9V battery is 400 mAh,
calculate how long this circuit will run on the battery provided.

Table 1-5. Measured and calculated values for Activity 1-2.

 Battery R1 R2
Resistance, R ()

Measured:

Voltage (V)

Theoretical:
(Calculated)

Measured:

Figure 1-37. Schematic for
Activity 1-2.

Procedure:

42

Current, I (mA)

Theoretical:

Measured:

Operating Time (h) =

Demo: Light Theremin

There will be an in-class demonstration of the light theremin circuit at the
end of this section.

Learning Objectives for Section 1

After having attended this class, the student will be able to:
1) Define and explain the difference between AC and DC power.
2) Use the generalized power law to calculate the power consumption

of a circuit.
3) Predict the voltage drop across resistors using Ohm’s Law.
4) Select an appropriate power source for a DC circuit.
5) Predict how long a circuit would run on fresh batteries given the

current requirements of the circuit.
6) Represent resistors, voltage sources, wire, grounds, and switches in

a circuit diagram.
7) Properly draw a basic circuit in the proper orientation (process flow:

left right, voltage: down up)
8) Select an appropriate wire gauge for a circuit, based on the required

current.
9) Use Kirchhoff’s Voltage Law (KVL) to predict the voltage drops

across a voltage divider.
10) Use Kirchhoff’s Current Law (KCL) to predict the current split

through a current divider.
11) Identify the actual vs. conventional direction of current in a basic DC

circuit.
12) Correctly interpret a simple circuit diagram, and breadboard the

appropriate connections to make the circuit work.
13) Appropriately measure voltage, current, and resistance using a

digital multimeter.
14) Correctly position a high-side power switch in an AC or DC circuit.
15) Select an appropriate current-limiting fixed resistor for an LED.

Introduction to Electricity 43

16) Add a momentary switch to a circuit, observing the correct pin
orientation.

Section 1 - Station Content List

 Digital multimeter
 1 x Breadboard
 1 x 9V Battery + Snap-on

Connector
 1 x 10K resistor

 1 x 100K resistor
 1 x LED
 4 or 5 Male/Male Jumpers
 1 x Momentary Switch

Figure 1-38. Section 1 station setup.

SECTION 2

CAPACITANCE, POWER AND LOGIC

What You’ll
Be Learning

Lecture: Capacitors - charging/discharging time. Voltage
dividers - 10% rule. Voltage and current regulators. Integrated
circuits and pin numbering conventions. Thévenin’s Theorem.
Logic gates - 74XX Series Logic Gates: 7408 (AND), 7432
(OR), 7404 (NOT). Venn diagrams and logic tables.

What You’ll
Be Doing

Select two of the following 3 activities:
Activity 2-1: Capacitor charging/discharging circuit.
Activity 2-2: 5V voltage regulator circuit (LM317).
Activity 2-3: Building and testing logic gates. DIP switches -
generating and verifying logic tables (requires Activity 2-2).

Files you
will need

All course files are available
for download at:
http://pb860.pbworks.com

 Voltage Divider.xlsx
 LM317.xlsx

Capacitors

A capacitor can be thought of as a temporary rechargeable battery, that
charges up or discharges when exposed to a difference in voltage. When a
capacitor is connected to a DC voltage source, it charges almost
instantaneously. When the capacitor is shorted, it discharges almost
instantaneously. The most common construction of a capacitor is two
conductive plates separated by a thin non-conductive layer, which can be
ceramic, air, or another material, depending on the type of capacitor.

We measure capacitance in Farads (from Michael Faraday’s pioneering
work in capacitance), and use the symbol “F”.

 Capacitance (Farads) = Charge (Coulombs) / Volts = = =

Capacitors are rated in Farads. The range of typical capacitors in DC
applications is typically on the pF (1×10-12 F) to F (1×10-6 F) scale. See
Common Fixed Resistor and Capacitor Values in the appendix for common

Capacitance, Power and Logic 45

fixed capacitor values. A capacitor with a higher Farad rating means it can
hold more charge.

Figure 2-1. Electron build-up and flow upon capacitor charging and discharging.

Capacitor Circuit Diagram Symbols

Figure 2-2. Circuit symbols for different types of capacitors.

Capacitor Ratings

The capacitance rating of an electrolytic capacitor is usually printed
directly on the capacitor in small letters with units (e.g. 100 μF).

The rating of a nonpolarized (e.g. ceramic) capacitor is indicated using
a 3-digit code. As the components are so small, the code can be difficult to
see. To translate this number into a capacitance, use the following scheme:

When a DC voltage is
applied, the electrons
build up on one side of
the capacitor, and
become stored charge.

When the capacitor is
shorted, or the voltage in the
circuit drops, the capacitor
releases these electrons.

Section 2

46

Example: The 3-digit capacitor code in Figure
2-3 is 475. What is the capacitance value?

1) The first two digits are 47.
2) The third digit is 5, so write down five zeros in front of 47.
3) The capacitance is 4,700,000 pF = 4,700 nF = 4.7 μF.

Capacitors in Series and Parallel

When capacitors are wired together, the total combined capacitance is
calculated oppositely to resistors. Capacitance values are added when
capacitors are wired in parallel. When capacitors are wired in series, the
total capacitance is equal to the inverse of the sum of inverted capacitance
values.

Figure 2-4. Calculating total capacitance of capacitors in parallel and in series.

Capacitors: Typical Uses

 Charge and discharge cycle for power (e.g. camera flash):

Translating a 3-digit Capacitor Code
1) Write down the first 2 digits as they appear on

the capacitor.
2) The third digit is the number of zeros to add

after that number.
3) The answer is in pF.
4) If there are only 1 or 2 digits, that number is

the capacitance in pF.
Figure 2-3. Electrolytic
(left) and ceramic (right)
capacitors.

Capacitance, Power and Logic 47

Figure 2-5. A charge-discharge circuit. Holding down SW1 charges the capacitor.
Once charged, holding down SW2 discharges the capacitor.

 Signal filtering and smoothing:

Figure 2-6. Capacitors can remove high frequencies from a signal (e.g. in an RC
low-pass filter), low frequencies (e.g. in a CR high-pass filter), rectify an AC signal
to DC, and reduce fluctuations in a noisy power supply.

Section 2

48

Capacitor Equations

Energy Stored by a Capacitor
 () = 2 = ×2

Current Across a Capacitor

The current across a capacitor is proportional to the rate of change of

voltage (dVc/dt): = ×

Voltage Across a Capacitor

The voltage across a capacitor is related to the integral of current with

respect to time: = 1

Charging a Capacitor through a Resistor

A resistor slows down how quickly a capacitor charges by limiting the
current (larger resistance = longer charging time).

Figure 2-7. A circuit to illustrate charging and discharging a capacitor through a
resistor.

When SW1 in Figure 2-7 is first closed, the following equations describe

the current and voltage going through the resistor and capacitor with respect
to time:

Capacitance, Power and Logic 49

(1) =

(2) = = × = ×

(3) = ∫ = 1 −

Let = RC (time constant, similar to half-life):
Re-arranging:

(4) = −

(5) = −

(6) = −

The most important equation here is:

(7) = 1 − = 1 −
So when a capacitor is charging through a resistor (RC configuration), the
voltage vs. time curve will look like the curve shown in Figure 2-8.

 : × = Ω × = ∙ × =

(we can express in seconds)

Figure 2-8. It takes about three time constants (3×) for a capacitor to charge through
a resistor.

When the capacitor is completely charged, the current stops flowing through
it. The difference in voltage across the capacitor is equal to the voltage
source (Vs), and the voltage difference across the resistor is zero.

Example: How long should it take to charge the capacitor in Figure 2-7
(R=10K, C=100 F)? τ = R × C = 10,000 × 100 × 10 = 1 3 = 3 × 1 = 3
It would take ~3 seconds for the capacitor to charge.

= 1 −

Section 2

50

Discharging a Capacitor Through a Resistor

When SW2 is held down in Figure 2-7, the capacitor begins to
discharge–the opposite process. The voltage vs. time curve will look like
the curve shown in Figure 2-9.

Figure 2-9. It takes about three time constants (3×) for a capacitor to discharge
through a resistor.

Voltage Divider Design: 10% Rule

There was a warning in Section 1 about using a voltage divider to supply
power. Although it may not be your first choice, you can still make this idea
work, using the 10% Rule. Let’s say, for example, that you would like to
power a 7V lightbulb, and all you can find is a 12V DC power supply.
According to the voltage divider equation, = +

→ = − 1

= 127 − 1 = 1.4

Figure 2-10. Solving for R2 using the voltage divider equation.

So according to the voltage divider equation, any combination of two

resistors can give Vout=7V, as long as R2 = 1.4×R1. So which two resistance
values should we pick?

=

Capacitance, Power and Logic 51

R1 = 10 , R2 = 14 ?
R1 = 1 k , R2 = 1.4 k ?
R1 = 2 M , R2 = 2.8 M ?
The “answer” depends on how much current you need at 7V. The larger

the resistance values, the lower the current. You also need to consider that
whatever you connect up to Vout will have a resistance value as well (Rload),
which will in effect lower the total resistance below R1, because it will be
in parallel with R2. One strategy is to intentionally pick values of R1 and R2
that will result in 90% of the current flowing through the load (called the
load current, or Iload), and 10% of the current flowing through R2 (called
Ibleed). This is best understood using an example. Let’s say the 7V light bulb
in the example is known to draw 40 mA:

 = 40 = 10% = 10% × 40 = 4 = = = 7 4 = 1.75

Figure 2-11. Calculating the value of the bleed resistor, using the 10% Rule.

We now know that the bleed resistor, R2, should have a resistance of

1.75 k . We can calculate the resistance of the load (the lightbulb): = 40 = 7 = = 7 40 = 0.175

We now have a more complete picture of the circuit we’d like, and we
can calculate the total resistance below R1: || = + = 1.75 × 0.175 1.75 + 0.175 = 0.1591
Now that we know the total resistance below R1, we can calculate the
required resistance of R1 from the requirement R2 = 1.4×R1: = 1.4 = 0.15911.4 = 0.1136 K = 113.6 Ω

Section 2

52

Figure 2-12. Solved circuit using the 10% Rule.

Based on the 10% rule, a value of R1=113.6 , and R2=1.75 k should

provide enough current to power the bulb (40 mA). Another way of
approaching this method is to calculate (or look up) Rload, and then multiply
it by 10 to obtain a value for Rbleed. According to the current divider
equation, this will result in 10% of the current flowing through Ibleed. Then,
calculate R1 as we did here.

How much power is used by each resistor? Let’s check: = : 5 × 0.044 = 0.22 (can use 1/4 W resistor or higher) : 7 × 0.004 = 0.028 (can use 1/8 W resistor or higher) : 7 × 0.040 = 0.28
Voltage dividers are ok for low current applications (e.g. LEDs and

operational amplifiers). However, they are very inefficient at providing
higher current. Have a look at the power across each resistor above: R1 takes
a beating at 0.22W. The resistor literally burns up almost the same amount
of power as the load, just to lower the voltage to 7V. For a battery powered
system, this wastes energy and shortens battery life. Also, as batteries get
used up, the voltage drops considerably before the battery dies–this means
the load will get a lower voltage than it needs well before the battery wears
out. A voltage divider doesn’t regulate (or adjust) the output voltage. There
are much better options to supply lower voltage.

Other Options for Delivering Lower Voltage

 Power adapter: Find a wall power adapter at the voltage you need
(12V, 9V, 7V, and 5V DC power adapters are common).

 Batteries: Is your voltage requirement a multiple of 1.5V or 1.2V?
(D, C, AA, AAA alkaline batteries: 1.5V, NiMH: 1.2V) Consider
running the lower voltage portion of your device using a battery or
combination of batteries in series.

Capacitance, Power and Logic 53

 Split supply: take a line from the middle battery in a
series of batteries, at the voltage level you need
(Figure 2-13). This way energy isn’t wasted in order
to lower voltage.

 Voltage regulator: regulates voltage down to a
designed value (fixed and variable regulators are
available).

 Buck converter (or step-down converter): converts
higher voltage to lower voltage more efficiently
(without burning as much energy).

 Boost converter (or step-up converter): converts a
lower voltage to a higher voltage, at the cost of a
smaller current.

Datasheet Example: LM317 (Variable Linear Voltage Regulator)

The LM317 is a pretty solid general-purpose linear voltage regulator.
Depending on how you set it up, it can step down pretty high voltages to
something more useable. The TO-220 package of this regulator makes it
easy to add a heat sink–something that is required if you are stepping down
lots of volts. It isn’t very energy efficient compared to a step-down
converter, but it regulates the output voltage, meaning that it can correct
Vout if Vin fluctuates or changes. As long as the voltage source is above a
certain level, the output of the LM317 will be right on target.

A product datasheet for the LM317 provides all the information you will
need to use this regulator properly. (Texas Instruments Inc 2016a) A
datasheet usually has the following sections:

 Overview/description
 Features
 Pin assignments/Pin-out Diagrams
 Applications
 Technical specifications (with maximum power, current, voltage

ratings, etc.)
 Example circuits diagrams for common uses
 Required equations for common calculations
 Plenty of graphs (voltage, power, performance, etc.)

From the Texas Instruments LM317 datasheet, we can find out the pin
assignments (very important if we are going to use it!). Pins are usually
labelled from left to right, with the front of the device (the face with the part
number label) facing you:

Figure 2-13.
Split supply.

Section 2

54

Pin 1–Adjust (left most pin)
Pin 2–Output (middle pin)
Pin 3–Input (right pin)

Figure 2-14. LM317 pin-out diagram (left) and pin assignments (right).

Under “Recommended Operating Conditions”, we find the following
information:

Table 2-1. Recommended operating conditions for the LM317 voltage
regulator (TO-220 package). (Texas Instruments Inc 2016a)

 MIN MAX UNIT
VO Output voltage 1.25 37 V
VI – VO Input-to-output differential voltage 3 40 V
IO Output Current 1.5 A
TJ Operating virtual junction temperature 0 125 ºC

This information gives us a few ideas about using the LM317. Firstly,

the minimum voltage differential (Vin-Vout) is 3V. This is also called the
dropout voltage, or headroom. We learn the LM317 would not be good at
regulating a 9V battery down to 7V, because that is less than a 3V
difference. They recommend at least a 3V headroom (so regulating down
from 9V to 5V would be ok). Furthermore, this package is good up to 1.5 A.
That’s a decent amount of current. The datasheet provides the following
circuit diagram:

Capacitance, Power and Logic 55

Figure 2-15. LM317 used as an adjustable regulator circuit with improved ripple
rejection. (Texas Instruments Inc 2016a)

The capacitors (C1, C2, and C3) and diode (D1) in this diagram are

optional to reduce ripple (another word for fluctuation) in voltage. The
datasheet recommends R1=240 . The value of R2 will determine the output
voltage of the regulator, based on the equation: = 1.25 1 +

Re-arranging this equation, we can solve for R2: = (− 1.25)1.25 = 240Ω × (− 1.25)1.25 → = 192 Ω × (− 1.25)
Example: a 6V DC motor driven by a 9V battery would require

R2=192 × (6V-1.25) = 912 .
In another configuration, the LM317 can be used as a current regulator

(delivering a constant current, rather than a constant voltage). It can
therefore act as a current limiter, and to some extent, a current source. This
can be handy in charging a battery, or powering high-powered LEDs, which
require a constant current to run (rather than a fixed voltage). Letting your
power source limit your current can drain the battery faster, and also burn
out devices that require a limited current. The current-limiter configuration
in the LM317 datasheet is shown in Figure 2-16.

Section 2

56

Figure 2-16. LM317 used as a current limiter. (Texas Instruments Inc 2016a)

The circuit diagram symbol for R1 is one way of representing a variable

resistor (also called a potentiometer). This circuit works using the formula: = .

Re-arranging to solve R1: = 1.25

Example: A 50 mA high intensity LED strip
would require R1=1.25V/0.050A = 25 .

A circuit diagram symbol for a current source is a circle with an arrow
inside, pointing towards the direction of (conventional) current (Figure 2-
17).

How Hot Will My Chip Get? Heat Dissipation Calculations

When you are regulating a
supply voltage, one of the
biggest concerns is heat,
especially when high voltages
or high currents are expected.
A heat sink can be added to
help prevent overheating. It is
usually a chunk of metal that
helps absorb, conduct, and
dissipate heat. Larger heat
sinks can even have fans
attached to them. How can we tell if we need a heat sink on a voltage
regulator, or any component, for that matter?

Answer 1: Calculate the power dissipated/used by the component, using
the power equations (P=VI, or P=I2R). If the power is less than 0.25W, most
components can dissipate that without needing a heat sink.

Figure 2-18. Heat sink for TO-220 package.
The silicon layer and plastic nut keep the body
of the package insulated from the heat sink, to
reduce the chances of a short circuit.

Figure 2-17. Circuit
diagram symbol for a
10 mA current source.

Capacitance, Power and Logic 57

Answer 2: To better answer this question, you need to calculate the
power dissipation of the regulator:
 = − = (−) × (assume Iin = Iout)

The datasheet for the LM317 lists a “junction to ambient thermal
resistance” (R JA, or sometimes labeled JA) of about 50 °C/W. The formula
for this parameter is: = −

where Tj is the junction temperature rating, TA is the ambient
temperature, and PD is the maximum power dissipation. You can use this
formula in a number of ways. The most straightforward way is to calculate
how hot your component will get.

Example: Let’s say you have an LM317 voltage regulator that is
pushing out 1 amp, with an input voltage of 12V and an output voltage of
7V. How hot will it get? First, we calculate the power dissipated by the
regulator, PD: = (−) × = (12 − 7) × 1 = 5

Now we use the junction-to-ambient thermal resistance equation to
calculate the temperature increase: = −

 − = × = 50 ° × 5 = 250 °

This means that the regulator will heat up 250 °C above ambient
temperature. We read from the datasheet that the absolute maximum
temperature for the regulator is 150 °C, so for this application, a heat sink
would definitely be required. Sometimes datasheets will list Tj(max), JA(max),
or PD(max), which can all be used accordingly as limits for the above
calculated parameters.

Thévenin’s Theorem

Thévenin’s Theorem (after Léon Charles Thévenin) is a way of
analyzing and simplifying a circuit diagram from the perspective of a single
component. The theorem states that any network of resistors, capacitors, and
sources (current sources, voltage sources) can always be re-written as a
single voltage source and resistor. There are a few caveats to the theorem,
but it is a useful way of thinking about your circuit, without requiring overly
complex equations. (Scherz and Monk 2016)

Section 2

58

Figure 2-19. Thévenin’s Theorem in a nutshell. Any complicated network of
resistors, capacitors, and sources from the perspective of a single component (at
connections a and b) may be represented as a voltage source in series with a resistor.

 Thévenin’s Theorem lets you simplify complicated parts of a circuit

to solve it more easily.
 Non-linear components (e.g. transistors) are excluded from

Thévenin’s Theorem.
 The theorem lets you model an entire complicated system with only

two components: a resistor in series with a voltage source. This can
make analysis much easier.

Before we begin our discussion on how Thévenin’s Theorem works, we
need a few definitions to help us through the calculations. These definitions
help us out with the direction that we are calculating a voltage increase or
decrease across a component, or any two points in a circuit labeled a and b:

Vab = Va - Vb
Vba = Vb - Va
Vab = -Vba

Thévenin’s Theorem by Measurement (Using a Multimeter)

The easiest way to apply Thévenin’s Theorem is to build your circuit,
and then use a multimeter to determine the Thévenin Equivalent voltage and
resistance. Let’s apply Thévenin’s Theorem to the example circuit in Figure
2-20 to see how it works.

Capacitance, Power and Logic 59

Figure 2-20. Example circuit for Thévenin’s Theorem. First step: identify two
terminals of interest, and label them a and b.

1) First, we need to identify the two terminals where Thévenin’s

Theorem will be applied. These terminals will usually be the (+) and
() terminals to a component of interest (e.g. an important resistive
load, motor, light, etc.). In the above complicated circuit, we identify
the motor (the load, or what the circuit is driving) as the main
component of interest, so we mark terminals a and b, above and
below the load.

2) Remove the load from the circuit, and with the power on, measure
the open circuit voltage across a and b, using a voltmeter (Vab=VTH).

Figure 2-21. Remove the load from the example, and measure Vab.

3) Measure the current between a and b, to find the short-circuit

current (isc):

Figure 2-22. Measure isc across terminals a and b.

Section 2

60

4) Calculate the Thévenin Resistance (RTH): = (Ohm’s Law)

5) We can now simplify this circuit to the Thévenin Equivalent Circuit:

Figure 2-23. Thévenin Equivalent Circuit.

6) The current running through the motor (the load current, IL) would

be:

 = → = = +

Figure 2-24. Thévenin Equivalent Circuit with load replaced.

Alternate measurement approach (replacing Steps 3 and 4):

You can also measure RTH directly, by removing all voltage sources and

shorting the gap they leave in the circuit, removing (opening) all current
sources,2 then measuring the resistance across terminals a and b directly
with an ohmmeter:

2 Only the independent voltage and current sources (voltage/current sources that do
not rely on other voltage/current sources for their values).

Capacitance, Power and Logic 61

 =

Figure 2-25. Short all voltage sources, remove all current sources, then measure RTH.

The Norton Equivalent Circuit

A variant of the Thévenin Equivalent Circuit is the Norton Equivalent
Circuit (Figure 2-26).

= =

=

Figure 2-26. Norton Equivalent Circuit.

The Norton Equivalent Circuit is a very similar idea, only the simplified

circuit is a resistor in parallel with a current source. Once the Thévenin
Equivalent circuit is calculated, it can be converted to a Norton Equivalent
Circuit using the formulas in Figure 2-26.

Mesh Current Method

You don’t need to physically build your circuit and use a multimeter to
solve for a Thévenin Equivalent circuit. We can perform the same analysis
theoretically, in order to answer potentially difficult questions on what the
voltage or current will be across a component of interest. We will solve the
following circuit diagram two ways: first, using a conventional, longer way
(using the Mesh Current Method) and a quicker way (using Thévenin’s
Theorem), to illustrate how it works.

Let’s say we are powering a light bulb (represented as RL) in the
following circuit diagram:

Section 2

62

Figure 2-27. Example for the Mesh Current Method.

There are two DC power supplies (batteries) in this diagram, and three

resistors (our bulb acting as RL, for the resistive load of the bulb)–an
intentionally complicated circuit diagram.

For the slower way (without Thévenin’s Theorem) we will use the Mesh
Current Method to calculate the voltage and current across RL. This method
gets its name from focusing on where currents “mesh” together, like motor
gears coming together. Essentially, the Mesh Current Method
systematically applies KVL to every inner loop of a circuit, and KCL at
every junction. The resultant series of equations is solved simultaneously.
Here is how it works:

1) A junction is a point where three (or more) circuit paths meet. Label
each junction, and draw current arrows in all inside loops. In the
above circuit diagram there are two junctions, A and B:

Figure 2-28. Number each inside loop, draw current arrows, and label each junction.

2) Let’s start at junction A. KCL says: current entering = current

leaving junction A:

Capacitance, Power and Logic 63

 : Σ = 0

Junction A: − − = 0 → = (−)

Figure 2-29. Perform KCL on junction A.

3) Now apply KCL to junction B. Since the current through a resistor
is constant, the current flowing into B from A is equal to iL. Also,
we know that the current going towards V1 from junction B is equal
to i1, because it’s on the same line (or branch). Similarly, the current
flowing from V2 to junction B is equal to (i1-iL):

Figure 2-30. Perform KCL on junction B.

4) Now apply KVL to loop 1, then loop 2:

Section 2

64

Using KVL on Loop 1:
Voltage across R1: = (Ohm’s Law)
Voltage across RL: = (Ohm’s Law) : = − − = 0 − − = 0 20 − (10Ω) − (4Ω) = 0
(1) = +

Using KVL on Loop 2: : = − + = 0

 − (−) + = 0 12 − (−)8Ω + 4Ω = 0 12 − 8 + 8 + 4 = 0
(2) = −

Now there are two equations, and two unknowns. Solving:

(1): 20 = 10 + 4 10 = 20 − 4 = 20 − 410

(1) (2): 12 = 8 − 12 120 = 8(20 − 4) − 120 120 = 160 − 32 − 120 152 = 40 = 40152 = 0.263

Finally, solving for the voltage across the load: = = 0.263 × 4Ω = 1.052

We have now solved for the current and voltage across the load.

Thévenin’s Theorem Method (Theoretical)

Solving this system using Thévenin’s Theorem (working it out theoretically,
without measurement) is easier than solving simultaneous equations.

1) First, identify the terminals of interest, and mark them as points a
and b. We would like to know the current across the load, so we mark
the points on either side of it:

Positive because the current is going
the wrong way (against the direction
of the loop)

Capacitance, Power and Logic 65

Figure 2-31. Identify points a and b around the load.

2) Remove the load (RL), then calculate the voltage across the open
terminals. At this point you can remove any capacitors and short
any inductors present in your circuit diagram. For this example,
when the load is removed, we are left with a single loop. We can
use KVL to solve for the difference in voltage between points a and
b.

Figure 2-32. Remove the load, then calculate the voltage difference between points
a and b.

Using KVL on the entire outer loop (easier):

Note: Recall that the current in a single loop is constant throughout the

entire loop. : = − + − = 0 − + − = 0 + = (+)

Section 2

66

= ++ = 20 + 1210Ω + 8Ω = 1.7778
We can now calculate = − , either by following the current
clockwise from b to a on the left side of the circuit: = + − (×) = + 20 − (1.7778 × 10Ω) = + 2.222

 = − = 2.222 =

OR by following the current clockwise from a to b on the right side of the
circuit: = + − (×) = + 12 − (1.7778 × 8Ω) = − 2.222

 = − = 2.222 = (same answer)
It doesn’t matter which path you take from a to b. The voltage change
should be the same, according to KVL.

3) Short all voltage sources (replace them with a line), and remove all
current sources (remove them and leave their connection open), and
then calculate the total resistance across the open terminals a and b.
Note that the following four circuits are drawn differently, but are
electrically identical:

Figure 2-33. Circuit diagrams can be deceptive. These four circuits all depict two
resistors in parallel, from points a to b. = = || = + = 10Ω × 8Ω10Ω + 8Ω = 8018 = 4.44 Ω

4) We can now write the Thévenin Equivalent circuit from the
perspective of the load, and then solve for the current and voltage

Negative because we are
defining current as going
clockwise, and expect the
voltage to drop as conventional
current flows through R1.

Capacitance, Power and Logic 67

across the load, using Ohm’s Law and the voltage divider equation,
respectively: = = 2.224.44Ω + 4Ω = 0.263

Voltage divider equation: = = 2.22 4Ω4.44Ω + 4Ω

 VL = 1.052V

Figure 2-34. Thévenin Equivalent circuit, with load replaced.

The load connected to the Thévenin Equivalent circuit will “experience”

the same voltage drop and current as if it were connected to the original
circuit. Thévenin’s Theorem provided the exact same answer as the Mesh
Current method, without having to solve simultaneous equations.

Integrated Circuits (ICs)

Certain circuits become quite popular because of their usefulness, and it
becomes tedious and annoying to have to rebuild the same circuit if it is of
general interest. Here is where integrated circuits (ICs) step in. A circuit is
miniaturized into different packages, depending on the application, and
marketed by an electronics manufacturer with a datasheet.

PDIP/DIP

For prototyping, the clear winner is
the DIP package, which we will be
using most often in this course. DIP (or
sometimes PDIP) stands for (Plastic)
Dual Inline Package, and was invented
by Bryant (Buck) Rogers in 1964, while
at Fairchild Semiconductor. (Dummer
2013) Buck’s invention revolutionized
electronics. DIP chips can be soldered,
and fit nicely into breadboards and

Figure 2-35. DIP chips are great for
prototyping with breadboards.

Section 2

68

prototyping PCB boards for testing during the design stage.
Two DIP chips are shown in Figure

2-35: the MOC3010 (left), and the
ATtiny85 (right). The MOC3010 is an
infrared switch used to isolate mains
(AC) power from logic. The ATtiny85
is a microprocessor with 8 kb of
programmable memory, that you will
really want to get to know next if you
are enamored of the Arduino Uno.

Another epic DIP chip of historical
interest is the 555 timer, invented by
Hans Camenzind in 1971, while he was
working for Signetics. (Camenzind
1997, 80-85) In monostable mode, it produces a single pulse, the timing of
which you can control based on what you hook up to it–so you can use that
pulse to time an event. It has two other modes: astable (free-running mode-
oscillator), and bistable (flip-flop mode).

Numbering of the chip pins usually starts at a recessed dot, located on
the bottom left hand pin of the chip, and goes counter-clockwise (Figure
2-36). It is critical to get pin assignments right, or you can accidentally fry
a chip. A half-moon carved on one side of a chip can also provide a clue for
which side of the chip is right-side up, as well as the orientation of the part
number label, if you can read it.

You can find the pin assignments, maximum ratings, and thermal
characteristics for any chip by looking up the product datasheet. The Texas
Instruments product datasheet for the 555 timer provides the information in
Table 2-2.

Table 2-2. Some electrical characteristics of the NE555 chip. (Texas
Instruments Inc 2014b)

Supply Voltage (Vcc) 4.5 - 16V
Supply Current (Vcc = +5V) 2 - 6 mA
Supply Current (Vcc = +15V) 9 - 15 mA
Output Current (max): ±200 mA
Operating free-air temperature: 0 - 70 °C
θJA (Thermal Impedance): 90 ºC/W
TJ (Maximum operating junction temperature) 150 ºC

Figure 2-36. Pin numbering for DIP
chips runs counterclockwise,
starting from the bottom left pin.

Capacitance, Power and Logic 69

Surface Mount Technology

Two other common types of ICs are PLCC (Plastic Lead-Chip Carrier),
and SOIC (Small Outline Integrated Circuit). You will see these types of
chips on modules throughout the course. Some of them are so small, you
need a magnifying glass to read the label. However, they are cumbersome
to prototype with, as they do not easily fit into the holes of a breadboard.
They are much smaller than DIP chips. It’s important to understand the
difference between DIP, PLCC, and SOIC when you are ordering chips,
because you might get an unpleasant surprise when they are delivered, and
aren’t compatible with a breadboard.

Logic Circuits

The advent of microcontrollers really did away with the necessity for
logic chips. However, an understanding of the fundamentals really helps to
introduce concepts in electronics such as input pins, output pins, and gates,
as well as more advanced concepts in programming, such as if statements,
logical expressions, and even neural networks. We take a step back then to
look at examples of three fundamental logic gates: AND, OR, and NOT. In
all of these examples, a “true” is synonymous with “1”, or in other words,
whatever voltage your logic is running at (Vcc, usually 5V, or 3.3V). A
“false” is synonymous with “0”, or in other words, the ground, or reference
state (0V). If your logic level is +5V, we therefore interpret +5V as “1”, and
GND as “0”. However, there is usually some room for error, or headroom.
Keep this in mind when looking at the following diagrams.

AND Gate: (e.g. 74HC08)

The logic symbol for a 2-input AND gate is:

Figure 2-37. Logic symbol for an AND gate.

The 74HC08 is a DIP (dual inline package) chip with four AND gates

built in (quadruple gate, 2-input). A pin-out diagram for the DIP version of
this chip is provided in Figure 2-38, and was adapted from the Texas
Instruments datasheet for this product. (Texas Instruments Inc 2016d)

output pin

input pins

Section 2

70

We will be investigating how an AND
gate works. The circuit diagram in Figure
2-39 will test the AND gate functionality.
The 10K pull-down resistors keep the input
pins from “floating” to an arbitrary value
when they aren’t connected (something
annoying that happens with most input
pins). We will talk about how a pull-down
resistor works later. However, what it
means in this context is that if we close a
dip switch (or turn it on), the state of the pin
it is connected to will be HIGH (or +5V,
provided our logic level is 5V). If we open
a dip switch (or turn it off), the state of the
pin it is connected to will be LOW (or 0V),
and thanks to the pull-down resistor, it will stay LOW, rather than float
randomly because it is disconnected.

Figure 2-39. Circuit diagram to test out the functionality of an AND gate. Pull-down
resistors protect against floating pin states when the DIP switches are open.

What happens to the LED when the DIP switches for A and B are

switched on or off? An AND gate will “close” (in other words, Y=+5V)
when both inputs to the gate are HIGH at the same time (+5V). Otherwise,
the gate will “open” (in other words, Y=0V). There are four combinations
to think about, so we can organize all of the possibilities of the states for A,
B, and the result Y in a logic table (also called truth table), which can be
expressed in many ways, all meaning the same thing:

Figure 2-38. Pinout diagram
for the 74HC08 AND chip.

Capacitance, Power and Logic 71

Table 2-3. Logic tables for a 2-input AND gate. “0V” is the same as
“ground”, and this table assumes that logic level for your circuit is +5V.

In terms of voltage: In terms of state: In terms of logic:

A B Y LED A B Y LED A B Y LED
0V 0V 0V OFF LOW LOW LOW OFF false false false OFF
0V +5V 0V OFF LOW HIGH LOW OFF false true false OFF

+5V 0V 0V OFF HIGH LOW LOW OFF true false false OFF
+5V +5V +5V ON HIGH HIGH HIGH ON true true true ON

To simplify our table, we
use a 0 to represent LOW, and
a 1 to represent HIGH (Table
2-4). This representation is
independent of logic level. If
we were powering a chip with
Vcc=+3.3V, then +3.3V would
mean “1”. This convention is
preserved throughout programming, logic chips, microprocessors, and
essentially any chip with a digital pin. This idea will become important later,
when we are programming. We can then re-write the logic table with zeroes
and ones, as presented in Table 2-4.

The Venn diagram in Figure 2-40 is a
graphical representation of the logic table. The
numbers in the diagram (X,X) represent the
states of A and B, respectively. The state of A
is 1 inside the left circle, and 0 outside the left
circle. Likewise, the state of B is 1 inside the
right circle, and 0 outside the right circle. The
output variable Y is represented by shading.
The state of Y is 1 where the diagram is shaded,
and 0 elsewhere. For an AND gate, the diagram
is shaded (or Y=1) only where A and B intersect
(where their values are both 1). In set theory, we could write that the solution
to an AND gate is equal to ∩ , meaning “A intersect B”. Set theory is
immensely useful in computer programming. (Farzan 2018)

Table 2-4. Two-input AND logic table.

A B Y=AND(A,B)
0 0 0
0 1 0
1 0 0
1 1 1

Figure 2-40. Venn diagram
for a 2-input AND gate.

Section 2

72

OR Gate: (e.g. 74HC32)

Figure 2-41 (top) shows a logic symbol for a 2-input OR gate. (Nexperia
2015b) OR gates can also be drawn with a pointed output terminal, although
the output end of the symbol in this figure is semi-circular.

The 74HC32 is a DIP chip with four
OR gates built in (quadruple gate, 2-
input) that would be compatible with
the logic level of the Arduino Uno
(+5V). Figure 2-41 (bottom) shows a
pin-out for the 74HC32. The location of
the input and output pins in this chip are
the same as the 74HC08 AND gate. We
will also be investigating how an OR
gate works. Figure 2-42 shows a circuit
diagram to test the OR gate
functionality.

An OR gate functions similarly to
an AND gate, except that the gate will
be closed if either A or B is HIGH. The
logic table for a 2-input OR gate is
provided in Table 2-5. The Venn
diagram is depicted in Figure 2-43.
Both A and B circles are shaded, so we
can write ∪ to mean “A union B”
as the solution to an OR gate.

Figure 2-42. Circuit diagram to test out the functionality of an OR gate.

Figure 2-41. Logic symbol for a
2-input OR gate (top). Pinout
diagram for the 74HC32 OR chip
(bottom).

Capacitance, Power and Logic 73

Table 2-5. Two-input OR logic table.

A B Y=OR(A,B)
0 0 0
0 1 1
1 0 1
1 1 1

NOT Gate: (e.g. 74HC04)

The NOT gate is a single-input
inverter, called so because it inverts
whatever the input is. The output is the
opposite of the input. If the input is
HIGH, the output is LOW, and vice-
versa. Figure 2-44 (top) shows a logic
symbol for a single-input NOT gate.

The 74HC04 is a DIP chip with six
NOT gates built in (hex gate, single
input). Figure 2-44 (bottom) shows a
pin-out of the DIP version of this chip.
(Nexperia 2015a)

We can test the NOT gate using the
circuit in Figure 2-45 (only one DIP
switch is needed in this circuit).

The logic table and Venn diagram
for a NOT gate is presented in Table 2-
6, and Figure 2-46 respectively. We could write the solution of a NOT gate
is (the complement of A). Although simple, the NOT gate can be
combined with other logic gates to form higher order logic gates.

Figure 2-45. Schematic to test out the functionality of a NOT gate.

Figure 2-43. Venn diagram
for a 2-input OR gate.

Figure 2-44. Logic symbol for a
NOT gate (top). Pinout diagram for
the 74HC04 NOT chip (bottom).

Section 2

74

Table 2-6. NOT logic table.

A Y=NOT(A)
0 1
1 0

Combining Logic Circuits

You can get into quite complicated logic
schemes by combining the basic gates: AND,
OR, and NOT. You can also find AND and OR gates with more than two
inputs (or construct them with multiple two-input gates). Nonetheless, the
building blocks of logic are AND, OR, and NOT. The following higher
order gates can be thought of as combinations of these gates.

NAND Gate (AND + NOT)

A common logic gate is the NAND gate, which is short for NOT AND.
The solution of this gate is (∩) .

Figure 2-47. An AND gate combined with a NOT gate is equivalent to a NAND
gate.

Table 2-7. Two-input NAND logic table.

A1 B1 Y1=AND(A1,B1) Y2=NOT(Y1)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

NOR Gate (OR + NOT)

Another common logic gate is the NOR

gate, which is short for NOT OR. The solution of this gate is (∪) .

Figure 2-46. Venn
diagram for a NOT gate.

Figure 2-48. Venn diagram
for a 2-input NAND gate.

Capacitance, Power and Logic 75

Figure 2-49. An OR gate combined with a NOT gate is equivalent to a NOR gate.

Table 2-8. Two-input NOR logic table.

A1 B1 Y1=OR(A1,B1) Y2=NOT(Y1)
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

XOR Gate (2 x ANDs, 1 x OR, 1 x NOT)

The XOR gate is a bit more complicated. It is short for “exclusive OR

gate”, pronounced “ex-or”. It can be constructed in various ways, one of
which is shown in Figure 2-51. In set theory, the solution can be written as (∪) ∩ (∩) , or more simply by using the notation ⨁ .

Figure 2-51. XOR gate, meaning “exclusive OR”.

Table 2-9. Two-input XOR logic table.

A B C=AND(A,B) D=OR(A,B) E=NOT(C) Y=AND(D,E)
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 1 1
1 1 1 1 0 0

Figure 2-50. Venn diagram
for a 2-input NOR gate.

Section 2

76

You can see by the Venn diagram in
Figure 2-52 that XOR means either A or B,
but not both at the same time. If one input is
HIGH, but not both, then Vout is HIGH.
 We will revisit XOR logic, as it is used to
invert the state of a pin without disturbing the
existing states of other pins (see Bitwise XOR
(^) in Section 10).

XNOR Gate (1 x XOR, 1 x NOT)

The XNOR gate is an XOR gate with an inverter in front of it. The

solution of this gate is (⨁) .

Figure 2-53. XNOR gate, meaning “NOT exclusive OR”, or “exclusive NOR”.

Table 2-10. Two-input XNOR logic table.

A B C=XOR(A,B) Y=NOT(C)
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

An XNOR Gate returns HIGH if both gate

inputs are HIGH, or if neither are HIGH.
These gates are fundamental in logic. You can use them to create higher

order logical circuits that do what you want them to, whether the logic is
expressed with hardware using electronic chips like the 74HC series, or
dealt with in the logical commands of your sketches and programs.

Example: 1. a) How would you express “A and not B” using logic
gates?

Answer: First, have a look at the language (which can be ambiguous!).
What is implied here is AND(A,NOT(B)), or in set theory, ∪ . Looking
at this syntax, we need an AND gate, and a NOT gate. B is inverted before
the AND operation, so the diagram would look like this:

Figure 2-52. Venn diagram
for a 2-input XOR gate.

Figure 2-54. Venn diagram
for a 2-input XNOR gate.

Capacitance, Power and Logic 77

Figure 2-55. Symbolic logical representation of Example 1(a).

b) Write the logic table and Venn diagram for Example 1(a).

Table 2-11. Logic table for Example 1(a).

A B C=NOT(B) Y=AND(A,C)
0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

Example: 2. a) How would you write “A or not B” using logic gates?
Answer: This can be written as OR(A,NOT(B)), or in set theory, ∩

. It is the same as Example 1 (a), only an OR gate replaces the AND gate:

Figure 2-57. Symbolic logical representation of Example 2(a).

b) Write the logic table and Venn diagram for Example 2(a).

Table 2-12. Logic table for Example 2(a).

A B C=NOT(B) Y=OR(A,C)
0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

Figure 2-56. Venn
diagram for Example 1(a).

Figure 2-58. Venn
diagram for Example 2(a).

Section 2

78

Activity 2-1: Capacitor Charging and Discharging

Goal: In this activity, we will be examining the time constant (=RC) of a
charge/discharge circuit.

Materials:
 1 x Digital Multimeter
 1 x Breadboard
 9V Battery + Snap-on Connector
 1 x 150 μF Electrolytic

Capacitor (Note: longer
wire is +)

 1 x 10 μF Electrolytic Capacitor

 1 x 10K Resistor
 1 x 1K Resistor
 1 x LED (Note: longer wire is +)
 2 x Momentary Switches
 2 to 3 x M/M Jumpers
 1 Stopwatch

Procedure: Assemble the following circuit.

Figure 2-59. Circuit diagram for Activity 2-1.

a) Hold down SW1 to charge capacitor, then hold down SW2 to

discharge capacitor.
b) What is the theoretical charging/discharging time for this circuit?
c) Try testing the following combinations of R1 and C1, completing the

following table for each RC pair.
d) Did this circuit behave as expected? Why might the voltage decay

time diverge from theoretical values? Hint: the LED also has a
resistance.

Capacitance, Power and Logic 79

Table 2-13. Experimental results from Activity 2-1.

R1 C1 (=R1C1) (s) 3× (s) tdischarge (s)
(use a stopwatch)

10 k 150 F
1 k 150 F
10 k 10 F
1 k 10 F

Activity 2-2: LM317 Voltage Regulator

Goal: Set up an LM317 voltage regulator circuit to output 5V for Vout, from
a 9V battery. Try to use as small a space on the breadboard as possible.

Materials:
 1 x Digital Multimeter
 1 x Breadboard
 9V Battery + Snap-on Terminal
 1 x 0.1 μF Electrolytic Capacitor
 1 x 1 μF Monolithic Ceramic

Capacitor (105)

 1 x 240Ω Resistor
 1 x 1K Trim Potentiometer
 2 x Alligator Wires
 4 to 6 x Male/Male Jumpers
 1 x Small Flathead Screwdriver

or Microspatula

Procedure: The logic chips in Activity 2-3 require a +5V power supply.
We will be setting up the LM317 chip as a regulated +5V DC supply from
a 9V battery, using the circuit diagram in Figure 2-60.

Section 2

80

Figure 2-60. Schematic for Activity 2-2. Note: Pin 3 of the 1K trim is not connected.

Quite often, an IC such as this one will be manufactured in different

packages, allowing for more flexibility when designing a project. We have
the LM317 in two packages in the lab: The LM317T (in a TO-220 package
that is heat sinkable, and can supply up to 1.5 A current), and the LM317L-
Z (in a TO-92 package that is not heat sinkable, and can supply up to 0.1 A
current).

a) Calculate the required resistance of R2 if the Vout required is +5V.
Recall: = 192 Ω × (− 1.25)

b) Calculate the power dissipated if the current is expected to be ~20
mA. Is a heat sink necessary? Which chip (the LM317T or the
LM317L-Z) is most appropriate for this circuit? Why?

c) Build the circuit above, using a voltage regulator appropriate for the
current requirements in part (b). Connect the battery as the last step.
If you see smoke, disconnect the battery immediately.

d) Connect the ground and Vout pins to a voltmeter using alligator wires.
Adjust the trim pot (R2) with a microspatula until the measured Vout
is 5.0 V.

e) Remove the trim potentiometer, and measure the resistance of the
adjusted R2 (across pins 1 and 2). Was it close to the theoretical value
you calculated in Part A? You may use LM317.xlsx on the course
website to confirm your calculation.

Capacitance, Power and Logic 81

Activity 2-3: Logic Gates

Goal: Using the LM317 5V circuit from Activity 2-2, power and test the
functionality of the 74HC08 AND gate.

Materials:
 1 x Digital Multimeter
 1 x Breadboard
 9V Battery + Snap-on Terminal
 DIP switch (≥ 2 switches)
 2 x 10K Resistors

 1 x 74HC08 AND Gate
 1 x 74HC32 OR Gate
 1 x LED
 1 x 220 Ω Resistor

Procedure:

a) In order to provide +5V for this activity, construct the circuit in
Activity 2-2.

b) Using the following circuit diagram, build the AND logic gate
(74HC08) circuit:

Figure 2-61. Circuit diagram for Activity 2-3 (from Figures 2-38 and 2-39).

Note: Connect +5V to Pin 14 and GND to Pin 7, as shown on the 74HC08
pin-out diagram, on the right.

c) Test the AND gate to verify it produces the expected logic table
results, by flipping the DIP switches to different states (HIGH or
LOW).

d) Try swapping out the AND gate with an OR gate (74HC32), and
confirm the logic tables. Hint: the pin orientation of the OR gate is
the same, so there is no need to rewire the circuit.

Section 2

82

Learning Objectives for Section 2

After having attended this class, the student will be able to:
1) Describe how a capacitor works, and its primary uses: powering,

smoothing, and filtering.
2) Calculate the charging/discharging time of a capacitor in a resistor-

capacitor configuration.
3) Calculate the energy stored by a capacitor based on its capacitance

in Faraday units.
4) Calculate the time constant for a resistor/capacitor circuit, and

predict the time required to charge and discharge the capacitor.
5) Design a voltage divider circuit based on a given resistive load, Rload,

and desired voltage, Vload, using the 10% rule.
6) Appropriately select a voltage source, split voltage supply, voltage

regulator, or current regulator depending on the application.
7) Calculate the power dissipation and temperature rise based on JA,

and appropriately decide if a heat sink is needed.
8) Use Thévenin’s Theorem to simplify a circuit into its Thévenin

Equivalent, to calculate the voltage and current for a given
component of interest (e.g. the load).

9) Correctly identify the pin numbering on DIP chips and transistors.
10) Use logic chips in a simple circuit to generate and confirm logic

tables.
11) Generate logic tables for AND, OR, NOT, NAND, NOR, XOR, and

XNOR gates, and be able to determine logic tables for higher order
logic circuits.

12) Memorize and use logic symbols to construct logic circuits, based on
written descriptions of what the circuit should do (e.g. A and B, but
not C).

13) Use an electronic component datasheet to find and interpret basic
information about that component (e.g. pin numbering, maximum
power, voltage, and current ratings).

Capacitance, Power and Logic 83

Section 2 - Station Content List

• Digital multimeter
• 1 x Breadboard
• 1 x 9V Battery + Snap-on

Connector
• 1 x LM317 (TO-92 Package)
• 1 x LM317 (TO-220

Package)
• 1 x 0.1 μF Electrolytic

Capacitor
• 1 x 1 μF Monolithic Ceramic

Capacitor (105)
• 1 x 10 μF Electrolytic

Capacitor
• 1 x 150 μF Electrolytic

Capacitor
• 1 x 220 Ω Resistor

• 1 x 240 Ω Resistor
• 1 x 1K Trim Potentiometer
• 1 x 1K Resistor
• 2 x 10K Resistors
• 1 x LED (Note: longer wire

+)
• 2 x Momentary Switches
• DIP switch
• 1 x 74HC08 AND Gate
• 1 x 74HC32 OR Gate
• 2 x Alligator Wires
• 4 to 6 x Male/Male Jumpers
• 1 x Small Flathead

Screwdriver or Microspatula
• 1 Stopwatch (phone apps

welcome)

Figure 2-62. Section 2 station setup.

SECTION 3

INTRODUCTION TO PROGRAMMING IN THE
ARDUINO C++ ENVIRONMENT

What You’ll
Be Learning

Lecture: Introduction to programming in C++: The
programming environment (Arduino platform). Basic structure
of Arduino .ino file: global space, setup function, loop function.
Line and section comments. Variable definitions, declaration
(global vs. local, integer, long, unsinged, const, float, bool, byte,
char, String, arrays), initialization. Casting variable types.
Logical expressions and comparison operators. if(), for(),
do...while, while, switch case. Programming tips.

What You’ll
Be Doing

In class, each of you will receive an Arduino Uno board, USB
cable, serial LCD module, and jumper wires. The equipment is
fragile. Please be careful with it. The activities in this section are
interspersed in the lecture. We will be trying out each concept
as we go along:
 Connecting a serial LCD module to the Arduino Uno.
 Outputting information to the LCD - basic math and logical

operations. Example sketches for variable types, math
operations, if() statements, loops, etc.
Activity 3-1: Programming challenge: spectrophotometer data
averaging. Take the Arduino Uno board home and try this
activity after class.

Files you
will need

To prepare for this section, download and install the Arduino
IDE on your laptop computer.

Introduction to the Arduino Uno Microcontroller Board

The Arduino platform was developed at the Ivrea Interaction Design
Institute in Italy in 2005, as an inexpensive cross-platform educational
prototyping tool. (Mellai 2017a) Microprocessing had existed long before, but
the Arduino approach added unprecedented accessibility and ease of
programming, which changed the hobbyist landscape and helped jumpstart
the internet of things (IoT). The first board developed on this platform was

Introduction to Programming in the Arduino C++ Environment 85

named the Uno (Italian for “one”). Arduino microcontroller boards can be
programmed through a USB connection to a computer, using an open-source
platform supported by the Arduino community called the Arduino IDE
(integrated development environment). There are other software platforms
you can program microprocessors with, such as Eclipse, Matlab® and Python.
However, the Arduino IDE is a great starting point (available at
https://www.arduino.cc/en/Main/Software/). Many of the sketches in this
section have been inspired by Arduino’s tremendous open source community,
accessible at https://www.arduino.cc/en/Tutorial/Foundations.

Figure 3-1 provides a quick walk-around of the Arduino Uno
microcontroller board. See Arduino Uno Pin-out Diagram in the appendix
for a more detailed diagram.

Figure 3-1. Arduino Uno R3 board layout (DIP version).

Connecting a Serial LCD Module to the Arduino Uno

For our first activity, we will connect a serial LCD module to the
Arduino Uno. We will refer to the Arduino Uno as an MCU (microcontroller
unit) throughout this text, to emphasize that our circuits and sketches are
generalizable to other microcontroller boards and chips.

Connect the jumper wires from the MCU to the LCD module first, then
plug in the USB cable from the MCU to your computer’s USB port. You
will be making the following connections, with four M/F (male-female)
jumper wires:

Digital pins (2-13): Reading or sending a
LOW or HIGH signal (power or data) RESET

button
SCL SDA

ATmega328
microprocessor
(brain of the
Arduino Uno)

ICSP header,
for burning
bootloader and
uploading
sketches

USB port (provides
power, connects to
PC for uploading
sketches and
communicating)

7-12V in (for
powering Arduino
without a computer)

Power pins (provide
power to breadboard or
external components)

Analog pins (for reading a
voltage level between 0-5V,
great for reading sensors)

Section 3

86

Figure 3-2. Connecting the MCU to a serial LCD module.

Start up the Arduino IDE on your laptop. Your set up should now look like
Figure 3-3.

Figure 3-3. Arduino Uno (SOIC version) connected to serial LCD module and
laptop.

The serial LCD module will not work without installing and including

an external library. We will need to install the LiquidCrystal_I2C.h library,
by Frank de Brabander. (de Brabander 2017) The following procedure will
install the library:

 Click on Tools Manage Libraries…
 In the “Filter your search…” bar, type “liquidcrystal i2c”. Scroll

down, and find “LiquidCrystal I2C by Frank de Brabander”.
 Click on this library, then click the “Install” button.

SCL
SDA
VCC
GND

Serial LCD
Module

SCL
SDA
+5V

GND

Arduino Uno
MCU

Introduction to Programming in the Arduino C++ Environment 87

An Arduino program (.ino or .pde file) is called a sketch. Every sketch
needs to have a setup() and loop() function defined, even if the sketch
does nothing, otherwise it won’t compile.

The programming language in the Arduino IDE is a simplified version
of the C++ language:

 Every programming statement (except curly brackets), #define
statements, and #include statements) should end with a semicolon.

 There are many different ways to code the same thing in C++.
 Your code will be case-sensitive. Upper- and lower-case matters.
 Multiple spaces on a single line are treated the same as single spaces

(e.g. “i = i + 1 ;” is treated the same as “i=i+1;”).
 Empty lines are ignored.

The program window in the Arduino IDE should be similar to Figure 3-4.

Figure 3-4. Arduino IDE sketch window.

The right arrow button compiles
then uploads the sketch to the
active device (Arduino Uno)

Your sketch is
written and edited
inside the white
window.

 Compiler
messages,
warnings, and
errors appear in
the black window.

Active device and
selected COM port
(most common
error: wrong COM
port selected)

Section 3

88

When you run the Arduino IDE program, it will either open a blank
sketch (like above), or the last sketch you were working on. When you save
a sketch, it will automatically save it in a folder with the same name as the
sketch. A sketch named differently than its folder name won’t compile. You
will instead get a warning or error message. This will help you keep track
of the correct and last-compiled version of your program.

Your First Sketch

Type the following commands in the program window:
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(2,0);
 lcd.print("Hello, world!");
 lcd.setCursor(0,1);
 lcd.print("My first sketch.");
}

void loop(){
}

Make sure you select the correct port by clicking Tools Port (select
the port that is open for the Uno). Now, it’s time to compile and upload your
code to the Uno, by pressing Ctrl+U (for Windows) or ⌘⌘+U (for MacOS).
Another way to compile and upload is to click the little right arrow in the
Arduino IDE tool bar. After the sketch uploads, you should clearly see text
on the LCD screen.

Note 1: You may need to adjust the contrast of the lcd screen (small blue
potentiometer on the underside of the module) using a small screwdriver or
microspatula, in order to see the message.

Note 2: Uploading also automatically compiles and saves your sketch.
What does compile mean? A compiler translates code that you write in a
computer language (like C++) into machine code that the MCU or CPU can
understand.

Note 3: The programming line:
 LiquidCrystal_I2C lcd(0x27,16,2);

initializes the LCD device at bit address 0x27 by default. If your LCD sketch
doesn’t work, even after checking your wiring and adjusting the contrast by

Introduction to Programming in the Arduino C++ Environment 89

twisting the dial on the back of the LCD screen, try using 0x3F as the
address instead of 0x27, or try running an I2C scanner to find the actual bit
address. An I2C scanning sketch is available at
https://playground.arduino.cc/Main/I2cScanner.

Basic Programming Concepts

Commenting Your Code

Comments are for the programmer (you) for two main reasons:
1) To annotate your code and keep track of why you wrote it. It’s a

breadcrumb trail of your thoughts, since uncommented programs just
look like gibberish to someone else, or perhaps to you in the distant
future. Get into the habit of adding short comments to your code.
They will save you time later.

2) To get the compiler to ignore a single line, or section of code. The
compiler completely skips over any comments when it compiles the
sketch, so you can use a comment to intentionally inactivate a line
(or a section) of code, without having to delete it. This is amazingly
handy when you are trying to debug your code (find an error), or you
would like to stop a particular function in your sketch without having
to re-write it later (e.g. to stop an annoying buzzer sound).

Commenting Out One Line

 Using two forward slashes (//) comments out a single line.

Everything after the two forward slashes is ignored when you
compile the sketch, until the end of that line of code. Comment out
the following line in your sketch by placing double forward slashes
in front of it, and then upload it to see what happens:

//lcd.print("Hello world! ");

 Now delete the double forward slashes in front of the lcd.print()
command, and add an annotation at the end. Then upload it to see
what happens:

lcd.print("Hello world! "); // "Hello world!" to LCD.

 You can comment out more than one line this way. It is handy to
keep previous programming ideas commented out in your sketch, if
you go off on a tangent that doesn’t work.

Section 3

90

Commenting Out a Section of Code: Comment Section Brackets

If you need to write a paragraph of comments, it can get tedious using

double forward slashes. There is an easier way to comment out a section of
text (or code) quickly, using comment section brackets, which can span
multiple lines:

 Where you would like the comment section to begin, type: /*
 Where you would like the comment section to end, type: */

In the above example, comment out writing text to the LCD screen by
adding in comment section brackets:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 /*lcd.setCursor(2,0);
 lcd.print("Hello, world!");
 lcd.setCursor(0,1);
 lcd.print("My first sketch.");*/
}

void loop(){
}

Now compile and upload, to see what happens. When you comment out
text in the Arduino IDE, it changes colour to light grey, to show you that
it’s just a comment.

It’s important if you use section comments to begin and end them at the
correct spot. If you forget the end comment section bracket, the compiler
will just keep commenting until it reaches the next */ if there is one, or it
will comment out the rest of your entire sketch.

Comment section brackets are also typically used at the top of a
program, to record pertinent information like the program title, filename,
author name, date, and even relevant component wiring. Creating a custom
header for your sketch can help remind you why you wrote it, and whether
or not you successfully completed it. You can also briefly indicate any
critical connections you made in your circuit (e.g. connections to the LCD
module). Additional notes can help other people understand how to compile
and run your sketch, e.g. by providing more information about a library you
included.

Introduction to Programming in the Arduino C++ Environment 91

Remove the commented section brackets in the example above by
deleting /* and */. Now you can properly annotate your first sketch. At the
top of your sketch, add a section style comment to briefly describe what the
sketch does. Then, provide a comment on each line (after the semicolon) to
describe what that line of code is supposed to do.

Figure 3-5. Our first Arduino Uno sketch, with section and line comments.

Storing and Accessing Data in Variables

Variables hold information that can change. Different types of variables
store different types of data (and have different limits!). We often forget that
memory on a microprocessor (or memory chip) actually occupies physical
space on the chip, and that space has limitations. The number of bits the
microprocessor uses to store information limits the range of numbers it can
store. The processor represents numbers inside the microprocessor in
binary, so it becomes important to understand how the binary numbering
system works.

The smallest variable is 1 bit long. In other words, it has only one space
(or bit) in microprocessor memory. This space can either be in a high

Section 3

92

voltage (“1”) or a low voltage (“0”) state. So a 1-bit variable can hold two
different values: 0, or 1.

A 2-bit number has two spaces in
microprocessor memory, so it can be
used to represent four different
numbers: 00, 01, 10, and 11. These
numbers in binary are used to represent
the base 10 numbers “0, 1, 2, and 3”.
Since each bit holds two values, to find
out the number of different values a
variable can hold, raise 2 to the power
of the number of bits (2).

Table 3-1 illustrates how many
numbers each type of variable can hold.
We will come back to this table,
because it ends up being very important
when discussing the limits of variable
types.

An 8-bit binary number (e.g.
10110010) can be represented like this:

0b10110010

Table 3-1. Bit depth size
chart.

Bits

n
Numbers represented
(also called resolution)

1 bit 21 2
2 bits 22 4
3 bits 23 8
4 bits 24 16
5 bits 25 32
6 bits 26 64
7 bits 27 128
8 bits 28 256
9 bits 29 512
10 bits 210 1,024
11 bits 211 2,048
12 bits 212 4,096
15 bits 215 32,768
16 bits 216 65,536
31 bits 231 2,147,483,648
32 bits 232 4,294,967,296

“0b” is just a header, to let you know
the following series of 1s and 0s is a
number represented in binary.

To convert this 8-bit number
to decimal (base 10):
 1×27 = 128
+0×26 = 0
+1×25 = 32
+1×24 = 16
+0×23 = 0
+0×22 = 0
+1×21 = 2
+0×20 = 0

128+32+16+2 = 178.

“There are 10 kinds of people. Those who
understand binary, and those who don’t.”
–T-shirt at Snow Valley Ski Resort, Barrie ON
“I’m convinced the only reason we use the
base 10 system so much is that we have 10
fingers.” –Robert B. Macgregor, Jr.

Introduction to Programming in the Arduino C++ Environment 93

Declaring and Using Variables

Integers

Perhaps the most popular and common variable type in programming is
the integer. Integers can be positive or negative, and include the number
“0”. Only whole numbers can be represented (e.g. 3.14 is not an integer).

An integer-type variable in the ATmega328 chip occupies 2 bytes (or 16
bits) of memory. Looking at Table 3-1, this means an integer defined using
the Arduino Uno can store 65,536 different numbers! That’s not bad.
However, that doesn’t mean the range of numbers (in base 10) for an integer
is 1 to 65,536, for two reasons:

1) Zero counts as an integer.
2) The first space in the 16-bit number is used by default as a + or –

sign. So there are really only 15 bits remaining to describe numbers,
half of which will be negative and the other half positive.

The effecting range of numbers you can represent in a 16-bit signed
integer (one that can have a + or – sign) is (–32,768 to +32,767). There are
different ways of declaring (or creating) an integer variable (of course, this
is C++, after all). The three most common are:

int myVariableName=0; // signed 16bit integer
int16_t myVariableName=0; // signed 16bit integer

Other MCUs can have different storage sizes for integers. For instance, the
Arduino Due, with a SAM3X8E ARM Cortex-M3 MCU, stores integers
using 32 bits (or 4 bytes).

I would like you to use the declaration statement int to declare 16-bit
integers. I have included the other ways to declare variables in this section
so they don’t confuse you if you see them in someone else’s sketches.

a) Try writing and running the following sketch, to declare your first
integer variable:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

int answer=0; // declare answer as integer, value=0

void setup(){
 answer=answer+1; // increments answer by 1
 lcd.init(); // initialize LCD screen
 lcd.backlight(); // turn on backlight
 lcd.clear(); // clear LCD screen
 lcd.setCursor(0,0); // set cursor to first row,col
 lcd.print("Answer:"); // print “Answer” to LCD
 lcd.setCursor(0,1); // second row first col

Section 3

94

 lcd.print(answer); // no quotes: print value
} // stored in answer

void loop(){
}

This sketch declared an integer called answer, and gave it the initial
value of 0. In terms of naming the variable, we can use any name we like
(e.g. “int Dave99=0;” or “int fluffy_1=0;”, as long as the name isn’t
being used for something else in the program, and there are no spaces or
special characters in the variable name. I just chose answer arbitrarily. Feel
free to call your integer variable something else, as long as you are
consistent in the rest of the sketch. Variable names are case sensitive, so
make sure if you use upper and/or lower case, you are consistent. It’s a good
practice to initialize your variable with a value in the beginning (like we did
here) to clear out any old rubbish in the microprocessor memory. Initializing
a variable is important, because the memory may have been previously
allocated to something else, and contain other random data. It’s better to
start the variable off with the number you want (in this case, 0).

After declaring and initializing the integer variable answer, the sketch
then performed an operation with it. The command “answer=answer+1”
means, “increase the current value stored in the variable called answer by
1”. Mathematical operations work as you would expect in C++, and brackets
work as well. The following symbols and functions are commonly used:

Table 3-2. Mathematical operators and functions in C++.

Operator Function Example:
+ add answer=x+1;
- subtract answer=x-1;
* multiply answer=x*3;
/ divide answer=x/2;
% modulus (computes the

remainder after dividing
two integers)

answer=x%2;
e.g. 19%8=3, because 8 goes into
19 twice, with 3 remaining.

pow() exponent (xb) answer=pow(x,3);
exp() ex function answer=exp(x);
abs() absolute value answer=abs(x);
log() natural log answer=log(x);
log10() base 10 log answer=log10(x);
sq() square (x*x) answer=sq(x);
sqrt() square root answer=sqrt(x);

Introduction to Programming in the Arduino C++ Environment 95

Note: when you divide integers, the decimals will be dropped (not rounded).
So 5/2 will return a 2, and 1/2 will return a 0.

b) Now replace the line “answer=answer+1;” with
“answer=32767+1;”. Then re-run the program. What happens?
Why?

c) What happens if you want to represent a number that is larger than
32767? One of the ways to do this is to declare an unsigned integer.
When you are declaring an integer, you can decide to throw away
the negative sign if you would like to represent a higher positive
number. This is called an “unsigned integer”, which uses all 16 bits
for positive numbers (so the range is now 0-65535). Replace the line
“int answer=0;” with “unsigned int answer=0;”. Then re-
run the program. What happens? Why? Another way to declare an
unsigned 16-bit integer is:

unsigned int myVariableName=0; //unsigned 16bit int
uint16_t myVariableName=0; // unsigned 16bit integer
word myVariableName=0; // unsigned 16bit integer

d) A constant is a variable that can’t change. We use constants to
protect the data in our variables from ever changing once declared.
Replace the line unsigned int answer=0;
with:

 const int answer=0;
then try to compile and upload the program. What happens?

Long Integers

Sometimes you will find 16 bits limiting when you are dealing with very
large numbers. Long integers allocate 32 bits per variable (1 byte=8 bits, so
long integers are 4 bytes long). Looking back at Table 3-1, a 32-bit binary
number can represent 4,294,967,296 numbers, half of which will be
negative. So the range of numbers a long integer can represent is
(-2,147,483,648 to +2,147,483,647). An unsigned long integer can hold
numbers between (0 to 4,294,967,295).

Declaring a long and unsigned long integer can look like this:
long answer = -249502L; // 32-bit signed integer
int32_t answer1=0L; // 32-bit signed integer
unsigned long answer3=56800UL; // 32-bit unsigned int
uint32_t answer2=0UL; // 32-bit unsigned integer

Section 3

96

You can omit the suffix “L” for long, or “UL” for the numbers above,
but if you see either of these at the end of a number, they explicitly tell the
compiler these numbers are long, and unsigned long numbers, respectively.

e) Try out the following program. What happens? What happens if you
change the time delay?

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
long answer=0L;

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Answer:");
}

void loop(){
 answer++; // shortcut for: answer=answer+1;
 lcd.setCursor(0,1);
 lcd.print(answer);
 delay(250); // 250 msec delay (=0.25 seconds)
}

Global Space, Setup Function, and Loop Function

So far, we have loaded our special libraries and declared our variables
at the top of the sketch, and written commands inside the setup() function.
In the last skech, we used the loop() function for the first time. Until you
start writing your own functions, we can say that there are three different
“spaces” to write commands. Let’s have a look at the previous sketch again,
this time paying attention to where things are:

Introduction to Programming in the Arduino C++ Environment 97

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

long int answer=0L;

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Answer:");
}

void loop(){
 answer++;
 lcd.setCursor(0,1);
 lcd.print(answer);
 delay(250);
}

The program above keeps on counting up, because “answer++;” is inside
the loop function. So, just like real estate, location really matters in coding!
You can get into the habit of declaring all your important variables in global
space until you need to make your sketch more memory-efficient, or your
code more portable.

Float Variables

As nice looking and useful as whole numbers are, it is often desirable to
work with decimals. Float variables can bog down processing time, but
have a much larger range than long integers, and have up to 7 significant
digits. Like long integers, they are stored as 32 bits (4 bytes); however, some
of that space is used to represent exponents. So the decimal range of a float
variable is: (-3.4028235×1038 to 3.4028235×1038). There is no “unsigned
float”, so there is no option to shift this range into positive numbers
exclusively.

Global space. Where you load libraries (#include statements), initialize classes
and devices (e.g lcd), and use #define statements. Variables declared here, and
for that matter anywhere else outside the setup() and loop() functions, will
be global variables (accessible to the entire sketch).

setup() function. Any code inside
setup()will only be executed once,
when the MCU first powers up, or each
time it is reset (by pressing the reset
button on the board). Any variables
declared inside setup() will be local to
setup(), in other words only exist
inside the setup() function (in local
space), and forgotten after.

loop() function. Any code inside loop()
will be repeated indefinitely. After the
MCU runs the last line between the curly
brackets, it will “loop up” to the top of the
loop() function and start again – running
the code over and over. Any variables
declared inside loop() will be local to
loop(), and won’t exist elsewhere.

Section 3

98

You could use the following commands to declare float variables:
float voltage=0.0; // decimal will mean float
const float pi=3.14159 // declaring constant float
const float Avogadro=6.022e23 // using exponents
float weight=0.f; // f suffix means float #
double frequency=0.D; // same as float

f) Try out the following program:
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

float answer=100.0; //decimal tells compiler float#

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Answer:");
}

void loop(){
 answer=answer/2.0; //Use 2.0 here. 2 is integer.
 lcd.setCursor(0,1);
 lcd.print(answer);
 delay(250); //250 msec delay (=0.25 seconds)
}

g) Replace the line “lcd.print(answer);” with
“lcd.print(answer,6);”, and upload. What happens?

If…Then…Else Statements (and Logical Expressions)

One of the most common tools in the programmer’s tool chest is the
if…then…else statement. We face if…then…else choices all of the time. If
I miss the bus, then I will walk to the subway, or else I will stay home. If I
pack a lunch, then I will have something to eat around noon, or else I will
have to buy lunch. If I forget to drink my morning coffee, then I will stop at
a coffee shop; or else I won’t be able to concentrate. These statements are
no different when you are programming. Let’s write a simple sketch to
illustrate how to test values inside our variables with the if statement:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

Introduction to Programming in the Arduino C++ Environment 99

float x=2.0;
float y=5.5;

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 if(x<y){
 lcd.print("x is smaller.");
 // put as many commands as you like here.
 } // end of if statement (careful with brackets)
} // end of setup function

void loop(){
}

h) Compile and run the program.
If the condition inside the if() statement is true, then lines of code

between the following curly brackets after the if() statement are executed.
You can put as many commands as you like in between the curly brackets
(ending each line with a semicolon, as usual). What would happen in the
sketch above, if we declared x to be 50.0 (in other words, x>y)? Nothing!
The expression would be false, and everything inside the curly brackets
would be ignored. What if we’d like to have the sketch do something else if
the logical expression is false? Try out this sketch:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

float x=50.0;
float y=5.5;
void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 if(x<y){
 lcd.print("x is smaller.");
 }else{
 lcd.print("x is larger.");
 } // end of if
}
void loop(){
}

If the logical expression
is true, then run the code
between the curly
brackets. If the logical
expression is false, then
the code between the
curly brackets is ignored.

Logical
expression
inside the
round brackets
to be tested

If the logical
expression is true,
this line runs.

If the logical
expression is false,
this line runs.

Section 3

100

Can you spot a logical
problem in the sketch above? It
should compile and run, but
what happens if x and y are
equal? Then it will say that x is
larger, which isn’t true. Luckily,
we have more than one way to
compare values using relational
operators, listed in Table 3-3.

Note: float variables are not
exact numbers. They can
sometimes be off by a tiny
amount, especially when
dividing, so be careful when
comparing them with the ==
expression. Rather than testing to see if two float numbers are equal, e.g.:

if(x==y){
 it is safer to subtract them and compare the difference to a tolerance:

if(abs(x-y)<0.0001){ // absolute value of difference

You can nest if() statements. In other words, you can put one if()
statement inside of another. Make sure you keep track of conditions with
indenting and curly brackets (the Arduino IDE helps you out here).

Conditional Operator, “? :”

The conditional operator “? :” provides a short form for the if…then…else
structure in C++, all in a single line: (Smith 2009)

alarm==1?lcd.print("Wake up!"):lcd.print("Snooze.");
The question mark comes after the condition, and the colon separates the
then outcome from the else outcome. This can make coding more concise.
For instance, the following code will store the absolute value of x to y:

if(x<0){
 y=-x;
}else{
 y=x;
}

This code could be re-written more succinctly using the conditional
operator. After the conditional operator runs, the result is returned to y:
y=x<0?-x:x; // or you could just use y=abs(x)

Table 3-3. Relational operators in
C++.

Logical
Expression
Syntax

Meaning

if(x<y){ “if x is less than y…”
if(x<=y){ “if x is less than or equal

to y…”
if(x>y){ “if x is greater than y…”
if(x>=y){ “if x is greater than or

equal to y…”
if(x==y){ “if x is equal to y…”
if(x!=y){ “if x is not equal to y…”

Introduction to Programming in the Arduino C++ Environment 101

Else If

If you would like to test logical expressions sequentially, you can also use
a single (or multiple) else if statements. The above code could be modified
to handle three cases:

 if(x<y){
 lcd.print("x is smaller.");
 }else if(x==y){ // new condition here
 lcd.print("x is equal.");
 }else{
 lcd.print("x is larger.");
 } // end of if

Bool Variables

A bool (or Boolean-type) variable gets its name from George Boole, a 19th
century English mathematician whose interests included logic, algebra, and
probability. Unlike integer, long, and float variables, bool variables are only
one bit long, thus can hold two different values: 0 or 1. This can also be
represented as “false” or “true” (lower case), or as “LOW” or “HIGH”
(upper case). To declare a bool variable and initialize it with a value of 1,
you could write any of the following:

bool answer=true; // true must be all lower case
bool answer=1;
bool answer=HIGH; // HIGH must be all upper case
boolean answer=1;

Alternately, to declare a bool and initialize it with a value of 0, you could
write any of:

bool answer=false;
bool answer=0;
bool answer=LOW;
boolean answer=0;

One really handy feature about bool variables is that they can completely
replace logical expressions inside if() statements. A bool is a logical true
or false, so it doesn’t even need an operator (e.g. ==).

Let’s try this example:
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
bool showAnswer=true;
int x=1;
int y=3;
int answer=0;

 Remember the logic tables? The same
syntax [(0,1), (false, true), (LOW,
HIGH)] is used in C++.

Section 3

102

void setup(){
 answer=(5*x)+(2*y); // brackets work in C++
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 if(showAnswer){
 lcd.print(answer);
 delay(3000);
 } // end of if
 lcd.setCursor(0,1);
 lcd.print("Finished.");
}
void loop(){}

i) Enter and upload the sketch. Then, change the value of
showAnswer to false, and upload. What happens?

Boolean Operators

If you would like to make decisions based on values stored in one or more
bool variables, or combine more complicated logical expressions inside an
if() statement, the syntax is slightly different. Let’s say we declare two
boolean variables:

bool condition1=true;
bool condition2=false;

Remember the logic tables in Section 2? You can treat bool variables as
inputs using the logic operators in Table 3-4 (just like logic gates):

Table 3-4. Table of logical (Boolean) operators.

Boolean Syntax: Meaning:
if(condition1){ “if condition1 is true…”

If you forget this syntax, you can still
use the long way:
 if(condition1==true){

if(condition1&&condition2){ “if condition1 AND condition2 are
true…”

if(condition1||condition2){ “if condition1 OR condition2 is true…”
if(!condition1){ “if condition1 is NOT true…” Same as:

if(condition1==false){

Statements outside the if()
statement will always run.

A boolean doesn’t require a
logical comparison within
the if() statement.
if(showAnswer)
is the same as:
if(showAnswer==true)

true and false are all lower
case, and not in quotes.

Introduction to Programming in the Arduino C++ Environment 103

if(condition1!=condition2){ “if condition1 is different than
condition2…”
Note: this is a relational operator, but is
useful as a logical XOR test.

condition1=!condition1; Change the value of condition1. (If
condition1=true, switch it to false, and
if condition1=false, then switch it to
true.)

Boolean operators aren’t just for bool variables. You can also use them

to combine multiple logical expressions, e.g.:
if(x<6&&y>=12){z=x+y;} //if x<6 and y>=12, add them.

Byte Variables

If you only need to store a small positive integer, a byte variable
occupies only 1 byte of memory (or 8 bits of data). A byte variable can
represent an integer ranging from 0 to 255 inclusive (no negative numbers
allowed). The three main ways of declaring a byte variable are:

byte myVariableName=0;
uint8_t myVariableName=255;
unsigned char myVariableName=127;

Although byte variables are very memory efficient, be careful when
using them for math, as it is easy to forget about their very narrow limits.
We will discuss byte variables in more detail in Section 4. Out of interest,
there is a signed 8-bit integer, which stores a number between -128 and 127:

int8_t myVariableName=-10;

String and Char Variables

A String variable is very flexible, because it can store text as well as
numbers. A shortcoming is that Strings tend to be memory pigs, and if a
number is stored as a String, you can’t do math with it in that form.

A char variable is similar to a String variable, but is 8 bits long and
holds only one character, represented by a code from -128 to 127. The way
a char variable is displayed depends on the device it is sent to. Without
getting too technical, some devices display char variables using ASCII
definitions (American Standard Code for Information Interchange). Other
devices display char variables using UTF-8 definitions. UTF-8 and ASCII
Tables are provided in the appendix (Table A-2). When a char variable holds
a number from 0-31, these codes map to (non-printable) control characters.

Section 3

104

Codes 32-127 map to regular printed characters (numbers, the alphabet,
etc.). Negative codes (-128 to -1) map to the extended character definitions
in Table A-2 from 128-255. We can write a simple program to show how
String and char variables are declared and used:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

String msg1="Welcome"; // note capital S on String
char letter; // declare a char
int i=65; // declare integer to count

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print(msg1);//no quotes to print msg1 contents
}

void loop(){
 letter=i; //65 is A in UTF-8 & ASCII
 lcd.setCursor(0,1);
 lcd.print(letter);
 i=i+1;
 delay(400);
}

j) Try uploading and running this sketch, to get the hang of using
Strings and char variables.

You can combine strings together in a program simply by adding them
with a “+” sign, so the following commands would work, as long as they
are both string variables:

String message1="bigger";
String message2="line";
String message3=message1+message2;

You can declare char variables with either a UTF-8 code, or using single
quotes with the actual letter. The following two commands are equivalent:

char myfavletter='A';
char myfavletter=65;

The UTF-8 and ASCII Tables (Table A-2) are provided in the appendix.
For some additional useful commands for Strings and char variables, see
Advanced Formating and Variable Type Conversions in Section 10.

Introduction to Programming in the Arduino C++ Environment 105

Casting Variable Types

Occasionally, your sketch won’t compile or give the answer you expect
because you are trying to perform operations on different types of variables
at the same time. For instance, if you were to try to add an integer to a String,
the compiler will let you know there’s a problem with that.

Casting a variable takes one variable type and temporarily converts it to
another, for calculations and for combining Strings. It does not change the
type of the original variable. It only temporarily “casts” it as the different
type specified for that one command (like casting a role in a movie).

To cast a variable, write the variable type you want it to behave like in
brackets, in front of the variable. Here is a simple example:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
int x=1;
int y=2;
float answer=0.0;

void setup(){
 answer=(float)x/(float)y;
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print(answer);
}

void loop(){
}

Here, both x and y were cast as
float variables. They are still
integers, but for this one line,
they were acting like floats! If
we hadn’t cast them as floats,
the answer would be 0.
The syntax float(x) will also
work, and you may see this in
other people’s code.

Section 3

106

Table 3-5. How to cast between common variable types, with examples.

Initial Variable
Type
(“A” used to
store initial
value)

To cast
as a…

Use…
(“B” used to store cast value)

byte
e.g.:
byte A=3;
or bool
e.g.:
bool A=1;

int int B=(int)A;
long long B=(long)A;
float float B=(float)A;
String String B=(String)A;
char char B=(char)A; //UTF8 code

char B=(char)(A+48); //1 digit #
int
e.g.:
int A=3;

byte byte B=(byte)A;//respect byte limits
long long B=(long)A;
float float B=(float)A;
String String B=(String)A;
char char B=(char)A; //UTF8 code

char B=(char)(A+48); //1 digit #
long
e.g.:
long A=3L;

byte byte B=(byte)A;//respect byte limits
int int B=(int)A; //respect int limits
float float B=(float)A;
String String B=(String)A;
char char B=(char)A; //UTF8 code

char B=(char)(A+48); //1 digit #
float
e.g:
float A=3.14;

byte byte B=(byte)A; //rounds down
int int B=(int)A; //rounds down
long long B=(long)A; //rounds down
String String B=(String)A;

String B=String(A,3); //A (rounded
//to 3 decimals) to String

char
e.g.
char A=’3’;

byte byte B=(byte)A-48; //1 digit #
(don’t subtract 48 for UTF-8 code)

int int B=(int)A-48; //1 digit #
long long B=(long)A-48; //1 digit #
float float B=(float)A-48.0 //1 digit #
String String B=(String)A; //# or letter

Casting a variable is particularly useful when you are trying to pass the

wrong type of variable to a function (more on that later). However,
sometimes you can get away with not casting when using different types of
variables. For instance, there is no tangible benefit of casting between byte,
int, and long variables if the numbers you are intending to store can fit into
the target variable type. So the following code would not require casting:

Introduction to Programming in the Arduino C++ Environment 107

byte x=1;
int y=2;
long answer=x+y; //3 fits in long, no casting req’d

However, we will learn in Section 4 that casting between variable types
is required if they are to be used as input arguments of functions. Table 3-5
summarizes how to cast between most variable types, with examples.

Arrays of Variables

Any variable type can be turned into an array (even a String). An array
is a matrix of data, or a collection of elements all under the same declared
variable name. The array is accessed using index numbers. For example, say
we wanted to measure the weights of 5 acetaminophen tablets, and store the
data to float variables. Instead of declaring 5 different float variables, we
can instead make an array of float numbers, containing 5 elements:
float tabletWeight[5]={0.352,0.314,0.387,0.343,0.308};

Here, square brackets are used to declare the array of floats, given the name
“tabletWeight”. The 5 means: make the array five elements long. Defining
the number of array elements is optional. This statement will also work:
float tabletWeight[]={0.352,0.314,0.387,0.343,0.308};

If you do not specify the number of elements in the array definition, the
compiler will pick an appropriate size for you. Once the array is declared
and initialized, you lose the ability to fill the entire array with numbers all
at once like in the statement above. You can refer to any separate element
of the array by using the square brackets. For instance, if we want a separate
variable to hold the third value, we could use:

float thirdTablet = tabletWeight[2];

Even though the array has 5 elements, the index numbers of the array start
at 0, so the array ends at 4, not 5. This can be confusing at first. In our
example above, tabletWeight[0] is the first float number 0.352, and
tabletWeight[4] is the last float number, 0.308.

Arrays can have more than one dimension. Let’s say we wanted to store
tablet weights (in mg) for two different tablet batches, with 10 tablets per
batch. If we wanted to declare a two-dimensional array of integers, the
syntax would look like this, with the row index first and the column index
second:
int tabletInfo[2][10]={
 {325, 323, 326, 339, 337, 348, 318, 327, 319, 342},
 {411, 416, 409, 429, 427, 419, 432, 414, 402, 456}
};

Section 3

108

We used the structure of the two-dimensional array to store tablet weights
from the first batch in the first row, and tablet weights from the second batch
in the second row. When declaring a 2D array, pay close attention to where
the square brackets, curly brackets, and commas go. Recalling that array
index numbers start at zero, then:

int tempInt=tabletInfo[1][5];

would assign the number 419 (2nd batch, 6th tablet) to the variable tempInt.
Accessing arrays is much easier with for loops, discussed in the next

section, which are extremely important to programming in general.
Test your understanding: What number would tabletInfo[0][6]

be? What would happen if you tried to read the value
tabletInfo[2][10]?

Char Array

A char array can also be used in place of a String. To make matters
slightly confusing, programmers also refer to char arrays as strings (lower
case “s”). One thing to note is that the array size of a char array should be
one greater than the length of text stored, so that the compiler can add a null
character to terminate the char array. The null character (ASCII 0) ends the
char array so the program knows where the array ends. You don’t have to
know what a null character is, just remember to add one to the array size to
leave room for it. Either of these declarations will work to declare a char
array with a string of literal text:

char myMessage[6]="hello"; // array size is 6, not 5
char myMessage[]="hello";// let compiler choose size

Note: Double quotes are required for filling an array of char variables in the
declaration statement.
 The ability to enter an array of characters in one string like this is a
privilege that can only happen as you first declare and initialize the char
array (on the same line). For instance, the following code would not work:

char myMessage[6];
myMessage[6]="hello"; // Will not compile. Too late!

After a char array is defined, you need to either handle array elements one
at a time, like this:

Introduction to Programming in the Arduino C++ Environment 109

char myMessage[6];
myMessage[0]='h'; // Note the use of single quotes.
myMessage[1]='e';
myMessage[2]='l';
myMessage[3]='l';
myMessage[4]='o';
myMessage[5]='\0'; // Null character '\0' is last.

or use another function, like strcpy():
char myMessage[6];
strcpy(myMessage,"hello"); //copy hello to myMessage

If you would like to declare a constant array of characters that you want
to protect from changing during your sketch, for instance a password or
server address, you can declare it as you would expect with the command
const in front of the variable type:

const char myPassword[]="pass12345";

 Another way that programmers commonly handle this task is by
declaring a pointer, to point to an array of literal text. (Save 2011) The
following commands show equivalent ways of coding this:

const char * myPassword="pass12345";
const char *myPassword="pass12345";
const char* myPassword="pass12345";
const char*myPassword="pass12345";

The following command will print out the literal string “pass12345”:
Serial.println(myPassword);

See Char Arrays: Advanced Functions in Section 10 for further details.

Data Types: More Complicated Conversions

Casting won’t work in every situation, for example when converting
String variables to other variable types. Some conversions require special
functions. See Figure A-9, Variable Type Conversion Chart in the appendix
for an overview of common conversions.

Table 3-6 provides commands for converting variable types to and from
Strings and char arrays. In the table, the variable name “A” is used for the
data type to be converted from, and “B” is used for the data type to be
converted to. “A” and “B” should be replaced with the variable names you
need to convert.

Section 3

110

Table 3-6. More complicated variable conversions involving String and
char.

Initial Variable
Type
(“A” used to store
initial value)

To
convert
to a…

Use…
(“B” used to store converted value)

String
e.g.:
String A="31";

bool,
byte,
int,
or
long

myInput.toInt()
e.g.:
byte B=A.toInt();
int B=A.toInt();
long B=A.toInt();

float myInput.toFloat()
e.g.:
float B=A.toFloat();

char[] myInput.toCharArray(myOutput,len)
e.g.:
char B[9]; //big enough array
A.toCharArray(B,A.length()+1);
or:
A.toCharArray(B,sizeof(A));

char[]
e.g.:
char
A[3]="31";

byte
or int

atoi(myInput)
e.g.:
byte B=atoi(A);
int B=atoi(A);

long atol(myInput)
e.g.:
long B=atol(A);

float atof(myInput)
e.g.:
float B=atof(A);

String String B=(String)A
//works for char[] arrays

byte
e.g.:
byte A=31;

char[]

itoa(myInput,myOutput,base) //base
is #system
e.g.:
char B[3];
itoa(A,B,10); //(10 for base10)

int
e.g.:
int A=31;
long
e.g.:
long A=31;
float
e.g.:
float A=3.14;

char[]

dtostrf(myInput,len,precision,myOu
tput);
//len:length of string to create
//precision:#decimals)
e.g.:
char B[4];
dtostrf(A, sizeof(A), 2, B);

Introduction to Programming in the Arduino C++ Environment 111

See Additional String Conversion Commands, Table 10-23 in Section 10 for
advanced functions to convert other variable types to Strings.

Defining Programming Loops in Arduino

A programming loop is a structure that repeats continuously, usually
(but not always) testing a condition each time to see if it is time to exit the
loop. The most common type of loop is probably the for loop, which will
run a bit of code a specified number of times, and then exit the loop.

For Loops

The for loop is ubiquitous in programming, so it’s important that you
understand how it works. The for loop starts a counter at a value you specify,
increments the counter each time by an amount you specify, and stops when
a condition you specify becomes false. The following for loop would count
up from 0 to 9 inclusive, running the loop a total of 10 times:

for(int i=0;i<10;i++){ // beginning of for loop
 // other commands can go here, inside the for loop
} // end of for (where for loop stops)

Let’s have a closer look at the for loop syntax.
 for(int i=0;i<10;i++){

a) Let’s try writing and uploading the following sketch, which
illustrates defining and using an array inside a for loop (and also
casting an integer to a string):

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
float tabletWeight[5]={0.352,0.314,0.387,0.343,0.308};

We declared “int i”
inside the loop as a
counter, so it will
only exist inside
the loop, while it
is running. As
soon as the loop
ends, it’s forgotten.
You can use any
valid variable
name, not just “i”.

Starting value
of i during
the first time
through the
loop. In this
case, the first
value of i is
0. For loops
are often
started loops
at zero.

While this logical
expression is true,
the loop keeps
running. When it is
false, the loop
exits. The test is at
the top of the loop,
so when i=10, the
loop quits, and
won’t run through
the code with i=10.

Increment the
counter i by
this much
each time we
are done the
loop (in this
case, by 1).
The command
i++ is the
same as
i=i+1.

Section 3

112

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
}

void loop(){
 for(int i=0;i<5;i++){
 lcd.setCursor(0,0);
 lcd.print("tablet " + (String)i);//cast i as string
 lcd.setCursor(0,1);
 lcd.print(tabletWeight[i],3);//",3" does 3 decimals
 delay(1000);
 } // end for
}

C++ Shorthand Increment Expressions

The i++ command is in part where the C++
language got its name, because it looks snazzy!
Programmers are always trying to save time.
Here are some other C++ short forms for
changing, incrementing, or manipulating
values in variables. You can try them out, if
you are brave, or want to save keystrokes. See
Increment Operators as Array Index Values in
Section 10 for more details.

There is a whole lot of flexibility with for
loop syntax in C++. In the above example, we
used an integer as a counter, and went up by 1.
You can use these shorthand increment
expressions in for loops, or also feel free to
create your own expressions. For example, the following code would also
work:

for(float Bob=5.0;Bob<50.0;Bob*= 1.1){
 lcd.print(Bob);
 delay(1000);
}

Do…While Loops

Instead of counting a specified number of repetitions and then exiting,
do…while loops will run until the “while” logical condition becomes false,

Table 3-7. C++
shorthand.

C++
Shorthand:

Equivalent
to:

i++; i=i+1;

++i;

i--; i=i-1;

--i;

i+=y; i=i+y;
i-=y; i=i-y;
i*=y; i=i*y;
i/=y; i=i/y;

This for loop will start at i=0, and
stop at i=4, running exactly 5 times
(0,1,2,3,4). This aligns perfectly with
our array index numbers (0 to 4).

Introduction to Programming in the Arduino C++ Environment 113

and it can be ANY logical condition or expression that does the job. This has
the drawback of potentially getting your sketch stuck in a loop forever, but
also offers more flexibility in programming.

For instance, you may want a sketch to wait until the user presses a
button to exit a loop. This is prime “do…while” material. The “while”
condition is just a logical expression (or boolean variable).

To make matters confusing, you can write a do…while loop to behave
exactly as a for loop, if you put your own counter in the loop.

b) Let’s write a simple sketch to illustrate how do…while works.
Instead of using a for loop, we are going to test as many tablets as
possible until we find an overweight tablet (defined as mass > 0.380
mg). If we find one, we need to trigger an alarm, and stop our loop.

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
float tabletWeight[5]={0.352,0.314,0.387,0.343,0.308};
bool alarm=false;

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();

int i=0;
 do{
 if(tabletWeight[i]>0.380){alarm=true;}
 lcd.setCursor(0,0);
 lcd.print(tabletWeight[i],3);

i++;
 delay(1000);
 }while(!alarm); // while alarm is false
 if(alarm){
 lcd.setCursor(0,1);
 lcd.print("ALARM:heavy tab");
 } // end of if
}

void loop(){
}

This sketch tests each tablet to see if it is overweight, with the threshold
0.380 mg defined as the upper weight limit. If the tablet is overweight, the
bool variable “alarm” becomes true, then the while(!alarm) term
becomes false, so the loop exits. Remember that the do…while loop only
runs while the condition in the while() brackets is true, and the !alarm
triggered a false to stop it.

Note: it’s ok to put the whole if statement all
on one line, if there is only one command
inside it. Make sure you remember the
semicolon inside the curly brackets.

Section 3

114

Note: the do...while loop tests the while() condition at the bottom of the
loop, so it will always run through the loop at least once.

Question: there are only 5 tablet weights in the array. How would we
get the do…while loop to stop testing tablet weights after i=4?
Hint: Have a look at the table of boolean operators (Table 3-4).

While Loops

While loops are very similar to do…while loops, but the exit condition
is tested at the top, so they have the added flexibility of never running at all
(or running zero times) if the while condition is false. This is useful in
situations where the sketch needs to react to something bad that’s
happening, but if nothing bad is going on, then there is no point in going
through the loop even once. One of the more useful applications of a while
loop is to create a dead end in a program. The setup() function in a sketch
runs only once. The loop() function keeps running continuously, as long
as the microprocessor is powered on. How do you get the loop function to
stop? If you want to, you can try this:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
}

void loop(){
 for(int i=0;i<1000;i++){
 lcd.setCursor(0,0);
 lcd.print(i);
 delay(10);
 } // end of for
 while(true); //dead end in the program.
}

The while(true); command stops the sketch dead! Of course, you could
put the for loop code inside of the setup() function instead, and it will still
just run once, but this construct gives you a work-around if you don’t have
the choice, and want to stop something in the middle of the loop()
function.

This condition is always true,
so the while loop will repeat
forever. This loop never exits.
This expression can also be
written as: while(1);

Introduction to Programming in the Arduino C++ Environment 115

For, Do...While, or While?

One concept new programmers find tricky is when to use each type of
loop. The answer is: it really depends on what you want. If you’d like to
specify the number of times a loop runs, the for loop is best suited. If you
would like the option of a loop continuing until a specific condition is met,
independent of the number of times a loop is run (e.g. a user pressing a
button), then a do...while or while loop is appropriate. If you would like to
only run the contents of a loop if a specific condition is met, then a while
loop is best because it tests the condition to continue at the top of the loop,
and will not run at all unless that condition is true. A do...while loop will
always run at least once, because it asks the question “should I keep going?”
at the bottom of the loop.

However, there can certainly be overlap. The following code in
Table 3-8 illustrates how you can use all three loop structures to calculate 5
factorial, as 5! = 1 2 3 4 5. The commands in boldface are where each
loop would exit, if the condition to continue the loop is false.

Table 3-8. Three major types of loops performing the same task.

For Loop: Do...While Loop: While Loop:
int fact=1;
for(int i=1;i<6;i++){
 fact=fact*i;
}

int fact=1;
int i=1;
do{
 fact=fact*i;
 i++;
}while(i<6);

int fact=1;
int i=1;
while(i<6){
 fact=fact*i;
 i++;
}

Ommitting Curly Brackets

If your for loop, do while loop, if statement (etc.) has only one command
line inside it, you can omit the curly brackets and the function will stop at
the next semicolon. This provides a way to write code succinctly, e.g.:

for(int i=0;i<10;i++)a+=i; // a=0+1+...+9
if(a<b)a=0; // if a<b then set a to 0

The Break Command

Regardless of the kind of loop you are running (for, do…while, while,
etc.), if you use the break command, then you can leave the loop you are
currently in, right at that point. It’s the get-out-of-jail-free card for loops.

Section 3

116

This can make for interesting navigation, but it can also save you the
headache of coming up with a new exit condition, or stumble through
complicated exit logic. It gives you the ability to the exit the loop wherever
you like. Here’s how the break command could work in a simple sketch:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
bool annoyUser=true;

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 int i=0;
 while(annoyUser){
 i++;
 lcd.setCursor(0,0);
 lcd.print(i);
 if(i==10){
 annoyUser=false;
 break; // breaks out of the while loop here
 } // end if
 delay(2000);
 } //end while
 lcd.setCursor(0,1);
 lcd.print("Warmup complete");
}

void loop(){}

c) Upload this sketch. At what point does the break command leave
the loop? Does it exit immediately, or after the last 2-second delay?

d) What happens when you set annoyUser=false; in global space?
Does the while loop run at all?

Switch Case

Although this chapter doesn’t touch on all the important tools in
programming, it covers the main ideas, the last of which (for now) is
switch…case. An if…then…else statement can only test one condition on
its own, provide one response for true and another optional response for
false. If you have a number to test with a variety of possibilities for the
value, with a variety of different outcomes, you can also use else if
statements. For instance, let’s say there are 5 “modes” in a device that is

Remember the “==” sign here is a
logical comparison. It’s a
common mistake to write
if(i=10) here, but a single equal
sign means “set the value of i to
10”, which is not what we want.

This is the same as:
while(annoyUser==true)

Introduction to Programming in the Arduino C++ Environment 117

intended to be an automated tablet QC station, and you would like the
program to provide a message regarding which mode is currently selected:

#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
int choice=2;
String message=""; // initialize with empty String

void setup(){
 lcd.init();
 lcd.backlight();
 lcd.clear();
 lcd.setCursor(0,0);
 if(choice==1){
 message="Tablet sorter";
 // other commands could go here
 }else if(choice==2){
 message="Tablet weighing";
 }else if(choice==3){
 message="Colour detection";
 }else if(choice==4){
 message="Tablet hardness";
 }else if(choice==5){
 message="Friability";
 }else{
 message="Unknown mode";
 }
 lcd.print(message);
}

void loop(){
}

The switch…case command is ideal for this application. The switch…case
command will test each condition, stop until it finds a match, and can also
provide a default action if none of them are true–which is great if your user
selects a wrong option accidentally. Let’s try the same sketch again, with
switch…case:

//switch case example
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2);
int myChoice=2;
String message="";

void setup(){
 lcd.init();
 lcd.backlight();

Section 3

118

 lcd.clear();
 lcd.setCursor(0,0);
 switch(myChoice){
 case 1:
 message="Tablet sorter";
 break;
 case 2:
 message="Tablet weighing";
 break;
 case 3:
 message="Colour detection";
 break;
 case 4:
 message="Tablet hardness";
 break;
 case 5:
 message="Friability";
 break;
 default:
 message="Unknown mode";
 break;
 } // end of switch.
 lcd.print(message);
}

void loop(){
}

e) Try uploading and running the above sketch, and changing the value
of choice to 1, 5, and then 10. What happens?

General Programming Tips

Programming is a skill that takes a little getting used to, but the good
news is that once you do, the effect is transformative! The following tips
will help you keep your sketches organized and potentially save you time
and frustration.

The switched variable
type can be a byte, int,
long, or char.

break commands
are required after
each action.

Here is the default
action if none of the
other cases are a match.
This section is optional.

Introduction to Programming in the Arduino C++ Environment 119

The sketches throughout this text have been intentionally stripped down

to the essentials with minimal commenting, to keep the code less
intimidating to look at and quicker for you to copy into the Arduino IDE.
The sketches provided in the appendix are better examples of proper
programming etiquette.

C++ is one of the most popular programming languages in the world.
You can now add “Programming in C++ (Arduino Platform)” on your
resume, which will impress the reader far beyond mentioning word
processing and spreadsheet programs.

Activity 3-1: Programming Challenge

A student has put together a homemade spectrophotometer, and
collected the following data for a single standard (after zeroing the
spectrophotometer with distilled water):

1) Comment everywhere. Leave yourself a detailed breadcrumb trail in your
work. It will save you lots of work later on.

2) Don’t try and cram too many ideas in one line. Break complex ideas up
into separate, smaller steps. Keep it simple – this will help you debug your
program.

3) Make your variable names short and informative.
Come up with your own naming system. Be consistent with it.
Explain the purpose of a variable when you declare it, using comments,
on the same line if possible (less chance of it getting separated). Suggest
a default value or range in the comments, if appropriate.

4) Indent each program structure properly (if() statements, loops, etc.)
5) Comment what each end curly bracket belongs to. It is frustrating when a

curly bracket is missing, and you have to find out where its partner is (or
isn’t).

6) Compiling a program can be your best teacher. Read the compiler errors.
They are sometimes cryptic. Google what they mean if you are unsure.

7) Once you learn how to code in your first programming language, learning
another language is MUCH easier!

Section 3

120

(% Transmission at 400 nm)
14.25%
12.62%
12.47%
13.56%
11.78%
15.19%
18.40%
Write a sketch that:
 Defines one array to hold transmission measurements, and another

array to hold the converted absorbance values.
 Calculates and reports the mean, standard deviation, and relative

standard deviation (%RSD) of the absorbance values.

Note: you will need to use the following functions: log10(), sq() and
sqrt(). We will discuss how to use these functions in class.

Useful equations: ̅ = ∑ = − ()
= ∑ (̅) % = 100 × ̅

Learning Objectives for Section 3

After having attended this class, the student will be able to:

1) Identify the main parts and their functions on the Arduino Uno:
 Digital pins, analog pins, reset button, and power pins

2) Download and install an external Arduino library, and load it into a
sketch.

3) Write, compile, and upload a simple sketch to the Arduino Uno
MCU using the Arduino IDE platform.

4) Hook up an LCD serial display module to the Arduino Uno, and
adjust the contrast.

5) Write, compile, and upload a simple sketch to print “Hello World!”
to the LCD module.

6) Start a sketch folder, and become comfortable with the workflow of
coding, compiling and uploading.

Transmission in
decimal form (e.g.
0.2, not 20%)

Introduction to Programming in the Arduino C++ Environment 121

7) Use commenting notation to inactivate a single line of code (using
//), a section of code (using /* and */), and to describe/annotate lines
of functional code.

8) Select and declare the appropriate data type for a variable, keeping
in mind their structure and limits:
 integers (int, unsigned int) 16 bit
 long integers (long, unsigned long) 32 bit
 float variables 32 bit, 6-7 significant digits
 bool variables 1 bit, true or false
 byte variables (byte) 8 bit integer, 0-255
 String and char variables, how to combine strings, UTF-8 and

ASCII
 arrays, and their quirky numbering system: declaring and

accessing them
 casting a variable as another type of variable
 constants vs. variables

9) Appropriately use the three major sections of a sketch: global space,
setup() function, loop() function. Understand the scope and
limitations of defining a variable in each section.

10) Compare values inside if() statements with relational operators (<,
<=, >, >=, ==, !=)

11) Compare logical expressions with boolean operators (&&, ||, !)
12) Properly apply the following structures while coding, and be able to

identify when they terminate: for loop, do…while, while,
switch…case, break

13) Write a sketch illustrating many of these important programming
concepts.

14) Develop good coding habits and programming etiquette so that
others can understand, use, modify, and build upon your work.

Section 3 - Station Content List

• Arduino Uno
• 4 x M/F Jumpers
• 16x2 I2C Serial LCD Module

SECTION 4

ARDUINO PINS, AND WRITING FUNCTIONS

What You’ll
Be Learning

Lecture: Byte variables. Programming digital and analog pins.
Void functions vs. functions that return a value. Power and
ground pins. Maximum limits of the Uno. Introduction to serial
communications. Digital input vs. output. Analog resolution,
and input constraints. Wiring and reading momentary switches:
pull-down and pull-up resistors, button debouncing. Various
activities throughout the lecture: Button input/LED circuit.
PWM example - pulsing LED. Button in - LED state toggle.
Potentiometer LED brightness control. Flashing LED (using
functions). Average tablet weight (using functions).

What You’ll
Be Doing

The activities in this section are interspersed throughout the
lecture. We will be trying out each concept as we go along.
Activity 4-1:
a) Build and calibrate an LCD thermometer (using a thermistor).
b) Set up an LED indicator based on temperature/setpoint (LED
turns on below threshold temperature).
c) Output data in .CSV format to the serial monitor and plotter.
Label and store your calibrated thermistor for next class.

Files you
will need

All course files are available
for download at:
http://pb860.pbworks.com

 Bcoeff.xlsx

Byte Variables and Digital Pins

Since we will be discussing digital pins, the byte variable deserves
special attention here. A byte is 8 bits of data, so it can represent integers
ranging from 0 to 255. You probably wouldn’t want to use a byte variable
for math, but on the other hand, most microcontrollers have less than 255
pins, so bytes are excellent for declaring and holding pin numbers without
taking up lots of memory. Bytes are also handy in dealing with logic, for
instance sending and receiving data from shift registers, that will be
demonstrated later in class.

Arduino Pins, and Writing Functions 123

The Arduino Uno has 13 digital pins and 6 analog pins (but digital pins
0 and 1 are used for serial communication with your computer, so they are
off limits!). So 256 numbers is more than enough for defining pin numbers
on most small microprocessors.

So far, we’ve seen different ways of
getting data into variables. Often, with
byte variables, it becomes handy to be
able to express numbers in binary,
although for defining a pin number it isn’t
necessary. Let’s say we want to declare a
byte variable to refer to digital pin 13. We
could use any of the following
commands:

byte myPin=13;
uint8_t myPin=13;
const byte myPin=13;
byte myPin=0b1101;
byte myPin=0B1101;
byte myPin=B00001101;

These commands will do almost the same thing: declare a byte variable
called “myPin” and assign a value of 13 to it. Like other variables, we could
have chosen a name other than “myPin”. Usually you want to select a
variable name that gives you a hint what the pin is going to do (e.g.
“sensorPin”).

Note: One of the conventions in Arduino is to use upper case letters in
the middle of variable names, so that two words are easier to discern (e.g.
pinNum, instead of pinnum). This compensates for not being allowed to put
spaces in variable names, and is part of Arduino programming etiquette.

Digital pin 13 has a special job on the Arduino Uno: it has a built-in
LED connected to it on the Uno’s board, so that when the state of pin 13 is
set HIGH (at +5V, or “ON”), the light will be on, and when the state of the
pin is set LOW, it will be off (0V, or GND). This saves you hunting for an
LED and resistor when you need one in a pinch. Let’s try a simple sketch to
define a byte variable for pin 13, and flash the built-in LED on the Uno.
This is the first sketch that most people start with (and you don’t need to
hook up the LCD serial module):

// Example: Blink sketch
const byte ledPin=13;

void setup(){
 pinMode(ledPin,OUTPUT);//set ledPin to OUTPUT mode
}

6 Analog Pins (A0-A5)

Figure 4-1. Digital and analog
pins of the Arduino Uno MCU.

11 Digital Pins (2-13)

Section 4

124

void loop(){
 digitalWrite(ledPin,HIGH); //set ledPin state HIGH
 delay(1000);
 digitalWrite(ledPin,LOW); // set ledPin state LOW
 delay(1000);
}

a) Write and upload this sketch
to the Uno. Why are the
delays in this program? The
processor speed on the
Arduino is so fast (16 MHz)
that if you commented out the
delays, the digital pin would
be turning on and off so
quickly, the LED would
appear to be on without
blinking.

What is a Digital Pin?

A digital pin can write or read two states: HIGH (+5V), or LOW (0V,
or ground). It can be set to three different modes: OUTPUT, INPUT, and
INPUT_PULLUP.

In OUTPUT mode, the state of the digital pin can be set HIGH or LOW.
This can be used to transmit digital information, or power a small device
like an LED. A digital pin set HIGH will be at +5V, and can provide up to
40 mA of current per digital pin (P=VI = 5V*0.04A = 0.2W). A digital pin
set LOW will be at 0V.

In INPUT mode, the digital pin can read the voltage and report the pin
state. For an Arduino Uno running at its typical +5V logic level, if the
voltage level connected to a digital pin set to input mode is higher than about
+3V, then the pin will return a 1 (or HIGH) state. If the voltage level is less
than about +1.5V, it will return a 0 (or LOW) state. In between these two
voltages (1.5-3V), the digital pin could register a HIGH or LOW. In input
mode, the pins are in a very high impedance state, meaning very little
current goes in or out of them, and they are sensitive to very small changes
in voltage. This also means that if the input pins aren’t connected to
anything, they “float”–they can randomly swing from HIGH to LOW states.
This is something to keep in mind when you are reading a circuit. If you are
trying to read the state of a switch, you will need a pull-down or pull-up

How fast is the Uno’s processor?
The processor clock is a 16 MHz
crystal oscillator, which drums the
pace for the processor to run
commands.
16 MHz = 16 million assembly
instructions per second, so a simple
line of code should take about 1 16 × 10 seconds to run, or 62.5
nanoseconds. That’s FAST!

Arduino Pins, and Writing Functions 125

resistor (more on that later), or the input pin will not report the “unpushed”
state of the pin faithfully.

It is important to set the digital pin to the correct mode (OUTPUT, INPUT,
or INPUT_PULLUP) before using it, with the pinMode() command, usually
in the setup() function:

pinMode(myPin1,INPUT); //set myPin1 to INPUT mode
pinMode(myPin2,OUTPUT); //set myPin2 to OUTPUT mode
pinMode(myPin3,INPUT_PULLUP); //internal pullup
We will be discussing the INPUT_PULLUP mode later in this section.

Note: For even faster control of digital pins, see Bitwise Operations and

Introduction to Port Manipulation in Section 10.

Digital OUTPUT Mode Example

We are going to repeat the “blink” exercise, this time using an external
LED of your choice, wired in series with a 220 Ω resistor, on a breadboard:

Figure 4-2. Schematic to connect an LED to the Uno’s digital pin 6, using a
breadboard.

This schematic is more simply represented by the circuit diagram in

Figure 4-3. Note that you can switch the positions of the resistor and LED,
and the circuit will function the same (KCL).

Section 4

126

b) Set up the breadboard, change the
ledPin number in the previous sketch
to 6, then compile and upload to the
Uno.

c) Test your eyes: If you shorten the
delays in the sketch, the LED will
blink faster and faster, until
eventually it will appear to be
continuously on (although in reality,
it will still be blinking). This effect is
called the persistence of vision.
What delay value does this seem to
occur at for you? For many people, a
typical range is 16-25 msec (20-30
Hz).

Pulse Width Modulation (PWM) Example

The Arduino Uno does not have the ability to output any voltage other
than 0V or +5V (from the digital pins), or +3.3V (from the 3.3V power pin).
However, since it can switch between 0 and +5V so quickly, we can dim
our LED by changing the proportion of time the pin spends on 0V and +5V.
By “pulsing” +5V very quickly, it will be similar to having a voltage in
between 0V and +5V. If we pulse voltage quickly enough to an LED, it will
make the LED appear dim. We call this a duty cycle. A duty cycle of 50%
means that the digital pin is spending 50% of the time on, and 50% off, but
switching so quickly that effectively the output can seem like 2.5V to some
components. The fatter the width of the +5V pulse, the higher the
“effective” voltage, and the higher the duty cycle. This strategy is called
pulse width modulation (PWM). Many devices and applications take
advantage of PWM.

Figure 4-3. Circuit diagram
for schematic in Figure 4-2.

Arduino Pins, and Writing Functions 127

Figure 4-4. Pulse width modulation (PWM), illustrated with different duty cycles.

For the Uno, digital pins 3, 9, 10, and 11 have a PWM frequency of

about 490 Hz, and pins 5 and 6 have a PWM frequency of about 980 Hz.
(Mellai 2017b) Other digital pins are also capable of switching between
LOW and HIGH at these speeds, but PWM-enabled pins have this as a
special ability–you can set them on a PWM duty cycle with a single
command. These pins will continue to switch on and off at the pulse width
programmed using separate internal timers, while your sketch can go on and
do other things. If you would like to generate PWM signals at other
frequencies, see Customized Frequencies for PWM in Section 10.

d) Modify your sketch above by replacing:
digitalWrite(ledPin,HIGH);

with:
analogWrite(ledPin,127);

Confirm that the LED flashes at half the brightness as before.

Section 4

128

e) We will be using PWM later to control motors more precisely. In
the meantime, try the following sketch. It pulses the LED according
to a sin curve function:

// Example: Fading an LED
const byte ledPin=6;

void setup(){
 pinMode(ledPin,OUTPUT);
}

void loop(){
 for(float x=0.0; x<6.28; x+=0.01){
 byte y = sin(x)*128.0 + 128.0;
 analogWrite(ledPin,y);
 delay(5); // longer delay=slower fading
 }
}
The sin(i) function gives a wave with a range of values from [-1 to

+1]. So we needed to re-map those values within the range for PWM (0-
255, where 0 = 0% duty cycle, 255=100% duty cycle). The expression
x=sin(i)*128.0+128.0 “remaps” the range of outputs (gain then shift)
from [-1…1] to [0…255]. This useful idea will come in handy later when
we discuss sensor ranges. Changing delay time will affect the fading time.

Figure 4-5. Gaining and shifting the sin() function to the working PWM range [0-
255].

Digital Input Mode Example

In this next example, a momentary switch (Figure 1-33) is used to
demonstrate how digital pins work in INPUT mode. A momentary switch
is very flexible, since it can be programmed to behave like a toggle, and
have different functions triggered by the same switch (e.g. short push =
action 1, hold down = action 2, double click = action 3, hold during bootup
= action 4). See Programming One Button with Multiple Functions in
Section 9 for a more advanced example sketch.

Define a local byte variable
called y, and give it the value
sin(x)*128.0+128.0
We didn’t bother casting here.
float will be rounded down
when converted to bytes.

Arduino Pins, and Writing Functions 129

Background: Pull-Up and Pull-Down Resistors

Different ways to wire a momentary switch to a digital pin are illustrated
in Table 4-1. A pull-up resistor or pull-down resistor (typically 10K)
prevents the digital pin from floating while the switch connected to it is
open.

Table 4-1. Wiring a momentary switch to a digital input pin.

Momentary Switch with Pull-Down Resistor

A pull-down resistor pulls the voltage down to
ground when SW1 is open. Otherwise, when
the switch is open, you would get erratic reads
from the pin, because it would be “floating”
(not connected to anything).
 When SW1 open, pin 7 is LOW
 When SW1 closed, pin 7 is HIGH

Momentary Switch with Pull-Up Resistor

A pull-up resistor does the opposite: it pulls
pin 7 HIGH when SW1 is open. This reverses
the logic.
 When SW1 open, pin 7 is HIGH
 When SW1 closed, pin 7 is LOW

Momentary Switch with Internal Pull-Up Resistor

The ATmega328 MCU has built-in (internal)
pull-up resistors on its digital pins, that you
can activate by setting the pinMode using the
following command:
pinMode(myPin,INPUT_PULLUP);

This saves you from needing an external 10K
pull-up resistor.
 When SW1 open, pin 7 is HIGH
 When SW1 closed, pin 7 is LOW

Note: Do not use Pin 13 in INPUT_PULLUP
mode, as the built-in LED won’t pull the pin
higher than ~1.7 V.

Section 4

130

f) Our next activity has two parts to it: an LED circuit (with current-
limiting resistor), and a momentary switch circuit. Leave the LED
circuit assembled from part (e). Build the momentary switch circuit
in Figure 4-6.

Figure 4-6. LED circuit (left) and momentary switch circuit (right).

g) Write and upload the following sketch:
// Example: Change LED state with button push
const byte ledPin=6;
const byte buttonPin=7;
bool ledState=false;

void setup(){
 pinMode(ledPin,OUTPUT); //pin 6 to OUTPUT mode
 pinMode(buttonPin,INPUT); //pin 7 to INPUT mode
}

void loop(){
 if(digitalRead(buttonPin)==HIGH){ //if pushed
 ledState=!ledState; //toggle ledState
 digitalWrite(ledPin,ledState); //turn on/off led
 delay(50);
 } // end if
}

This is called button debouncing. It gives the user
time to let go of the button. Is 50 msec enough?

Pins won’t work as
expected without
pinMode().

Arduino Pins, and Writing Functions 131

Note: The following commands would turn the LED on:
digitalWrite(ledPin,HIGH);
digitalWrite(ledPin,true);
digitalWrite(ledPin,1);
bool ledState=1; // declare ledState as 1
digitalWrite(ledPin,ledState); //use bool

Similarly, the following commands would turn the LED off:
digitalWrite(ledPin,LOW);
digitalWrite(ledPin,false);
digitalWrite(ledPin,0);
bool ledState=0; // declare ledState as 0
digitalWrite(ledPin,ledState); //use bool

Analog Pins

The digitalRead() function can only report a LOW state if the
voltage connected to the digital pin is close to zero, or a HIGH state if the
voltage connected to the digital pin is close to +5V. However, there are
situations when we require more resolution than just LOW or HIGH when
measuring a voltage. The ATmega328’s analog pins can read 1024
“divisions” (or divs) from 0 to +5V, inclusive. This resolution gives us
enough information to make meaningful measurements. We need to keep
measured voltages within 0 and +5V, or we risk damaging the board.
Analog pins do not require a pinMode() command. They are just ready to
do their jobs. The command to read from an analog pin is:

analogRead(myPin);
where myPin is A0, A1, A2, A3, A4, or A5–one of the Uno’s six analog
pins. You refer to them in your sketch with the letter “A” then the pin
number, e.g.:

int reading=analogRead(A5);

When you use the analogRead() command, it doesn’t tell you the
voltage. The resolution of the analogPin is 10 bits (210=1024 numbers). The
command returns divs (or divisions), a number from 0 to 1023, that is
linearly proportional to the voltage from 0 to +5V (0 divs=0V, and 1023
divs=+5V). You need to convert divs to volts if you’d like to know the
actual voltage:

float volts=0.0; //float variable to hold volts
volts=analogRead(A0)*5.0/1023.0; //divs to volts

Section 4

132

Once you convert divs to volts, you usually won’t stop there. If you are
reading the voltage from a sensor, you need to convert the voltage to a
measurement in your unit of interest. For instance, the LM35 is an IC that
puts out a voltage signal proportional to the temperature in degrees Celsius.
The conversion from Voltage to Celsius is 10 mV/°C, with an intercept of
0 (that means 0 mV=0°C). So the next line in the sketch might be:

float Celsius=volts/0.010; //volts to Celsius

Note: Avoid using pins A4
and A5 to read analog voltages
if you are using any devices that
require SDA and SCL pins, as
these pins will conflict.

Using Analog Pins as
Digital Output Pins

If you run out of digital pins, and your analog pins are still free, you can
set them to be digital output pins. Simply declare them to OUTPUT mode in
pinMode(), and then you can use the digitalWrite() command on an
analog pin:

pinMode(A0,OUTPUT); //pin A0 to digital output mode
digitalWrite(A0,HIGH); //set A0 state to +5V

Analog pins do not have built-in PWM capability.

Analog Read Example

In this next exercise, we will set up a 10K linear potentiometer as a
voltage divider, and “read” the voltage on the middle post (or “wiper”) of
the potentiometer. We don’t need to convert divs to volts in this exercise.
We are reading divs, then rescaling that reading (0-1023) to the brightness
limits of PWM (0-255).

Figure 4-7. LM35 temperature sensor.
(Texas Instruments Inc. 2017)

Arduino Pins, and Writing Functions 133

Background: Potentiometers

Figure 4-8. A potentiometer can be set up as a variable resistor (rheostat), or a
voltage divider. The wiper (middle pin) sweeps across a length of resistive material.

h) Assemble the following circuits:

Figure 4-9. LED circuit (left) and potentiometer set up as a voltage divider (right).

i) Write and upload the following sketch:
// Example: Fade LED with potentiometer as input
const byte ledPin=6; //ledPin is digital pin 6
const byte potPin=A0; //potPin is analog pin A0
int divRead=0; //for storing analog reading

Section 4

134

void setup(){
 pinMode(ledPin,OUTPUT); // set ledPin as OUTPUT
}
void loop(){
 divRead=analogRead(potPin); //read div from pot
 int y=map(divRead,0,1023,0,255); //scale to PWM
 analogWrite(ledPin,y); //write PWM signal
}

Note: the map() function is a useful linear rescaling routine. Basically,
it performs linear interpolation on integer-type variables (e.g. byte, int, and
long). The syntax of the map function is:

map(x, xmin, xmax, ymin, ymax);

The map() function will not scale float variables.

Mathematically, the following code would do the same thing as the
map() command, storing the answer to the integer variable y:

int y=ymin+((x-xmin)/(xmax-xmin))*(ymax-ymin);

External Analog Reference: AREF Pin

The default resolution on analogRead is
+5V/1024 divs = 4.9 mV/div. This reading takes
~116 sec, so you can make up to about 8,600
readings per second (8.6 kHz). This is also called
sampling at 8.6 kHz. See Worked Example: Fast
Analog Read in Section 10 if you would like to
speed this up.

If you would like increased resolution (less
mV per step), you can apply the 1024 steps to a
narrower range (e.g. 0-3.3V) by physically
connecting the upper limit voltage you want to the
Uno’s analog reference (AREF) pin (e.g. connect
a jumper from the 3.3V pin to AREF). Then in the
setup() function, add the following command:
 analogReference(EXTERNAL);

your
measured
value, x

lower
limit
of x

upper
limit
of x

new upper
limit to

rescale x

new lower
limit to

rescale x

Figure 4-10. The AREF
pin lets you set the
voltage of the highest
div (1023). Range: 0-
5V.

Arduino Pins, and Writing Functions 135

The resulting resolution for AREF=3.3V would then be +3.3V/1024
divs=3.2 mV/div, ranging from (0-3.3V). The highest div (1023) will map
to 3.3V. As with other pins on the Uno, voltages connected to AREF should
not be outside [0.0-5.0V]. External voltages outside this range could
damage the board. (Mellai 2017c)

If you use AREF, remember to adjust your conversion from divs to volts.
For example, with a 3.3V analog reference:

float volts=divs*3.3/1023.0; //divs->volts,AREF=3.3V

A common mistake is declaring the analogReferene(EXTERNAL);
command, and then forgetting to connect an external voltage to the AREF
pin. If this happens, the AREF pin will be left in a floating state, producing
very erratic readings.

Arduino Pin Conflicts

Many pins on the Arduino Uno are multifunctional, and you can
accidentally run into conflicts while allocating pins. For instance, if you use
an LCD module in your project, it operates using the I2C communication
pins SDA and SCL. These are wired in parallel with analog pins A4 and A5,
respectively, so you can’t take analog readings from these pins while using
the LCD module. Similarly, MOSI, MISO, and SCK (also called CLK on
some boards) are wired to pins 11, 12, and 13 respectively. How would you
know this? You can look up the microprocessor datasheet (Atmel
Corporation 2016) or check out a pin-out diagram for the Arduino Uno
(provided in Figure A-5). These types of diagrams are invaluable when you
are trying to figure out connections to a microcontroller.

Section 4

136

Arduino Digital and Analog Pins: Summary Tables

Table 4-2. Digital pin summary table.

Digital Pin:
INPUT
Mode

Code: pinMode(myPin,INPUT);
pinMode(myPin,INPUT_PULLUP);
digitalRead(myPin);

Used for: Receiving information (0 or 1)

Digital Pin,
OUTPUT
Mode

Code: pinMode(myPin,OUTPUT);
digitalWrite(myPin,HIGH);
digitalWrite(myPin,LOW);
analogWrite(myPin,#);
(# is an integer from 0-255,
0=0% duty cycle, or LOW
127=50% duty cycle, or HIGH half the time
255=100% duty cycle, or HIGH all the time)

Used for: Sending information (0 or 1)
 Powering low-power devices (<0.2 W)
 Serial communications (e.g. I2C)
 PWM (Pulse-Width Modulation), pins 3,9,10,11:

490 Hz, pins 5,6: 980 Hz.

Table 4-3. Analog pin summary table.

Analog
Pin,
INPUT
Mode

Code: No need to declare pinMode()
analogRead(myAnalogPin);
 To use an external analog reference:
analogReference(EXTERNAL);
 Remember to plug a voltage into the AREF pin to

use an external analog reference.
 pinMode(myPin,INPUT_PULLUP);//optional

Used for: Receiving a voltage.
(0 1023 , maps to 0 5V, or 0 AREF)

Analog
Pin,
OUTPUT
Mode

Code: pinMode(myAnalogPin,OUTPUT);
digitalWrite(myPin,HIGH);
digitalWrite(myPin,LOW);

Used for: Same as digital pin in OUTPUT mode (you can use
analog pins if you run out of digital pins).
 Not PWM-capable.

Arduino Pins, and Writing Functions 137

The Serial Monitor

The Arduino IDE’s built-in serial monitor is a
faster and more useful alternative to the LCD serial
module. The serial monitor can send and receive data
between your PC and microprocessor, in real time.
Serial communications can slow down your sketches,
but while you are writing your code, serial messages
really help to “see” what’s going on in the
microprocessor. After you are done debugging, if
serial messages are not part of your final program then
you can comment out all of the serial commands and
leave them for future debugging. Using the serial
monitor is easy. First, you need to initialize the serial
monitor in the setup() function using the command:

Serial.begin(9600); //start serial monitor

The number “9600” is the baud rate. This means that 9600 bits are
transmitted in 1 second (1 baud = 1 bit per second, or bps). A range of baud
rates are possible (see Table 4-4). A baud rate of 9600 is a very common
first choice. You would select a faster baud rate if serial communications
are slowing down your sketch, and high speed is essential (e.g. 3D printing
software is typically set to 250,000 baud, although it is more advisable to
use an SD card). Writing to the serial monitor is very similar to writing to
the LCD screen. The two main commands are:

Serial.print("Hello world"); //prints txt
Serial.println("Hello world"); //prints txt+return

The first command Serial.print() prints “Hello world” to the serial
monitor. The second command Serial.println() also prints “Hello
world”, then advances to a new line afterwards. Like the LCD.print()
command, you can combine strings. You can print the values stored inside
variables to the serial monitor by not enclosing the variable name in quotes.

j) We will edit the previous sketch to illustrate how to use the serial
monitor. The lines in bold are the new lines added:

// Example: Printing to the serial monitor
const byte ledPin=6; //ledPin is digital pin 6
const byte potPin=A0; //potPin is analog pin A0
int divRead=0; //for storing analog reading

Table 4-4.
Selectable baud
rates (bps) in the
Arduino IDE
serial monitor.

300
1200
2400
4800
9600
19200

38400
57600
74880
115200
230400
250000

Section 4

138

void setup(){
 pinMode(ledPin,OUTPUT); // set ledPin as OUTPUT
 Serial.begin(9600); //start serial monitor 9600bps
 Serial.println("Voltage in divs"); // print string
}

void loop(){
 divRead=analogRead(potPin); //read divs from pot
 Serial.println(divRead); //print divRead to serial
 int y=map(divRead,0,1023,0,255); //scale to PWM
 analogWrite(ledPin,y); //write PWM signal
}

Write and upload this sketch, then press Ctrl+Shift+M (for Windows)
or ⌘⌘+Shift+M (for MacOS) to start the serial monitor. Make sure the drop-
down menu on the serial monitor window is set to the correct baud rate. Try
twisting the potentiometer while watching the measurements scroll by. Is
the display moving too quickly? Try adding delay(100); somewhere in
the loop() function.

For more tips and tricks with Serial.print() and
Serial.println() commands, see Serial.print(), Serial.println(), and
Serial.write(): Escape Sequences and Advanced Output Options in Section
10.

The Serial Plotter

The serial plotter is another useful built-in feature, which draws
numbers as they are received from your device to an autoscaling graph. To
start the serial plotter, first close the serial monitor, then press Ctrl+Shift+L
(for Windows) or ⌘+Shift+L (for MacOS). Try using the serial plotter.
What do you notice about the axis scaling as the plotter runs?

Subroutines and Functions

So far, we’ve written commands in three areas that exist in every sketch:
 Global Space (at the top of a sketch, and outside other functions)
 Inside the setup() function (runs only once)
 Inside the loop() function (loops continuously)

However, programming is much easier when we can write our own
functions, so we don’t have to rewrite the same commands repeatedly. This
makes our code easier to review and modify. We can also build up libraries

Arduino Pins, and Writing Functions 139

of our own useful functions, which can speed up what we need to do
considerably.

Properties of Functions

Functions have access to
global variables, but not local
variables defined in other
functions (e.g. variables
declared in the setup() and
loop() functions).

In order to be accessible to
your entire sketch, functions
are declared in global space,
before, between, or after (but
not inside) the setup() or
loop() functions.

Any variables you declare
inside a function will be local to that function. In other words, a local
variable will only exist inside that function, while the function is running.
Once the function stops running, the variable will be forgotten.3 However,
as you will see, you can pass variables (and values) into and out of functions
easily, and any global variables are accessible within the function you write.

It is a good idea to make a function completely independent from the
rest of the sketch, so you can easily copy it into other sketches, without too
much hassle. Although a function has access to global variables, if you can
avoid referring to them directly, you won’t have to declare the same global
variables in a new sketch.

Void Functions

The simplest type of function is a void function, called “void” because
it returns nothing. This is often called a “subroutine” in other programming
languages. A void function is simply a different place to bundle a series of
commands, so that every time you call that function, the commands inside
the function are “executed”. This means the code in the function runs.

3 If you declare a static variable inside a function without initializing it (e.g. static
int myvariablename;), then its last stored value will be remembered next time
it runs. However, it will not be accessible by other functions, or in global space.

Table 4-5. Common types of functions.

Function Type: Function Returns:
void function nothing
bool function a bool
byte function a byte
char function a character
int function an integer
long function a long integer
float function a float
String function a String

Section 4

140

k) Let’s try writing a void function that flashes your LED on pin 6,
twice:

// Example: Writing a function to flash an LED
const byte ledPin=6;

void setup(){
 pinMode(ledPin,OUTPUT);
}

void loop(){
 flashLED();
}

void flashLED(){
 for(int i=0;i<2;i++){
 digitalWrite(ledPin,HIGH);
 delay(500);
 digitalWrite(ledPin,LOW);
 delay(500);
 }
 delay(2000);
}

Although this function works, it’s not very portable. For instance, if it
were copied into another program, you would have to make sure the byte
variable ledPin was defined in global space, or the sketch wouldn’t
compile. Also, wouldn’t it be fun to specify the number and speed of flashes,
when we call the function? Try re-writing the void function like this:

void flashLED(byte fPin, int fnum, int fwait){
// flashLED flashes an LED.
// fPin: pin# to flash (e.g. 6)
// fnum: #flashes (e.g. 5)
// fwait: msec delay betw flashes (e.g. 250)
 for(int i=0;i<fnum;i++){
 digitalWrite(fPin,HIGH);
 delay(fwait);
 digitalWrite(fPin,LOW);
 delay(fwait);
 }
 delay(2000);
}

We defined our function
after the loop() function;
however, as long as it is
outside the setup() and
loop() functions, it will
be in global space.

This is how we call a void function. See
how much cleaner the loop() function
looks now?

Make sure you define the
variable types for each input
argument, and separate them
with commas. All the variable
types we discussed (int, float,
long, String, char, boolean,
etc.) can be input arguments.

Arduino Pins, and Writing Functions 141

We have defined input arguments for the function flashLED(), so that
when you call the program, you can specify the pin number (fPin), the
number of flashes (fnum), and the delay between flashes (fwait). Those
input arguments only have meaning within the function. They are just
placeholders. The type of variable you enter as an input argument must
match the variable type of the input argument when you call the function,
or the program won’t compile.

To call this function, just add the values you would like to use when you
run flashLED() in the sketch:

flashLED(ledPin,5,250);

This function call will flash digital pin 6, 5 times, with a 250 msec delay
between flashes. Try changing the input arguments to see how calling
works. We can now copy this function to any sketch, and this void function
will still compile and work the same way, because it doesn’t access any
global variables.

Call-by-Value vs. Call-by-Reference

When we called the flashLED() void function in the line above, the
input arguments were call-by-value. This means the function makes a local
copy of the input arguments, uses those values while the function is running,
then destroys the values when it is finished. Each original variable passed
to the function is not affected. If you pass a number to a function (as we did
above), then there is really nothing to talk about–this is the proper way to
do it. However, if you pass a variable to the function and you try to change
the contents of the variable while the function is running, then the original
variable will never get changed, only the local copy.

If you would like to change the original variable within a function, you
can either leave it out of the argument line, make it a global variable, and
change it as usual, or you can do something called call-by-reference. To
call by reference, put an “&” sign in front of the variable name when you
are defining the function’s input arguments. This gives the function the
power to change the value inside the original variable. This idea is illustrated
in the following two sketches. The sketch on the left tries to change the pin
number within the function, but it can’t, because it only changes the local

This is how we call a void function
with input arguments. When you
call the function, make sure your
argument variable types match the
ones you defined in the function
(or cast them so they match).

byte int int

Section 4

142

“copy” inside the function. The LED on pin 13 never lights up. The sketch
on the right calls by reference (&fPin). It can now change the original
ledPin variable, so the first time the function is called, it will flash the LED
on pin 6, and from then on, it will flash the on-board LED on pin 13. The
only difference between the two sketches is the “&” sign.

Table 4-6. Example sketches for call-by-value (left) vs. call-by-reference
(right).

Call-by-Value: Call-by-Reference:
byte ledPin=6;

void setup(){
 pinMode(ledPin,OUTPUT);
 pinMode(13,OUTPUT);
}

void loop(){
 flashLED(ledPin);
}

void flashLED(byte fPin){
 for(int i=0;i<10;i++){
 digitalWrite(fPin,HIGH);
 delay(100);
 digitalWrite(fPin,LOW);
 delay(100);
 }
 delay(2000);
 fPin=13;
}

byte ledPin=6;

void setup(){
 pinMode(ledPin,OUTPUT);
 pinMode(13,OUTPUT);
}

void loop(){
 flashLED(ledPin);
}

void flashLED(byte &fPin){
 for(int i=0;i<10;i++){
 digitalWrite(fPin,HIGH);
 delay(100);
 digitalWrite(fPin,LOW);
 delay(100);
 }
 delay(2000);
 fPin=13;
}

Note: Arrays are call-by-reference by default, so you don’t need to use the
“&” sign when defining an array as a function input argument.

Float Functions

A float function works exactly the same as a void function, with one
notable exception: a float function returns a float number when it is finished.
To return a number from any type of function, usually the last line is “return
myResult;” (where myResult is a value, expression, or variable you want
returned). The following example sketch defines a function that adds two float
numbers together, and returns their sum as a float number:

Arduino Pins, and Writing Functions 143

float answer=0.0;

void setup(){
 answer=addNums(2.0,1.0);
}

void loop(){
}

float addNums(float a, float b){
 return a+b;
}

When the program runs the return command, it leaves the function at that
line, regardless of whether or not there is any code after. You can also use
the return command on its own (e.g.: return;), to exit a void function
early. It is similar to the break command, but is used to exit a function, not
a loop.4 Let’s go back to our tablet weight example sketch from Section 3,
and this time, write a function that calculates (and returns) the average tablet
weight:
float tabletWeight[5]={0.352,0.314,0.387,0.343,0.308};
float avgWeight=0.0;

void setup(){
 Serial.begin(9600);
 avgWeight=getAvg(tabletWeight,5);
 Serial.print("Average weight: ");
 Serial.println(avgWeight,4);
}

void loop(){
}

float getAvg(float gWeight[], int gnum){
 float total=0.0;
 for(int i=0;i<gnum;i++){
 total=total+gWeight[i];
 }
 total=total/(float)gnum;
 return total;
} // end bracket for getAvg

4 In fact, you can even use the return; function to exit the main loop function,
instead of the while(1); command mentioned in Section 3.

 Our simple
float function.

Print avgWeight with 4
decimals to serial monitor.

An array can be an input
argument.

Function call. Store
the number returned
by getAvg()to
avgWeight.

Array doesn’t need
brackets here.

Local float variable, only exists
inside the function getAvg()

Casting the int gnum as a float.

This is the return statement,
which returns a float number
(average tablet weight).

Section 4

144

l) Write and upload this sketch. What’s the average tablet weight?

Integer (and other) Functions

How do you write an integer function? You write it the same way as a
float function, only you define the function with int instead of float. The
following example sketch has a function that squares an integer. The
function is called the same way as a float function.

void setup(){
 Serial.begin(9600);
 int answer=sqInt(13); // sqInt() called here.
 Serial.println(answer);
}

void loop(){
}

int sqInt(int x){ //squinting is hard on your eyes
 return x*x;
}

Use the same syntax for writing String and bool functions: just specify the
required variable type before the function name. Functions are so useful,
that after you get the hang of writing them, you won’t be able to function
without them!

Function DOs and DON’Ts

You may notice that in the last sketch, the integer answer was declared
on the same line as the function was called:

int answer=sqInt(13); // sqInt() called here.

By declaring answer inside the setup() function, its contents will be
remembered as long as the setup() function is still running, so the next
line where answer is printed to the serial monitor will work. Declaring
variables on the fly like that may look careless, but is actually more memory
efficient than declaring answer as a global variable, and fine as long as you
don’t try to access answer from outside the setup() function. You can
call a function the same way inside the loop() function–and the local
variable you declare to store the answer will be remembered for the
remainder of code in the loop.

Table 4-7 summarizes some useful tips in writing successful functions.
Make sure you comment your functions to remember why you wrote them,

Defining an integer function.

Programmers think they are funny.

Arduino Pins, and Writing Functions 145

and how they work. This will help keep track when you are looking at your
code later, wondering what it was you were thinking.

Table 4-7. DOs and DON’Ts in writing functions.

DOs DON’Ts
Come up with a system for naming
function input argument variables.
Notice I used the prefix “f” for input
argument variables to remind me they
belong locally to the flashLED
function, not to global space.

Don’t name your arguments the same
name as your global variable names.
It makes your code confusing.
Besides, if they are global variables,
they don’t need to be arguments.

If possible, make your function
independent from the rest of the
sketch. You can refer to global
variables, but they are better off passed
into the function through arguments,
so the function is more portable.

Don’t refer to local function variables
outside the function they are defined
in.

Make sure when you call your
function, your input argument types
match the way you defined them in the
function. If a type doesn’t match, cast
it (or change the argument type).

Don’t try to change the value of an
input argument within the function,
unless you call-by-reference, or
unless it’s an array. Consider making
that variable global, rather than
passing it to the function through an
input argument.

Give your functions short and
descriptive function names and
argument variable names, to help you
understand what’s going on later.
Comment your functions: describe
what the function does, and what each
local variable is. Give example default
values in comments.

#define and #ifdef Statements

One functionality in C++ programming that we won’t spend time on,
but you should be aware of, is the #define statement. This type of
statement is called a preprocessor directive. It is only used in global space,
usually at the very top of your sketch. The #define statement doesn’t
occupy any memory at all in the processor, it’s just an instruction for the
precompiler. For instance, some programmers like to use #define for
defining pin numbers, instead of byte variables. To illustrate, a sketch that
blinks an LED on pin 13 could be:

Section 4

146

#define LEDPIN 13

void setup(){
 pinMode(LEDPIN,OUTPUT);
}

void loop(){
 digitalWrite(LEDPIN,HIGH);
 delay(500);
 digitalWrite(LEDPIN,LOW);
 delay(500);
}

How is this different from defining a byte variable called ledPin? The
difference is that the variable LEDPIN in this case does not exist, and its
value (once defined) cannot be changed. Before the program is compiled,
the compiler will replace all instances of LEDPIN with the number 13, as if
you had never written the word LEDPIN at all. It will do this even if you
have the word LEDPIN as part of another variable name, so be careful how
you decide to use it! If you tried the following command in the middle of
the sketch:

LEDPIN=7;

the compiler will interpret this as: “13=7” and produce an error. Although
you can use lower case letters in #define statements, the convention is to
use all caps, to remind us that they aren’t real variables.

The #define statement can also be used to define strings, short and
simple one-line functions, and any other thing you might not want to repeat
in a sketch. For example, the following are valid #define commands:

#define DEBUG //comment out to disable DEBUG mode
#define WARNINGMSG "Your freezer is too warm."
#define PI 3.14159 //pi to enough decimals
#define WAITASEC delay(1000) //alias for wait 1 sec
#define CIRCUMF(r) (PI*2*r) //create a function

You can use defined terms in other #define statements, as we did with PI
in CIRCUMF(r). Also notice how (r) is treated as a function input
argument. Once defined, you can use these definitions in a sketch, just as
you would normal variables or functions:

Serial.println(WARNINGMSG); //send me a warning
float circleArea=PI*100.0; //area of circle diam=10
WAITASEC; //delay 1 second
float answer=CIRCUMF(2.5); //circumference, r=2.5

There is no equal sign when using
a #define statement, and no
semicolon at the end of the line.
You can still use comments after a
#define statement if you like.

Arduino Pins, and Writing Functions 147

You can use #ifdef statements in anywhere else in your sketch, based
on any terms you created with #define:

#ifdef DEBUG // if DEBUG is defined (as above)
 Serial.println("Debug mode is on.");
 // Other commands could go here.
#else // else is optional here
 Serial.println("Debug mode is off.");
 // Other commands could go here.
#endif

These are treated as pre-compiler instructions. When you compile the
sketch, these commands are handled first. This can help you customize what
you would like the compiler to put together, save memory, and drastically
alter how your sketch compiles just by commenting out a single #define
statement. This can make your sketch more flexible, and take up less
memory in the microprocessor. Similarly, #ifndef paired with #endif
(and optionally, #else) will test if a term has not been defined. See
http://www.cplusplus.com/doc/tutorial/preprocessor/ for other great
examples of preprocessor directives.

General Programming Etiquette

The overarching goal of a good sketch is clarity. The following checklist
will help you polish your final sketch so that others (or perhaps you, several
years later) can follow and understand what you did, and how you compiled
your code.

Programming Checklist

� Title header identifying program name, Arduino IDE version compiled,
author, date, and purpose of program.
� Identify authors and sources for any libraries (and their version numbers)
used (e.g. Github links).
� Provide comments detailing any specific wiring or pin allocations.
� Declare appropriate variable types (global vs. local, location, byte int float
String, etc.)
� Select useful/detailed variable names.
� Provide brief descriptions of each variable defined in line comments.
� Provide example/default values of parameters in line comments.
� Provide comments for important programming lines and functions.
� Use proper syntax that compiles well and gets you the “right answer”.
� Use proper indenting/spacing for functions, if() statements, and loops (two
spaces in for each new level).
� Give proper credit for any routines or algorithms used from other sources.

Section 4

148

Activity 4-1: NTC Thermistor Circuit

Background: Temperature control is critical in many pharmaceutical
processes. For instance, a 1 °C change in temperature can result in a 10%
change in the viscosity of a liquid. There are many tests (e.g. USP
dissolution) where a 37°C water bath is required. Accelerated product
stability testing is another important example where temperature and
humidity are controlled.

A thermistor provides an accurate and inexpensive way of measuring
and monitoring temperature. There are two main classes of thermistors:
NTC thermistors (for “Negative Temperature Coefficient”) and PTC
thermistors (for “Positive Temperature Coefficient”). The resistance of an
NTC thermistor decreases as temperature rises. The resistance of a PTC
thermistor increases as temperature rises. (Taranovich 2011)

Table 4-8. Advantages and disadvantages of thermistors.

Thermistor Advantages: Thermistor Drawbacks:
 Very inexpensive, easy to waterproof
 Operate over a wide range of voltages
 Don’t require an amplifier
 Very accurate (1%, or 0.25°C)
 Robust/durable

 Need to be individually calibrated
 Sluggish response to temperature

change
 Narrower temperature range

Other popular ways of measuring temperature include:

 Thermocouples - very wide temperature range, very fast response,
but they can be fragile, and require a separate module/amplifier to
read. Non-linear temperature response.

 RTD sensors (for “Resistive Temperature Detectors”). Resistance
increases as temperature rises. These are the most accurate and cover
the widest temperature range, but are more expensive and have a
slower response time. Linear temperature response.

 ICs (e.g. LM35)–easy to use, linear response with temperature, but
narrow temperature range.

 Infra-red beam - very fast, but less accurate.
Goal: In this activity, we will be performing a 2-point calibration on a
10 k NTC thermistor at room temperature (point 1), and in an ice water
bath (point 2), using an ohmmeter. We will then make an Uno thermometer,
that turns on an LED when the measured temperature falls below a specific
value. We will then view the data on the serial monitor and plotter.

Arduino Pins, and Writing Functions 149

Materials:
 1 x Digital Multimeter
 1 x Breadboard
 1 x 220Ω Resistor
 1 x 10K (1% tol) Resistor
 1 x 10K (5% tol) Resistor
 1 x 10K Thermistor

 1 x LED
 8 x Male/Male Jumpers
 2 x Alligator Clip Wires
 1 x Beaker with Ice Water
 1 x Glass Thermometer

Procedure:

Calibrating a Thermistor

1) Using an ohmmeter, measure and record the resistance of the
thermistor at room temperature. Record room temperature using a
glass thermometer. The resistance of the thermistor should be in the
vicinity of 10 k at room temperature. Standing water will provide
a more accurate and stable thermistor resistance measurement.

2) Immerse the thermistor probe completely in an ice water bath. Leave
the thermistor wires and connector hanging outside the bath. Allow
the temperature to equilibrate for at least 2 minutes.

3) Measure and record the resistance of the thermistor while it is
immersed in the ice bath. The resistance should now be noticeably
higher.

Two-Term Exponential Thermistor Equation

The relationship between temperature and thermistor resistance is
nonlinear. A popular mathematical relationship describing the shape of the
temperature/resistance curve for a thermistor is the two-term exponential
thermistor equation: (Chen 2009, 1103-1111) 1 = 1 + 1

 or alternately, R = 1 − 1

where:
T is the measured temperature (in Kelvin);
 T0 is a reference temperature (in Kelvin);
B is the temperature coefficient of the thermistor;
R is the measured resistance of the thermistor at T (in);
R0 is the measured resistance of the thermistor at T0 (in).

Section 4

150

By measuring the resistance of the thermistor at two different
temperatures, we can re-arrange the two-term exponential thermistor
equation, to solve for B: 1 = 1 − 1

= 1 − 1

(1) = . (. .)

Download the spreadsheet Bcoeff.xlsx from the course website. This

spreadsheet calculates the temperature coefficient using the above equation
for your thermistor, based on your measured resistance values at room
temperature and 0 °C. This spreadsheet will save you time, so that you can
focus your efforts on coding the sketch.

After you solve for B, you can use the two-term exponential thermistor
equation to convert any measured resistance to temperature:

(2) (℃) = + − 273.15K

In order to read the resistance of the thermistor, we don’t use an ohmmeter
in a circuit (although we could!). The Arduino doesn’t measure resistance,
but the analog pins can measure voltage. So, we can set the thermistor up in
a voltage divider, by wiring the thermistor in series with a fixed resistor of
approximately equal value, then reading the voltage across the thermistor.
The fixed resistor in this context is sometimes called the sense resistor.

m) Build the following circuit:

R = Measured resistance
of thermistor at 0 °C

R0 = Measured resistance of
thermistor at room temperature

T0 = room temperature

Arduino Pins, and Writing Functions 151

Figure 4-11. Thermistor + LED circuit. Resistor R1 is the sense resistor.

We will use the LED circuit on the right as an indicator light. In this

circuit, analog pin A1 will measure the voltage (Vout). We will need to
convert the voltage to a resistance value. We now need the voltage divider
equation for this task (see The Voltage Divider Equation, Section 1): = +

We are putting 3.3V into the divider (Vin=3.3V), and we are using a very
accurate 10 k (1%) resistor (R1=10K). There are two benefits for
supplying +3.3V to the voltage divider instead of +5V. The first benefit is
that we can use the AREF pin, and read the temperature at a higher
resolution (3.2 mV/div). An added benefit is that we are taking advantage
of the on-board 3.3V voltage regulator on the Arduino Uno, so regardless
of how we power the board (external 12V supply, or USB-powered by a
laptop), the voltage supply to the thermistor circuit will be a regulated 3.3V,
and less sensitive to small changes in supply voltage. Otherwise, you may
find that you need to re-calibrate your circuit, because you switch power
supplies on your Arduino Uno (e.g. from the USB port from your laptop to
a 12V DC adapter).

Re-arranging the voltage divider equation to solve for R2, the resistance
of the thermistor:

(3) = = 10,000Ω .

Section 4

152

We can then write a float function that converts an analog reading from
pin A1 to a temperature. The function should:

1) Convert divs to volts; (Recall that volts=divs 3.3V/1023.0, when
AREF=3.3V.)

2) Using equation (3), convert volts to a resistance value, using the re-
arranged voltage divider equation to solve for R2;

3) Using equation (2), convert the resistance to a temperature, using the
two-term exponential thermistor equation;

4) Return temperature, in °C.
Try writing this sketch on your own. Remember to connect a jumper

from the 3.3V pin on the Arduino Uno to the AREF pin, and use the
following command in your setup() function:

analogReference(EXTERNAL);

Hint: log() is the natural logarithm function in C++.
5) Modify your sketch to turn on the LED using digital pin 6, if the

measured temperature is less than 25°C.
6) Label and store your thermistor for the next section. You will be

using the same thermistor in Activity 5-1. Record your calibration
data in Table 4-9.

Table 4-9. Table for Experimental Results in Activity 4-1.

Parameter Description Value

R0 Resistance of thermistor at room
temperature, in

Rcold Resistance of thermistor in ice
water, in

T0 Room temperature, in Kelvin

B B coefficient of thermistor

Program Improvements:

7) Modify the sketch to report the average of five temperature readings,
instead of a single reading.

8) Format your output to the serial monitor in .CSV format (comma
separated values), e.g.:

Arduino Pins, and Writing Functions 153

Volts(V), Resistance(Ohm), Temperature(degC)
1.72, 10940.70, 24.23
1.70, 10562.24, 25.24
1.68, 10317.46, 25.91
1.66, 10117.88, 26.48

If you don’t have enough time to finish your sketch during class, try to finish
it at home.

BONUS: The map()function only works with integers. Try writing a
float function that remaps a float number from one float range to another.
Apply it to our sin curve function, for our pulsing LED. In other words,
instead of:

x=sin(i)*127.5+127.5;

Write a function that can be called like this:
x=fmap(sin(i), -1.0, 1.0, 0.0, 255.0);

Learning Objectives for Section 4

After having attended this class, the student will be able to:
1) Represent numbers in binary or base 10 using byte variables.
2) Read from and write to digital pins on the Arduino Uno, using the

proper pinMode and syntax.
3) Distinguish between an analog and digital pin, in terms of

functionality and limitations.
4) Use Pulse Width Modulation (PWM) to dim an LED.
5) Use the map() function to remap an integer from one range to

another.
6) Independently set up a momentary button as a digital input, using an

appropriate pull-down or pull-up resistor.
7) Based on a button schematic, predict whether or not a pin value will

be in a LOW or HIGH state while the button is pushed.
8) Compare and toggle the states of bool variables using Boolean

operators (!,&&,||).
9) Know what the default range and resolution is for analog pins. Be

able to change the analog reference level using the AREF pin.
10) Convert from div units (measured from an analog pin), to volts,

taking an external analog reference voltage into account.
11) Use the serial monitor to output experimental data in .CSV format.
12) Become proficient at writing void, integer, and float functions to

bundle repeated commands and simplify code.

Section 4

154

13) Use proper function-writing etiquette to avoid common pitfalls in
coding.

14) Calibrate a thermistor using two known temperatures. Use the two-
term exponential thermistor equation to calculate and report the
measured temperature.

Section 4 - Station Content List

• 1 x Digital Multimeter
• 1 x Breadboard
• 1 x 220Ω Resistor
• 1 x 10K Resistor (1% tol)
• 1 x 10K Resistor (5% tol)
• 1 x 10K Potentiometer
• 1 x Momentary Switch

• 1 x 10K Waterproof
Thermistor

• 1 x LED
• 8 x Male/Male Jumpers
• 1 x Beaker with Ice Water
• 1 x Glass Thermometer

Figure 4-12. Section 4 station setup.

SECTION 5

SWITCHING HIGHER POWER DEVICES:
RELAYS, TRANSISTORS, TRIACS

What You’ll
Be Learning

Lecture: Arduino Uno power limitations. Relays, high vs. low
side switching, wiring multiple power supplies. Diodes,
transistors (NPN and PNP BJTs, base resistor calculation,
cutoff, active, and saturation modes). MOSFETs (N-channel and
P-channel). TRIACs: opto-isolation, dimming AC power.

What You’ll
Be Doing

Pick any two activities:
Activity 5-1: Building a relay-controlled hot plate temperature
bath using the thermistor from Acivity 4-1. Writing a simple
sketch to maintain a desired temperature.
Activity 5-2: Building an NPN-transistor-controlled DC motor
circuit. Using PWM to control motor speed through commands
on the serial monitor.
Activity 5-3: Modifying the circuit in Activity 5-2 to be
controlled using a MOSFET, instead of an NPN transistor.
Demo: Relay-controlled USP Dissolution Apparatus.
Demo: Piezo as a microphone (transistor biasing). Piezo as a
speaker.
Spotlight: Other Arduino platforms: LilyPad, Nano, Leonardo,
Mega, PCDuino. AtTiny85: LilyTiny. ESP8266: ESP-01,
NodeMcu, LinkNode D1.

Files you
will need

All course files are available
for download at:
http://pb860.pbworks.com

 Thermostat.ino
 Transistors.xlsx
 GetCSV.xlsm

Voltage and Current Limitations of the Arduino Uno

The Arduino Uno works well for powering and interacting with logic
circuits and low-voltage, low-power devices (+5V). However, every
power source has its limits. When a power source can’t provide enough
voltage or current to run a device, the first thing you might notice is that the

Section 5

156

device won’t power up properly. An LCD screen might be dim,
communications (like serial monitor commands) don’t seem to happen, and
the device will probably not run as intended. The power supply might get
hot. Some components may even get damaged when run at a lower voltage
than required. This makes it important to understand the voltage and current
input requirements and output limitations for the Uno: (King 2017; Atmel
Corporation 2016)

 DC current per I/O pin: 40 mA max (limit: 200 mA total for all I/O pins
combined, not including +5V pin)

 DC output voltage, I/O pins: 5V max (can be slightly lower if powered by
USB)

 DC current for 3.3V pin: 50 mA
 Input voltage (adapter jack): 7-12V (although 5V is provided through USB)
 Maximum total output current: 500 mA when USB-powered, up to 1A when

powered using an external 12V adapter
 Maximum current from +5V pin: 500 mA when USB-powered, up to 1A

when powered using an external 12V adapter
 Maximum sink current (2 ground pins): 400 mA max (this is the amount of

current the Uno can sink, or receive)
To reach the full limits above, the Arduino Uno should be powered by a

12V DC adapter through the adapter jack, rather than through a USB cable.
If the maximum voltage and current an Arduino Uno puts out is 40 mA

per digital pin, how can you control and power a device that runs on 12V,
or requires over an amp to run properly? Most of the fun stuff we’d like to
do requires more power
than a 5V microcontroller
can provide. This section
discusses how to handle it
without frying your
microcontroller or your
equipment.

The easiest and safest
way to handle higher
voltage is to use a relay.
This strategy keeps your
logic (MCU side–deciding
when to turn on and off)
separate from your load.

Figure 5-1. A high voltage induces a magnetic
field, pulling a switch closed.

Switching Higher Power Devices 157

Relays

A relay, put very simply, is an electronically-controlled switch. A
typical electro-mechanical relay consists of a current that runs through a
coil, inducing a magnetic field. A very simplified schematic is presented in
Figure 5-1. A 5V signal creates a magnetic field, which then pulls a switch
closed, connecting a load to +500V.

A substantial benefit of using a relay is electrical isolation. There is no
part of the +500V circuit in Figure 5-1 that is electrically connected to the
+5V circuit. The two systems interact only through the magnetic field.

Here is a circuit diagram symbol for a typical relay (Single Pole, Double
Throw, or SPDT):

Figure 5-2. Relay circuit diagram symbol (Single Pole, Double Throw - SPDT).

The number of poles on a switch defines how many separate circuits the

switch can control (equal to the number of common terminals). The throw
count is the number of positions (or terminals) each pole can be connected
to. Figure 5-3 shows two very typical configurations for relays: DPST and
DPDT. DPST relays can close two independent poles with one throw each
(normally open). This means it can act as an on-off switch for two separate
circuits. DPDT relays can switch two independent poles, with two throws
each. This means you can select whether or not turning on the relay closes
or opens the switches. You would select whatever configuration your circuit
requires. A SPDT relay is likely adequate for most simple applications.

throw
(throw count=2 here)

common terminal
(the pole)

normally closed
terminal

normally open terminal

electromagnet

coil terminal

coil terminal

Section 5

158

Figure 5-3. Two common types of relays: DPST and DPDT.

The relay modules we have in the lab are SPDT, capable of switching

up to 10A of AC power from a wall outlet (250V AC or 125V AC). This is
a considerable upgrade from the Uno’s power limitations. There is more to
these relay modules than an electromagnet and a switch. The relay module
protects the microcontroller with an optocoupler circuit, depicted in Figure
5-4. The optocoupler circuit sends IR light to an IR-triggered transistor,
which then triggers a second transistor to apply a voltage to the relay coil.
Diodes and transistors will be discussed later in this section.

Figure 5-4. Internal circuit diagram of a SPDT relay module. An opto-coupler
isolates the Arduino Uno from the relay supply. Some relay modules allow for a
separate ground for the supply powering the relay, although in the lab we will power
the relay module using the Arduino +5V pin. (ELECFREAKS wiki 2015)

The way that an SPDT relay is wired will change how it works. The

relay module in Figure 5-5 (left) will close the circuit (turn on) when you
send +5V to the IN pin on the relay module (using the digitalWrite()

DPST
Double Pole, Single Throw

DPDT
Double Pole, Double Throw

Switching Higher Power Devices 159

command), and the circuit in Figure 5-5 (right) will open the circuit (turn
off) when you send +5V to the IN pin on the relay module.

Notice that the logic side (MCU side) has a ground separate from the
load side (also called the power side). The logic side is grounded to the
Arduino Uno, and the load side is grounded to the 12V power supply
ground. These two grounds are NOT connected. This way, a failure on the
load side does not destroy the logic side. Keeping power and logic grounds
separated also helps to reduce noise on the power side interfering with the
logic.

Figure 5-5. Using a SPDT relay as a normally open (NO) switch vs. a normally
closed (NC) switch. The switch terminals have been sketched into the relay module
boxes to help illustrate switching direction.

There are some disadvantages to relays. Firstly, relays tend to be audibly

noisy. You can hear them when they switch, like the turn signal of a car, or
the changing of a stoplight. When a relay switches on or off, there is a tiny
spark created that can even be visible. This could be extremely dangerous
in an environment with flammable vapours. The spark also causes pitting,
oxide deposits, and sometimes welding on the relay’s internal terminals.
Ultimately this oxide builds up and the relay switch will either weld onto
one terminal permanently (open or closed), or no longer be able to
electrically connect with either terminal at all. Electro-mechanical relays
wear out.

Section 5

160

In addition to electro-mechanical relays, there are also solid-state relays.
These relays have no moving parts. Consequently, they can switch more
quickly (up to ~1 msec on low-end devices) and noiselessly. They are less
prone to wearing out. Solid state relay modules usually have the benefit of
opto-isolation, so logic and power can still have separate grounds.
Disadvantages of solid-state relays are their bulky sizes for higher load
switches, relatively lower power ratings, and higher cost compared with
electro-mechanical relays. Solid state relays are less “all-purpose” than
mechanical relays. There are different models for switching AC vs. DC
power. In addition, their switching functionality is limited to only single
pole, single throw, and are available with a high-trigger (like PNP) or low-
trigger (like NPN) options.

High Side Switching vs. Low Side Switching

The two circuits in Figure 5-5 are examples of high side switching. This
means the switch is above the load (RL). In other words, it’s on the higher
voltage side. From a safety perspective, this strategy is generally a good
idea, particularly with high voltage (e.g. 120V AC). When a high side
switch is open (off), then there is a smaller chance that part of the circuit
could touch a ground wire (or your finger) and result in a short circuit. With
low side switching, the relay is lower than the load.

High Side Switching: Low Side Switching:

Figure 5-6. The relay module on the left is wired as a high side switch (above the
load). The relay module on the right is wired as a low-side switch (below the load).

Test your understanding: both relays in Figure 5-6 are drawn in the

normally open, held closed (NOHC) switch configuration. Can you draw
them as normally closed, held open (NCHO)? Can you think of an
application where NCHO would be a poor design decision?

Switching Higher Power Devices 161

Powering a Relay with a Separate Supply

A relay on its own takes quite a bit of power to operate. You can power
a 5V relay module using the Arduino’s +5V power pin, but you might find
when the relay switches, bad things happen:

 the sensor readings get spikes;
 the LCD backlight dims or flickers;
 the LCD display shows a string of garbled scrolling text;
 the MCU crashes, freezes, or restarts;
 the serial connection freezes.

You can try scattering decoupling capacitors around your circuit (more
on that later), but a better fix is to power your relay module with a separate
+5V power supply. The supply should share a common ground with the
Arduino Uno. This means your circuit could potentially have three separate
power supplies. The following diagram illustrates how you can use
individual power supplies for the microcontroller, relay, and load:

Figure 5-7. The relay module on the left is powered using the Arduino Uno, which
can introduce a lot of switching noise to your measurements. The relay module on
the right is powered using a separate +5V DC adapter.

Test your understanding: are the relays in Figure 5-7 drawn as high-

side or low-side switches?

Vin Pin: Arduino Uno

Looking for higher voltage or more current quickly? You can access your
unregulated power supply from the Uno’s “Vin” pin to power other modules.

Section 5

162

Vin is a special pin connected to the positive
terminal of your power supply. However, using
this pin might not isolate relay switching noise
from your sensors, and Vin will have the same
voltage as your power adapter, which might be a
problem depending on what you are trying to
power. If you are powering the Arduino Uno
with a 12V DC adapter, Vin will be at +12V. If
you are powering the Arduino through USB by
plugging it into a laptop, Vin will be about +5V.
In a pinch, Vin might be a quick work around if
your module is current-limited by the Arduino’s
regulated power pins. You can also use the Vin
and GND pins to power the Arduino Uno, with
a DC adapter that has bare wires. Just make sure
you get the polarity right, or you might damage
the microprocessor.

Diodes (P-N Junction, or Rectifier Diodes)

We have used the LED circuit diagram symbol many times already in
this book (Figure 5-9, left).

An LED is a specialized type of diode. A diode is conceptually a one-
way sign for current. Understanding how a diode works is an important step
in understanding how transistors work. Diodes are also important in
protecting your circuit from current travelling the wrong way and damaging
components.

The circuit diagram symbol for a diode is shown in Figure 5-9 (right).

Figure 5-9. Diode symbols: LED (left), and general diode symbol (right).

How do diodes constrain the flow of electrons to one direction? The key

in this interesting behaviour is in the semi-conductive nature of silicon. Pure
elemental silicon is not a good conductor. However, silicon doped with

Figure 5-8. The Vin pin
gives you access to the
power supply voltage
used to power the Uno,
before the on-board 5V
voltage regulator.

Switching Higher Power Devices 163

boron has the occasional space to hold an electron. This is often referred to
as an electron “hole". This makes the silicon slightly positive, which is why
it is called P-type silicon. Similarly, silicon doped with phosphorus has an
extra free electron that can be mobile, just like copper. This makes the
silicon slightly negative, which is why it is called N-type silicon. When you
put these two materials adjacent to each other, the result is a P-N junction,
illustrated in Figure 5-10. (Scherz and Monk 2016)

Figure 5-10. Anatomy of a diode. Silicon has 4 outer valence electrons. When doped
with boron (3 outer valence electrons), a space is formed capable of temporarily
accepting an electron (left). When doped with phosphorus (5 outer valence
electrons), there is an extra electron, capable of flowing (right).

If conventional current flows from the anode side to the cathode side (P

to N), then we say the diode is forward biased (keep in mind the electrons
actually flow the other way):

Figure 5-11. When conventional current tries to flow from anode to cathode, a diode
is forward biased, and electrons can jump across the P-N junction.

Section 5

164

Electrons flow toward the P-N junction from the N side, and “holes” (or
spaces) migrate toward the P-N junction from the P side. The junction
narrows, and electrons can flow across (see Figure 5-11).

If conventional current flows from the cathode side to the anode side (N
to P), then we say the diode is reverse-biased:

Figure 5-12. When conventional current flows from cathode to anode, a diode is said
to be reverse biased, and electrons can no longer cross the P-N junction.

The P-N junction widens, becoming a thicker layer of non-conductive
silicon with filled outer valence electron shells. Free electrons can no longer
cross the P-N junction, and current can’t flow (see Figure 5-12).

If the current or voltage difference gets too high in either direction, the
diode will break down (overheat, or even pop), so it pays to know what sort
of currents you are expecting, wire the diode the correct way as intended,
and match the diode’s limits according to the application. One popular diode
is the 1N4007: (ON Semiconductor Corp 2018)
Maximum Forward Current: 1A
Forward Voltage Drop at IF=1A: VF=1.1V
(there is some voltage drop across a
forward-biased diode)
PRV (Peak Reverse Voltage): 1000V
(that should be enough!)
Some other ways to describe PRV:

 DC blocking voltage
 Peak Inverse Voltage
 Breakdown Voltage

Diodes usually have a line painted on
them to show which side has the brick
wall, so you know which way to install
them. A silver line on the 1N4007 marks the cathode side (N-terminal, or
brick wall). Other diodes (e.g. Zener diodes) follow the same convention.

Figure 5-13. 1N4007 diode. A
stripe indicates the brick wall
(location of N-terminal).

Switching Higher Power Devices 165

Transistors

If antibiotics are said to be among the most impactful innovations in
medicine, you can think of transistors as having that magnitude of impact in
electronics.

There are many different types of transistors, and like relays, they are
basically electronically-controlled switches. However, rather than a magnet
pulling the switch closed, a transistor can be controlled by current, or
voltage. This is best illustrated with the following circuit:

Figure 5-14. Circuit to illustrate how a transistor works. Q1 is a 2N2222 NPN
transistor in a TO-92 package. (ON Semiconductor Corp 2013)

Such a small amount of current is required to “turn on” the transistor.

Try turning on the LED in the above circuit (Figure 5-14) by holding the
terminals, one in each bare hand. The tiny bit of current flowing through
your body is enough to switch on the transistor. Try it, it’s fun! Transistors
can switch much faster than relays. They can switch quickly enough to keep
up with PWM frequencies. Contrast this to the high-power demands of a
bulky, slow relay module, and you can see why transistors are just plain
amazing. A drawback is that the logic and power sides need to share the
same ground for a transistor to work, so the logic side is no longer
electrically isolated from the power side of your circuit.

Bipolar Junction Transistors (BJTs)

There are may different types of transistors. The example transistor in
Figure 5-14 is a Bipolar Junction Transistor (BJT). BJTs are extremely

Section 5

166

popular, perhaps because they are easy to work with, conveniently tiny, and
dirt cheap. The construction of a BJT is very similar to a diode, only there
are three layers of doped silicon instead of just two, giving rise to two
different types of transistors: NPN and PNP (summarized in Table 5-1).

Table 5-1. NPN and PNP Bipolar Junction Transistors (BJTs).

NPN Transistor PNP Transistor

“Never Points iNwards”

“Points iNwards Permanently”

Operation:
When base current (Ib)=0: OPEN
SWITCH (cutoff mode)

 Vb < Vc, Vb < Ve
 To “shut off” the transistor, set the

base terminal voltage to GND.
 Set digital pin to LOW.

When Ve < Vb < Vc: AMPLIFIER
(active mode)

When Vb > Vc and Vb > Ve: CLOSED
SWITCH (saturation mode)

 To completely turn on the
transistor, put “enough” current
through the base terminal. Set
digital pin to HIGH, and use a base
resistor that sends enough current
to turn the transistor completely
on.

Operation:
When Ib = 0: CLOSED SWITCH
(saturation mode)

 To “turn on” the transistor, set
digital pin to LOW, and use a base
resistor that sinks enough current
to ground to turn the transistor
completely on.

When Ve > Vb > Vc: AMPLIFIER
(active mode)
When Vb > Vc and Vb > Ve OPEN
SWITCH (cutoff mode)

 To “shut off” the transistor, the
base voltage needs to be equal to
the emitter. Set the digital pin to
HIGH. This will shut off the
transistor if the emitter voltage is
+5V.

Switching Higher Power Devices 167

NPN BJT as a switch:

PNP BJT as a switch:

NPN is a low-side switch. Load is on
collector side.

PNP is a high-side switch. Load is on
collector side.

NPN Transistors: Selecting a Base Resistor Value

How do you figure out what value of base resistor to use (R1 in Table
5-1, also referred to as Rb)? Depending on the application, you can take
different approaches to determining an appropriate value for the base
resistor of a BJT.

Method 1: Convention and Experimentation

For an Arduino Uno, if your goal is to switch between cutoff mode and
saturation mode, try using a 1K resistor. This is a typical value for a base
resistor, and in general will put most transistors in saturation mode. A 1K
resistor might provide a more current than you need, but it should work well.
If it doesn’t quite get you to saturation mode, try lower resistance values
until you find one that works (and your power side turns on completely).

Method 2: The 10% Current Rule

For a better approximation, try using the 10% current method to
calculate the base resistor required. (Scherz and Monk 2016) The 10%
current method states that in general, most BJTs should be in saturation
mode when the base current (Ib) is 10% of the planned collector current (Ic):

Section 5

168

Figure 5-15. Worked example for the 10% Current Rule.

Question: The load in Figure 5-15 has an operating voltage of 12V, and

a measured load resistance of 500 . What base resistor is required to put
the transistor into saturation mode, using the 10% rule?

Answer: = → =

= 12 500 = 0.024 = 24 = 10% × = 10% × 0.024 = 0.0024 = 2.4

The base current needs to be 2.4 mA to get the transistor into saturation
mode. Given that the microcontroller will supply this current at 5V, we can
calculate the base resistor value required: = = 5 2.4 = 2.1 Ω

So a base resistor of 2.1K would result in enough current to put the
transistor in this circuit into saturation mode (in other words, turn the device
completely on). Looking at the table of common fixed resistor values in the
appendix (Table A-5), the closest fixed resistor values to our answer are
2.0K and 2.4K. We can select a value of 2.0K to be more conservative, to
make sure enough base current is supplied.

Most BJTs should be in
saturation mode when:
 = 10% ×

Switching Higher Power Devices 169

Method 3: Using the hFE or

Every transistor has its own specific amplification factor. Some
datasheets refer to this value as , and some call it hFE (for hybrid parameter
forward current gain, common emitter). A transistor’s datasheet will give
you an idea of the magnitude of this parameter, but the transistor you hold
in your hand might be slightly different. For instance, the ON
Semiconductor® datasheet for the P2N2222A lists the following hFE values:

Table 5-2. hFE values of P2N2222A (TO-92) (ON Semiconductor Corp
2013)

DC Current Gain hFE Min hFE Max
Ic = 0.1 mA, Vce = 10 V
Ic = 1.0 mA, Vce = 10 V
Ic = 10 mA, Vce = 10 V
Ic = 150 mA, Vce = 10 V
Ic = 150 mA, Vce = 1.0 V
Ic = 500 mA, Vce = 10 V

35
50
75
100
50
40

-
-
-
300
-
-

So we can expect for a P2N2222A transistor to have a hFE close to 75

(the closest table value to our example: Ic=24 mA, Vce=12V). The equations
for hFE work similarly to the 10% Current Rule, only this parameter converts
the base current to the resulting collector current: = ℎ =

If our transistor example in Method 2 is a P2N2222A, then we can do
this same example with the datasheet’s hFE value. From before, we
calculated that we would like a collector current of 0.024 A (=24 mA).
Therefore: = ℎ → = ℎ = 24 75 = 0.32

Now, we can use the same equations to calculate Rb: = = 5 0.32 = 15.6 Ω

We can see using this method that much less current is actually required
to get the transistor into saturation mode than Method 1 or Method 2
estimated, and the most energy efficient “answer” would be a resistor value
of 15K, the closest fixed resistor value in the table of common fixed resistor
values in the appendix (Table A-5, Common Fixed Resistor and Capacitor

Section 5

170

Values). However, this assumes that the actual hFE of the transistor matches
the datasheet perfectly, which might not happen exactly. Here is where a
design decision comes in. Will you select 1K, or 15K? Can you think about
some design considerations that might impact your answer?

NPN Transistors in the Active Region

So far, our calculations have focused on cutoff and saturation modes of
transistors. One of the features of a transistor is that unlike a relay, there is
a transition region where the transistor is half-on and half-off. This is known
as the active region of the transistor. You can take advantage of the active
region to amplify an analog signal. Finding it can be tricky. Even after
working out the math properly, each individual transistor has a slightly
different hFE value. A transistor may need to be manually biased using an
oscilloscope or other mechanism where you can see what’s going on with
the output signal. This means the base current must be adjusted to find the
active region, which you can now think of as the sweet spot between cutoff
mode and saturation mode. The following schematic shows a typical
strategy for setting up a transistor as an (inverting) amplifier:

Figure 5-16. An NPN transistor configured as a common emitter amplifier.

We will trace through some of the math to derive the gain of this
amplifier (or in other words, how much the signal is amplified). − = 0.6 (a standard value for transistors)

Switching Higher Power Devices 171

Ic is specified as a design parameter (also called IQ, or quiescent current).
It’s the collector current you require, for your signal or load. Starting with
the hFE equation: = ℎ → = ℎ =

KCL: − + + = 0 (on transistor) = + = + ℎ = (1 + ℎ) ≈ ℎ (if ℎ >>1, a typical value can be ~100)

Figure 5-17 provides a closer look at the voltages around the NPN
transistor.

To calculate Vc, subtract the
voltage drop across resistor Rc
from Vs: = −
For a small change in voltage at
the base terminal, ∆ , we can
look at the response: ∆ = ∆
And for a small fluctuation, ∆ ≈ −∆
The collector current will be
approximately the same as the
emitter current: ∆ = ∆ ≈ −∆ ≈ ∆ → ∆ = ∆ = −∆

 → ∆∆ = − =

Figure 5-17. Calculating the voltage changes around the three terminals of a bipolar
junction transistor used as a common emitter amplifier in Figure 5-16.

The take-home message in the derivation in Figure 5-17 is that the ratio / determines how much the voltage change (∆) is amplified.
Practically speaking, you can bias a transistor (that means, tweak the input
current to find the active region) by replacing R1 and R2 with a 50K or 100K

Section 5

172

potentiometer set up as a voltage divider. You could build the circuit, read
Vout with an oscilloscope, and turn the potentiometer until you can see the
amplified signal. A perturbation in Vb results in a larger change in the
response, Vc. Since each transistor has a slightly different hFE, this
approach is more effective than doing the math and committing to
anticipated fixed resistor values. Select / so that your gain is what you
need (e.g Rc=10K and Re=1K for a ~10X gain). The gain is negative, so a
common emitter amplifier is called inverting. We will explore signal gain
in more detail in Section 7.

The spreadsheet Transistors.xlsx is posted on the course website. It will
help you with fundamental calculations concerning transistors. The biggest
advantage of using a transistor to amplify a signal is speed. Transistors can
easily amplify signals well into MHz, and even GHz region.

Darlington Pairs

If a very high impedance signal needs to be amplified (in other words, a
very low current), two transistors may be “doubled up” in what is known as
a Darlington pair. The output on the collector side of the transistor is used
as the input of the next transistor. The result is that the total hFE of the system
is equal to the hFE of each transistor, multiplied together. (Scherz and Monk
2016)

Figure 5-18. A Darlington pair of NPN transistors.

You can make your own Darlington pair using two of the same
transistors, or you can purchase them pre-wired in a single package. For
example, the TIP120 is an NPN Darlington pair, and the TIP125 is a PNP
Darlington pair, both having an hFE of ~1000. (ON Semiconductor Corp
2014) In the more general sense, wiring any components in series like this

Switching Higher Power Devices 173

(output to input) is called daisy chaining. There is a cost to daisy chaining
transistors: the response time through a Darlington pair takes longer, since
the signal needs to make its way through two transistors instead of just one.
This might not be important if your signal frequency is much lower than
what the Darlington pair can handle.

Interestingly, LEDs
can also detect light. An
LED produces a very tiny
bit of current when light
shines directly on it.
Figure 5-19 shows an
example of a Darlington
pair of NPN transistors
used to turn on LED D2,
when LED D1 is used as a
light sensor. This circuit
illustrates how the little bit
of current produced by
LED D1 can be amplified
by the combined hFE value of a Darlington pair of 2N2222 transistors. LED
D2 can be replaced with a 10K resistor to improve the voltage swing of the
output. Alternately, a DC motor could replace R1 and D2, for a light-
triggered motor circuit.

Current Gated vs. Voltage Gated

One of the features of bipolar junction transistors is that they are current
gated, meaning that a little bit of current changes their state. You might ask
the question, isn’t there a transistor that behaves more like a relay, so that
when you set a digital pin HIGH it turns on, and when you set the digital
pin LOW, it turns off, without having to add a base resistor? We could just
use a relay, but what if we want faster control than a relay can provide (e.g.,
with PWM)? Relays can’t switch quickly enough.

Enter the world of MOSFETs. MOSFETs are voltage gated, rather than
current gated. They are triggered by a change in voltage. MOSFETs can
handle very high voltage and current, although there are also high-power
transistors available for this task.

Figure 5-19. A regular LED as a light sensor.

Section 5

174

MOSFETs

A MOSFET (short for “Metal Oxide Semiconductor Field Effect
Transistor”) is a special type of transistor. Similar to BJTs, there are
N-channel and P-channel MOSFETs, summarized in Table 5-3.

Table 5-3. N-Channel MOSFET vs. P-Channel MOSFET.

N-Channel MOSFET P-Channel MOSFET

 Arrow points inwards
 Switch is normally open

Operation:
 VGS(th) > 0V (e.g. VGS(th) for 2N7000

= 2.1V typical if ID=1 mA)
 If VG>VGS(th): Switch is ON

(saturation mode)
 If VG<VGS(th): Switch is OFF (cutoff

mode)
 Use a pull-down resistor to protect

the gate from turning on if MCU pin
floats, or gate wire disconnects.
(ON Semiconductor Corp 2011)

 Arrow points outwards
 Switch is normally closed

Operation:
 VGS(th) < 0V (e.g. VGS(th) for BS250

= -1.9V if ID=1 mA)
 If VG>VS-VGS(th): Switch is OFF

(cutoff mode)
 If VG<VS-VGS(th): Switch ON

(saturation mode)
 Use a pull-up resistor to protect the

gate from turning on if MCU pin
floats, or gate wire disconnects.
(Vishay Siliconix 2004)

Switching Higher Power Devices 175

N-Channel MOSFET as a switch:

N-Channel MOSFET is a low-side
switch. Load is on the drain side.

P-Channel MOSFET as a switch:

P-Channel MOSFET is a high-side
switch. Load is on the drain side.

N-Channel MOSFET Construction

When the gate voltage exceeds a threshold (VG > VGS(th)), a channel of
electrons lines up between the drain and source along a thin layer of silicon,
allowing current to flow. This thin layer of silicon is very sensitive to
electrostatic discharge (ESD), so be careful when handling MOSFETS.
Extra precautions can be taken (e.g. wearing a grounding bracelet, touching
a large piece of metal before touching the MOSFET, or not rubbing your
feet against carpet). Figure 5-20 illustrates how N-channel MOSFETS are
constructed. (Scherz and Monk 2016)

Figure 5-20. When VGS(th) is applied to the gate terminal, an N-channel MOSFET
allows conventional current to flow from drain to source.

Section 5

176

Some properties of MOSFETs

 MOSFETs can handle surprisingly high amounts of current, e.g.
FQP30N06 (N-Channel MOSFET, ID=32 A).

 They are comparable in speed to BJTs (great for high speed
applications).

 They have a very high input impedance. This means that they draw
very little current from the logic side (potentially saving battery
power).

 They have very low output impedance. This means that lots of
current can flow through them on the power side.

 Unlike BJTs, MOSFETS are triggered by changes in voltage, not
current.

 The body of the MOSFET is usually tied to the source, which is
electrically connected to the metal tab on the MOSFET (if there is
one, e.g. TO-220 package).

 You can bias a MOSFET like a transistor in the active region, but
MOSFETs are not very reliable in the active range. They work better
as on/off switches.

Using a MOSFET as a Switch

Make sure when powered on, the MOSFET you select can provide more
than enough current for your load.

If the power you are driving is >0.25W, then use a MOSFET package
capable of accepting a heat sink, and attach one (e.g. the TO-220 package).
The heat sink should not be electrically connected to the source, because it
could touch/short out other components. Commercially available heat sinks
come with thin insulating layers to place between the chip and the heat sink
(see Figure 2-18).

2N7000 (N-Channel MOSFET)

Specifications: (ON Semiconductor Corp
2011)
Maximum Drain Current: 200 mA
(continuous), 500 mA (pulsed)
Voltage between Drain (D) and Source (S):
VDSS = 60V (max)
Resistance between D&S (on): RDS = 1-2
(ideally this should be small)

Figure 5-21. Pin-out diagram
for 2N7000 N-channel
MOSFET.

Switching Higher Power Devices 177

Gate Threshold Voltage: VGS(th) = 2.1 V (Arduino Uno can turn this on
with +5V)
Thermal Resistance: R JA=312.5 °C/W
Turn-on and Turn-off time: 10 ns

TRIACs

A TRIAC (short for “Triode for
Attenuating Current”) provides a way
to switch AC circuits using a DC
signal. TRIACs are current gated, and
look identical to transistors and
MOSFETs (especially when produced
in the same package, e.g. TO-92 or
TO-220). However, they are able to
handle the high voltage swings of
alternating current, and are also able to switch quickly enough to dim AC
power (which as it turns out is much slower than PWM, at a pokey 50 or 60
Hz). TRIACs come with three leads: Gate, MT1, and MT2. The circuit
diagram symbol for a TRIAC is provided in Figure 5-22. Figure 5-23
illustrates a very simple on/off circuit for an AC load, e.g. an incandescent
microscope lamp.

Figure 5-23. A TRIAC, controlled by microcontroller digital pin for a resistive load
connected to 60 Hz, 120V AC power. This circuit can interrupt the hot wire in the
middle of an extension cord, to create a high-side switch.

Notice the different notation for AC power in Figure 5-23 (HOT and

NEUTRAL). For this circuit, although “NEUTRAL” is essentially the
ground (or return) wire for AC, it does not need to be electrically connected

Figure 5-22. Circuit diagram symbol
for a TRIAC.

Section 5

178

to the Arduino Uno’s ground. In fact, it’s much safer to electrically isolate
the MCU from AC power completely. The circuit above could also work by
connecting the TRIAC’s pin 3 directly to the MCU through a current-
limiting resistor, but then the MCU would not be electrically isolated from
the dangers and noise of mains electricity (electricity from a wall outlet).
An extra component does this job: the MOC3010. This is an opto-isolator
chip that shines an IR LED (connected to pins 1 and 2) to turn on an internal
switch (connected to pins 4 and 6). The MOC3010 isolates AC power from
the MCU, protecting it in case the TRIAC fails. For switching an inductive
load on and off like an AC motor, see the top half of the circuit diagram in
Figure 5-24. For switching 240V AC power, consult the MOC3010
datasheet. (Fairchild Semiconductor Inc. 2014)

A heat sink might be required for the TRIAC, depending on how big the
load current is in the above circuit. Setting this circuit up is quite easy, as it
is similar to setting up a transistor with a few more needed parts. However,
the shock hazard makes it dangerous to play around with in the lab, so there
are no planned activities using TRIACs.

If you’d like to dim AC power, the circuit above won’t do it. What first
comes to mind is, why don’t you send a PWM signal to the TRIAC to dim
your light? Although that sounds like a good idea, switching the AC voltage
on and off at the Arduino’s PWM frequency will be out of phase with mains
electricity. Even at narrow PWM widths, you might see flickering, but not
dimming. To dim an AC signal, you need to detect where the voltage crosses
at zero (e.g. with a zero-crossing detector like the H11AA1), then turn the
TRIAC off or on, depending on your dimming strategy. An example of this
implementation is provided in Figure 5-24. As with Figure 5-23, a heat sink
should be used, and it should not touch the circuit board to prevent the
chance of a short circuit. (Loflin 2018; Fairchild Semiconductor Inc. 2014)

Switching Higher Power Devices 179

Figure 5-24. TRIAC with zero-crossing detector, for an inductive or resistive load.
This circuit is a low-side AC dimming switch.

If you wait to switch the power on after detecting a zero crossing, it’s

called forward-phase dimming, and if you wait to switch the power off after
detecting a zero crossing, it’s called reverse-phase dimming. The dimming
effect is proportional to how much time the circuit spends off in a cycle.
This idea is analogous to a well-timed PWM. Forward phase and reverse
phase dimming are illustrated in Figure 5-25.

Figure 5-25. Forward phase dimming (left) and reverse phase dimming (right) with
a TRIAC. The TRIAC is switched on and off strategically to chop an AC supply into
narrower widths to dim a resistive load. (Coleman 2015)

Section 5

180

Getting the timing right is crucial for being able to dim a lamp, or
modulate the power on an AC device (like a heater or motor). An example
sketch triacDimmer.ino is provided in the appendix. For an easy-to-use
library, see Anson Mansfield’s TriacDimmer, available through the Library
Manager of the Arduino IDE. (Mansfield 2017)

BT139-600E (TRIAC)

The BT139-600E in Figure 5-23 is a great light-duty TRIAC, although
the legs will not fit into a breadboard, nor should they–breadboards can’t
support mains electricity. The TO-220 package it comes in is heat-sinkable,
which is a good idea for higher-current loads. The following maximum
values are provided on the NXP datasheet for this component: (NXP
Semiconductors 2013)

 VDRM: (repetitive peak off-state voltage): 600V (max)
 IT(RMS): (RMS on-state current): 16A
 IGT: (gate trigger current): 2.5-10 mA (max 2A)

Since this circuit involves soldering and high voltage from the wall
outlet, this is not a project for a beginner. Relay strategies are safer in
general if dimming the load is not an essential design feature. Relays can
also be pulsed slowly to attain better control.

Protecting your Circuit from DC Motors

Small, low amperage DC motors provide few problems when powered
directly from a microprocessor. However, larger DC motors, particularly
when switched using transistors, MOSFETs, H-bridges, or relays, can
generate lots of noise which can damage downstream parts, and reset your
microcontroller. When power is cut from a DC motor, rotational momentum
keeps it spinning for a bit. For a short while, it acts as a generator, producing
voltage in the wrong direction that can damage the circuit. This can be dealt
with using two common strategies: protection diodes, and capacitors.

Protection Diode

A diode can keep current from running backwards when a DC motor
generates electricity. This is generally a good idea whenever you are driving
any inductive load, like a hobby motor or fan. An inductive load converts
electricity to a magnetic field, or vice-versa. Flyback happens when you
suddenly stop an inductive load, and the magnetic field that has been

Switching Higher Power Devices 181

generated from electricity back-converts to electricity, causing a voltage
spike, and a surge in the opposite (wrong) direction. Flyback can destroy
electronic components. A diode wired directly across the load ties up the
flyback voltage in a short loop, to dissipate harmlessly across the inductor
and diode. In this context, we will call the diode a protection diode or
flyback diode. It protects the transistor, and any downstream components.

Most small DC motors can run uneventfully without protection diodes
for a short while, but diodes are inexpensive (pennies each!) and cheap
insurance for the rest of your circuit. A protection diode has many
alternative names (e.g. snubber diode, catch diode), but amounts to
connecting a suitably-selected silicon diode across the terminals of an
inductive load like a DC motor (Figure 5-26). You can also have another
look at Figure 5-4, where a protection diode is connected across the relay
coil, protecting the transistor below it.

Figure 5-26. Protection diode on a DC motor. In this configuration, the DC motor
can only spin in one direction.

It is very important not to accidentally install a protection diode

backwards. Doing so creates a short circuit between high voltage and
ground, causing damage (and usually, a very blown diode). Remember to
keep the printed stripe on a protection diode pointed towards the high side
of voltage.

Reducing DC Motor Noise with Capacitors

Although most H-bridges have built-in protection diodes (e.g. the
L293D DIP Quadruple Half-H Driver), larger hobby DC motors draw
enough current when starting or stopping that can unwantedly reset the
microcontroller. One practical fix to dampen voltage dips and spikes is to
solder non-polarized (usually ceramic) capacitors directly across the motor
terminals, as shown in Figure 5-27.

“protection diode”
“flyback diode”
“snubber diode”
“suppressor diode”
“clamp diode”
“catch diode”

 same
idea

Section 5

182

For most practical cases, a
0.1 μF capacitor will be
sufficient for this purpose.
Alternately, capacitors can be
soldered from each terminal to
the metal housing of the DC
motor, or both strategies can be
used together: one 0.1 μF
capacitor connecting both
terminals, and one 0.1 μF
capacitor connecting each
terminal to the DC motor body.
(Pololu Corporation 2015)

Activity 5-1: Hot Plate Thermostat

Goal: In this activity, we are going to use a 10A relay module with your
thermistor circuit (Activity 4-1). A relay takes the place of the LED light on
pin 6.

Materials:
 Arduino Uno MCU & USB

cable
 Laptop with Arduino IDE

installed
 Digital Multimeter
 Breadboard
 1 x 10K Resistor (1% tol)

 1 x 10K Thermistor (Section 4)
 1 x 5V, 10A Relay Module
 1 x Hot Plate
 3 x Male/Male Jumpers
 3 x Male/Female Jumpers (long)
 1 x 400 mL Beaker

Procedure:

Build the circuits in Figure 5-28.

Figure 5-27. Noise-reducing capacitor on
“Bob”, the laboratory video rover. These
capacitors fixed his nasty resetting problem.

Switching Higher Power Devices 183

Figure 5-28. Circuit diagram for Activity 5-1: hot plate thermostat.

Note: The relays in class are pre-wired to an extension cord. You do not
need to make relay connections to AC power for this exercise.
Test your understanding: The relay is wired to switch the hot wire, in the
normally open terminal. Why is switching the hot wire safer than switching
the neutral wire?
Warning: AC shock hazard. Once you plug in the relay cable to AC
power, be careful not to touch any metal parts on the relay module. Also
make sure that the relay module is not touching any other metal parts or bare
wires.

1) Fill a 400 mL beaker with 150 mL of water. Set the beaker on a hot
plate.

2) Obtain the thermistor circuit you calibrated from Activity 4-1.
3) Connect the circuit diagram above.
4) Immerse the thermistor probe tip in the water.
5) If you finished your sketch from last class, you can use it in this

exercise. Otherwise, download the file Thermostat.ino from the
course website, and upload the program to your Arduino Uno.

6) Download GetCSV.xlsm to acquire the data into Microsoft Excel, in
real time.

Test your understanding: What part of the sketch turns the relay module
on and off?

Section 5

184

Activity 5-2: Transistor as a Switch for a DC Motor

Goal: In this activity, we will connect the Arduino Uno to a 12V DC motor.
Although the Uno supplies +5V DC, it does not supply enough current to
drive the motor at top speed, so an external power source is required. A
protection diode protects the transistor from DC motor flyback.

Materials:
 Arduino Uno MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply

 1 x 12V DC Motor
 1 x 10K Resistor
 1 x 2N2222 Transistor
 1 x 1N4007 Diode
 5 x Male/Male Jumpers

Procedure:
Build the circuit in Figure 5-29.

Notes:

 Be careful! External power supplies like to fry microprocessors.
 The black fan wire does not connect to ground.

Switching Higher Power Devices 185

Figure 5-29. Schematic for Activity 5-2: NPN transistor-controlled DC motor.

To hook up the external power
supply, connect the yellow wire
(+12V) from the ATX floppy drive
connector to the load side of the
circuit, using a male/male jumper. The
black wire (ground) of the ATX
floppy drive connector should be
connected to the emitter, AND to the
Arduino Uno ground. The floppy
connector is shown in Figure 5-30.

The ATX power supply has been
modified by connecting the green
wire on the main power connector to
a black (ground) wire so that it will
power on when plugged in. For a pin-
out table of the main ATX power
connector, see Table A-7 in the
appendix.

Figure 5-30. Floppy drive connector of
an ATX power supply, capable of
supplying up to 3 amps. ATX power
supplies are salvageable from old
desktop computers.

Section 5

186

We will be using our own PWM strategy from before to control motor
speed. To shake things up a bit, we will be using the serial monitor to set
the speed (between 0 and 255), while the sketch is running. To accomplish
this, write the following sketch:

//Activity 5-2: serial-controlled motor speed
const byte motorPin=9;
int motorSpeed=0;

void setup(){
 Serial.begin(9600);
 pinMode(motorPin,OUTPUT);
 Serial.println("");
 Serial.println("Enter motor speed from 0-255:> ");
}

void loop(){
 if(Serial.available()){ //if user entered smthng
 motorSpeed=Serial.parseInt(); //read&conv to int
 analogWrite(motorPin,motorSpeed); // set PWM
 }
}

Compile and upload this program. Test out and refine your circuit.
Notes:
 Start the serial monitor to test your circuit. Make sure the serial

monitor is set to the correct baud rate (9600 bps).
 Make sure that "No line ending" is selected on the serial monitor

pull-down menu.
 To enter the number for motor speed, type it in the status bar of the

serial window, then press “Send” (not Enter) to send it to the MCU.
 In this sketch, we don’t try to read something from the serial buffer

unless there is data available, checking with the command
Serial.available(). This command returns true if the user has
entered something new, and false if they haven’t.

Consider:
 Constraining the values that the user enters to the working range of

the motor (the range of numbers that spans all motor speeds):
motorSpeed=constrain(motorSpeed,0,255);

With the constrain() command, any number less than the lower
limit (first number) will get bumped up to the lower limit, any
number greater than the upper limit (second number) will get
bumped down to the upper limit, and any number in between the two
limits will remain the same.

Switching Higher Power Devices 187

 Checking that the data the user entered is a number, and returning a
warning if it wasn’t.

 Serial commands are also possible between two microcontrollers.
Microcontrollers can talk to each other, and other devices through
serial communications!

You can control motor speed using a potentiometer, read using
analogRead()), a function (e.g. a sine wave), or simply on/off control
(like the hot plate thermostat) with a setpoint, using digitalWrite().
Motor speed can also be adjusted based on data from a limit switch,
proximity sensor, or gyroscope, which becomes important in mechanical
and robotic applications.

Parsing Serial Data

In the last sketch, we used the Serial.parseInt() command to
convert the data received from the serial monitor window into an integer.
There are similar functions available for converting serial data to other
variable types, if you need them:

myStringVar = Serial.readString(); // read String
myIntVar = Serial.parseInt(); // read int
myFloatVar = Serial.parseFloat(); // read float
myByteVar = Serial.read(); // read byte

Activity 5-3: MOSFET as a Switch for a DC Motor

Goal: The following circuit replaces the 2N2222 transistor in Activity 5-3
with a 2N7000 N-Channel MOSFET. The 10K pull-down resistor is
insurance against a floating pin state, which could potentially cause the gate
to turn on and off randomly. A protection diode protects the MOSFET from
DC motor flyback.

Materials:
 Arduino Uno MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply

 1 x 12V DC Motor
 1 x 10K Resistor
 1 x 27000 N-Channel MOSFET
 1 x 1N4007 Diode
 5 x Male/Male Jumper

Section 5

188

Procedure:
Build the circuit in Figure 5-31, following the same procedure as Activity
5-2.

Figure 5-31. Circuit diagram for Activity 5-3: MOSFET-controlled DC motor.

Learning Objectives for Section 5

After having attended this class, the student will be able to:
1) Identify the voltage and power limits of the Arduino Uno.
2) Match the current, voltage, and power requirements of a given load

to an appropriate switching strategy: relay, transistor, MOSFET, or
TRIAC, so that a suitable device can be selected for specific design
requirements.

3) Discern high-side from low-side switching, and describe the safety
implications of each.

4) Define and describe switch construction: number of poles, throw
number, normally open, and normally closed.

Test your
understanding:
Can you use the
sketch provided in
Activity 5-2 for this
circuit?

Switching Higher Power Devices 189

5) Identify which switching strategies require a common ground, and
which allow for separate grounds for logic and power.

6) Be able to illustrate, using diagrams, how diodes, relays, NPN and
PNP BJTs, and MOSFETs work.

7) Write a simple sketch for a thermostat circuit.
8) Identify and draw from memory the circuit diagram symbols for the

switching devices in this section.
9) Identify proper placement of a protection diode to protect a circuit

from inductive load flyback.
10) List and define the three transistor modes: cutoff, active, and

saturation.
11) Correctly label the collector, base, and emitter terminals on NPN and

PNP BJTs, and the gate, drain, and source terminals on N-channel
and P-channel MOSFETS.

12) Compare and contrast the functionalities of BJTs vs. MOSFETs.

Section 5

190

Section 5 - Station Content List

• Arduino Uno MCU & USB
cable

• Laptop with Arduino IDE
installed

• Digital Multimeter
• Breadboard
• 1 x 10K Resistor (1% tol)
• 1 x 10K Thermistor from

Section 4
• 1 x 5V, 10A Relay Module
• 1 x Hot Plate
• 3 x Male/Female Jumpers (long)

• 1 x 400 mL Beaker (1/3 filled
tap water)

• 1 x 1L Plastic Beaker (with ice
water)

• 1 x Glass Thermometer
• 1 x ATX Power Supply
• 1 x 12V DC Motor
• 1 x 10K Resistor (5% tol)
• 1 x 2N2222 Transistor
• 1 x 27000 N-Channel MOSFET
• 1 x 1N4007 Diode
• 8 x Male/Male Jumpers

Figure 5-32. Section 5 station setup.

SECTION 6

PROCESS CONTROL

What You’ll
Be Learning

Lecture: Types of motors: DC motor, stepper motor, servo
motor. Using an H-bridge to drive a motor (example: L298N
motor driver). Introduction to process control. Open loop, feed
forward, feedback. On-off controller, P+I+D controller.
Interpreting system responses: undamped, underdamped,
overdamped, critically damped.

What You’ll
Be Doing

Pick (Activity 6-1 and 6-3) or (Activity 6-2(a or b) and 6-4)
Activity 6-1: Using an H-bridge to control speed and direction
of a regular DC motor.
Activity 6-2(a): Using a ULN2003 stepper motor driver to
control a 28BYJ-48 stepper motor.
Activity 6-2(b): Using an A4988 stepper motor driver to control
a Nema-17 stepper motor.
Activity 6-3: Setting up a simple servo motor control circuit,
using a potentiometer to control servo position.
Activity 6-4: Tuning a PID controller (program ready) for
temperature control of a circuit board.
Demo 1: Transistor-switched IR robot (H-bridge).
Demo 2: Video rover: L298N H-bridge.

Files you
will need

All course files are available
for download at:
http://pb860.pbworks.com

 28BYJ-48.ino
 A4988.ino
 PID.ino

When “Close Enough” Isn’t Close Enough

Controlling equipment sometimes requires a certain amount of
precision, more than “turn this device on until this happens, and then stop”.
DC motors are flexible, in that you can control their speed and direction of
rotation. When more precise control of motion is required, stepper and servo
motors have their own niches, finding utility in many scientific applications.
This section focusses on the most common types of control strategies, the

Section 6

192

principles of which extend to controlling many types of scientific and
engineering systems.

How a DC Motor Works

A DC motor is an ingenious device that works through the induction and
reversal of a magnetic field using electricity. It essentially works through
magnetic repulsion. When current runs through a coil, the coil becomes
magnetized according to Fleming’s Left Hand Rule, and is repulsed by
fixed magnets, called stators. Early DC motors had brushes, although the
majority of DC motors are now brushless. As the coil rotates, it reverses
polarity because its contacts (through the brushes) connect to the other side
of the commutator, so the process repeats. Figure 6-1 illustrates this cycle.

Figure 6-1. The rotor coil of a motor (left) will spin according to Fleming’s left hand
rule (right).

If you wire a DC motor backwards, the symmetry of the device results
in the shaft turning in the opposite direction (e.g. counter-clockwise vs.
clockwise). Usually, DC motors have more than one coil. There are a series
of coils, resulting in smoother motion.

Using an H-Bridge to Control Motor Speed and Direction

As mentioned above, if you reverse the power to a DC motor (switch (+)
and () wires), it will spin in the opposite direction. If you would like a
motor to be able to switch directions during its regular operation, re-wiring

Process Control 193

it on the fly would be inconvenient. An H-bridge can change the direction
of current through a DC motor using switches, without having to rewire it.
A basic H-bridge circuit diagram is presented in Figure 6-2. You can see
where it gets its name, since the wires form the shape of a letter H.

Figure 6-2. Simple H-Bridge configuration.

By opening and closing the appropriate switches, we can get a DC motor

to reverse direction. Table 6-1 shows how this is done. Follow the voltage
from positive to negative to see how the direction of current is reversed.

Table 6-1. An H-bridge can switch the polarity across a motor by changing the
states of four switches.

If SW1 and SW4 in this circuit are
closed, and SW2 and SW3 are open, a
regular DC motor will spin clockwise
(shaft facing you):

If SW1 and SW4 in this circuit are open,
and SW2 and SW3 are closed, the DC
motor will run counter-clockwise (shaft
facing you):

The orientation of the switches is key to how the H-bridge works. The

switches themselves can be relays, BJTs, MOSFETs, or other types of
switches. The (+) and () signs on the motor in the above diagrams do not
represent voltage, but rather the polarity of the motor. Positive (+) is usually
the DC motor’s red wire, and negative () is the DC motor’s black wire.

Section 6

194

You can quite easily make your
own H-bridge. Something to be
aware of is the chance of shorting
while switching. If top and bottom
switches (e.g. SW1 and SW2) are
closed at the same time–even for a
VERY short time–there will be a
short circuit. This is hard on the
microcontroller, and your power
supply. The proper sequence of
turning the switches on and off will
prevent this from happening.

You can also protect your H-bridge with protection diodes (Figure 6-3).
This is important for larger DC motors.

In addition to controlling the direction of the DC motor by opening and
closing the correct switches on an H-bridge, you can control the speed of
the DC motor by powering it (or switching it) using a PWM signal. Higher
duty cycles will spin the motor faster. This little trick of dimming an LED
is made use of in so many other applications.

L298N H-Bridge Motor Driver Module

There are a variety of integrated H-bridge chips (like the L293D), and
modules (like the L298N motor driver module). An H-bridge module is also
called a motor driver, motor drive, or motor controller. The L298N motor
driver has two independent H-bridges built into it, so it can control two DC
motors independently, or one low-current bipolar stepper motor. It has built-
in protection diodes, so you don’t have to worry about flyback, and +5V out
that can be used to power a +5V microprocessor board through its Vin pin,
allowing you to power your project (MCU and motor) using a single supply.

Figure 6-3. Protection diodes for an
H-bridge.

Process Control 195

Figure 6-4. L298N H-bridge module. This module comes with an on-board regulator
that you can also use to power the logic side of your circuit. Check the top and
underside of the module to confirm pin and screw terminal identities, as some
modules may vary.

In Figure 6-4, IN1
and IN2 are controls for
the built-in H-bridge for
DC motor A. In this way,
you can use +5V signals
from your
microcontroller to power
a motor with much
higher voltage. ENA
means “enable motor
A”. If ENA is left
floating, or at GND,
OUT1 and OUT2 will
both be LOW. ENA
needs to be HIGH for
DC motor A to spin,
which is why there is a jumper for tying it to +5V for a stepper motor. If you
remove the jumper on ENA, you can control the motor speed of DC motor A
by sending a PWM signal directly to ENA.

Table 6-2. L298N H-bridge control of two
independent DC motors.

Input
Pin State

Output
Pin State

Result

IN1: GND
IN2: +5V

OUT1: GND
OUT2: Vcc

DC motor A
rotates clockwise

IN1: +5V
IN2: GND

OUT1: Vcc
OUT2: GND

DC motor A
rotates counter-
clockwise

IN3: GND
IN4: +5V

OUT3: GND
OUT4: Vcc

DC motor B
rotates clockwise

IN3: +5V
IN4: GND

OUT3: Vcc
OUT4: GND

DC motor B
rotates counter-
clockwise

Section 6

196

Similarly, you can control the speed of DC motor B by sending a PWM
signal to ENB. This makes connections easier, because you only need one
PWM signal to control the speed of a DC motor.
To Power One Regular DC Motor (Side A):

1) Open jumper ENA, by pulling it off the
bridging pins, and sliding it back on
one of the original pins (EN jumpers
should be open for a regular DC
motor).

2) Connect a PWM-capable pin (On the
Uno: 3, 5, 6, 9, 10, 11) to ENA. This
will control motor speed for DC Motor
A in both directions.

3) Connect Arduino digital pins to IN1
and IN2.

4) To connect the power:
 For a 5-12V DC motor: Connect
external +5 to +12V to Vcc (also
labelled 12V on some L298N
boards). Leave the +5V pin open. This pin provides a regulated
+5V out from Vcc, that can optionally be used to power the Uno
(or other 5V module).

 For a >12V DC motor: Remove the 12V jumper, connect external
power to Vcc, and don’t use the on-board regulator (it can’t handle
more than 12V).

5) Connect the () and (+) terminals of the DC motor to OUT1 and
OUT2, respectively.

6) Connect MCU GND to H-bridge GND. It’s important if you are
using separate power supplies (e.g. MCU powered using a laptop,
and DC motor powered using an external power supply) that you
directly connect the MCU ground to the H-bridge ground, or the
H-bridge won’t be able to receive the microcontroller’s signals.

Repeat this method with IN3, IN4, ENB, OUT3, and OUT4 for a second
DC motor.

Using the H-bridge for DC motor 1:
 For clockwise turning: Set IN1=LOW, IN2=HIGH.
 For counter-clockwise turning: Set IN1=HIGH, IN2=LOW
 Send a PWM signal to ENA to control motor speed.

Motor drivers are extremely sensitive to voltage spikes caused by wiring
connections with the power turned on. Make all your connections and
wiring changes with the power supplies unplugged.

Figure 6-5. Pin jumpers in
the open position (top), and
in the closed position
(bottom), L298N module.

Process Control 197

Stepper Motors

A stepper motor is a specialized type of DC
motor that rotates much more slowly, in discrete
steps. Stepper motors rotate by a small fixed
angle with every DC pulse (rather than a
constant applied voltage). The Nema-17 motor
in Figure 6-6 has 200 steps per revolution,
although other stepping angles are available in
the Nema-17 package (e.g 400 steps). Stepping
angle is calculated using the following formula: = 360°200 = 1.8°/

There are many kinds of stepper motors.
Unlike regular DC motors, stepper motors are
brushless, and have more than two wires to
connect:

 Unipolar stepper motor: 5 or 6 wires
 Bipolar stepper motor: 4 wires

Regular DC hobby motors are high speed, low torque. Stepper motors
are the opposite; they are very high torque and lower speed. Lower speed
doesn’t necessarily mean slow, as some stepper motors are capable of 1000
rpm rotation rates. Stepper motors use a lot more current than regular DC
motors, but are more precise, which makes them preferred for 3D printing,
CNC milling, and laser cutting. A stepper motor can spin continuously
(360° range of rotation), and can also reverse direction. Figure 6-7 shows
the circuit diagram symbols for unipolar and bipolar stepper motors, and
how they are connected to their respective motor drivers. (Leger 2012) The
motor drivers have been greatly simplified to only show the orientation of
switches, which are drawn in as transistors but could be other types of
switches as well. Unipolar steppers tend to have 6 wires (as shown) or 5
wires if the two Vcc leads are made common. A bipolar motor has 4 wires.
A bipolar motor has higher torque than a comparable unipolar motor.
Interestingly, there are easy ways to convert a unipolar motor to bipolar, to
increase torque. (Adriaensen 2013) Despite the many switches shown for
the bipolar stepper motor in Figure 6-7, symmetry results in only four
microcontroller wires needed at most to control the motor. Motor driver
modules can reduce the number of wires even further.

Figure 6-6. A Nema-17
bipolar stepper motor
with 5mm shaft
coupler.

Section 6

198

 unipolar bipolar

Figure 6-7. Circuit diagram symbols for unipolar (left) and bipolar (right) stepper
motors. A unipolar stepper motor can be controlled by 4 switches, whereas a bipolar
stepper motor requires two H-bridges to operate.

28BYJ-48 Stepper Motor with ULN2003 Motor Driver

Thanks to mass production, the 28BYJ-
48 stepper motor is inexpensive and widely
available through electronics and auction
webstores. It is usually sold together with
the ULN2003 motor driver module. This
capable unipolar 5-wire stepper motor
comes in 5V and 12V versions. The motor
has 4 coils (or phases) and a stepping angle
of 5.625° (or 64 steps per revolution).
However, it is geared down so that 64
revolutions of the internal motor maps to
one revolution of the external 5mm motor
shaft. This results in a very small stepping
angle of 0.08789°, or 4096 steps per revolution.

The 5V version of the motor can be powered with the ULN2003 motor
driver directly from the Uno without an external 5V power source, although
an external power supply is recommended. There are many libraries
available to control this motor. The following sketch illustrates how easy it
is to control the 28BYJ-48 stepper motor without a library. The sketch
(28BYJ-48.ino) is also available for download on the course website:

Figure 6-8. A 28BYJ-48
stepper motor, with ULN2003
driver module.

Process Control 199

/* Test sketch: 28BYJ-48 Stepper with ULN2003
const int stepsPerRev=4096;
const byte IN[4]={8,9,10,11}; // define motor pin array
void setup(){
 Serial.begin(9600);
 for(int i=0;i<4;i++){
 pinMode(IN[i],OUTPUT); // set pins to output mode
 }
}

void loop(){
 Serial.println("Stepping clockwise.");
 motorStep(4096,10); // CW 4096 steps @10rpm
 delay(1000);
 Serial.println("Stepping counter-clockwise.");
 motorStep(-4096,10); // CCW 4096 steps @10 rpm
 delay(1000);
}

void motorStep(int mSteps, float rpm){
 //convert rpm to time delay:
 float t=60000.0/(rpm*stepsPerRev);
 const bool mSequence[8][4]={
 {1, 0, 0, 1}, // step 0
 {1, 0, 0, 0}, // step 1
 {1, 1, 0, 0}, // step 2
 {0, 1, 0, 0}, // step 3
 {0, 1, 1, 0}, // step 4
 {0, 0, 1, 0}, // step 5
 {0, 0, 1, 1}, // step 6
 {0, 0, 0, 1} // step 7
 };
 static int mStep; // remember last val of mStep
 for(int i=0;i<abs(mSteps);i++){ // STEP pulses
 if(mSteps>0){ // clockwise
 mStep++;
 if(mStep>7)mStep=0;
 }else{ // counter-clockwise
 mStep--;
 if(mStep<0)mStep=7;
 }
 for(int j=0;j<4;j++){
 digitalWrite(IN[j],mSequence[mStep][j]);
 }
 delay(t);
 }
}

Section 6

200

You can see how the 8x4 array of boolean variables (mSequence) helps
neatly define the pin states for the stepper motor wires. These array elements
are used in the digitalWrite() statement to send 5V pulses to the motor
in the correct sequence.

Nema-17 Stepper Motor with A4988 Motor Driver

The Nema-17 stepper motor in Figure 6-8 gets its name from the
dimensions (having a face plate length and width of 1.7”). This is not to be
confused with a model number, since there are many different Nema-17
models, varying in operating voltage and current, holding torque, and
stepping angle. The Nema-17 stepper motor has become extremely popular
in 3D printing and CNC devices. The original verision of this course had
the Nema-17 driven by the L298N motor driver, but many of the driver
modules burned out because they couldn’t handle the high current of these
powerful motors. One solution is to deliver 50% duty cycles to ENA and
ENB to the L298N module to limit the current, but a better solution is using
a more appropriate motor driver like the Pololu A4988 (capable of driving
up to 1.5A stepper motors) or DRV8825 (capable of driving up to 2A
stepper motors). These motor drivers need to be “tuned” to deliver the
correct amount of current to the stepper motor. Too little current will result
in skipped steps, erratic steps, weaker torque, or no movement at all. Too
much current will result in loud, jittery movement, overheating, and may
damage the driver and motor. These motor drivers are inexpensive, but
sensitive – which is why many of them now live in the “toast” bag in my
lab.5

Despite the finicky setup, the A4988 motor driver offers superior control
for the Nema-17, allowing for full, half, quarter, eighth, and even sixteenth
steps of the motor. Moving a stepper motor by a fraction of a step is called
microstepping. Given that many Nema-17s have 200 steps per revolution,
this means that 200×16=3200 steps per revolution are possible. Once the
driver is properly set up, it is extremely reliable.

According to Pololu, these motor drivers are sensitive to voltage spikes,
and must be connected carefully with the power off. (Pololu Corporation
2015) The schematic in Figure 6-9 can be used to wire a Nema-17 to a
microprocessor with an A4988 stepper motor driver. Figure 6-9 has jumpers

5 When a component burns out, don’t make the mistake of throwing it away. Perhaps
it just needs a rest from thermal overload. At the very least, keep it for spare parts.
Many components that were thought blown up have been revived from the “toast”
bag, or scavenged for other projects.

Process Control 201

connecting pins ENABLE, MS1, MS2, and MS3 to the microcrontroller.
These pins on the A4988 have internal pull-down resistors, so if you are not
planning on microstepping the stepper motor, you can leave those
connections out in your circuit and they will default to ENABLE=0,
MS1=0, MS2=0, and MS3=0, for regular stepper motor operation.

Figure 6-9. Connecting a Nema-17 to a microprocessor with an A4988 stepper motor
driver. Build this circuit with the power off.

Connecting the stepper motor to the motor driver requires identifying

Nema-17’s four wires. Which wires map to 1A, 1B, 2A, and 2B?
Unfortunately, there are no universal colour code conventions for stepper
motor wires. The datasheet of your specific motor might specify the pin
allocations. Many stepper motor connector cables flip positions of the
middle two pins, so watch out for that when you are making your
connections. The following is a suggested starting point: (Hobby CNC
Australia 2015)

Table 6-3. Suggestions for 4-Wire stepper motor colour codes.

Coil Scheme
1

Scheme
2

Scheme
3

Scheme
4

Scheme
5

Connect to
A4988 pin

A+
A-

Red
Blue

Red
Grey

Yellow
Blue

Red
Blue

Yellow
Orange

1A
1B

B+
B-

Black
Green

Yellow
Green

Red
Green

Yellow
White

Black
Brown

2A
2B

Section 6

202

Unfortunately, finding the correct terminals for a stepper motor can be
tricky if the terminals are unknown. One effective approach is to measure
the resistance (or test for continuity) across any two of the four motor wires.
If the resistance is low (e.g. less than 100Ω), then you have found a pair of
termals leading to the same coil (e.g. A+ and A-), and the other two wires
are the second pair of wires leading to the second coil (e.g. B+ and B-). You
can therefore narrow down your wires to two pairs, each pair controlling a
separate coil. Wire the first pair to 1A and 1B, and the second pair to 2A
and 2B. Put a bookmark on this procedure here, and now it’s time to set the
current for the A4988.

The A4988 has a tiny trim potentiometer that you
can set with a small screwdriver or microspatula.
Make sure all connections are firm and snug in
Figure 6-9, and it’s time to turn on the power to the
microprocessor (logic side). With a voltmeter,
measure the voltage from any ground in your circuit
(or the GND pin of the A4988) to the metal screw on
the A4988’s trim pot (see Figure 6-10). The goal is
to adjust this voltage according to the following
formula: (Pololu Corporation 2015) = 8 × ×

where Vref is the measured voltage, Imax is the
maximum total current the motor driver will send to
the motor, and Rcs is the resistance of the on-board current-sense resistor (a
common value is 50 mΩ, but may vary depending on the version). As with
all electronics, the math will get you close, then it’s up to you to taper the
current down if the current is running hot, or up if you don’t see any
movement at all. Table 6-4 provides some common values:

Table 6-4. Vref settings (in mV) for A4988 motor drivers.

Imax (A) Rcs=50mΩ Rcs=68mΩ Rcs=100mΩ Rcs=200mΩ
0.33 132 180 264 528
0.40 160 218 320 640
0.50 200 272 400 800
0.67 268 364 536 1072
1.00 400 544 800 1600
1.33 532 724 1064 2128
1.50 600 816 1200 2400
1.67 668 908 1336 2672
2.00 800 1088 1600 3200

Figure 6-10. A4988
motor driver. White
arrow points to trim
potentiometer.

Process Control 203

You can find out the current requirements for your stepper motor (Imax)
from the datasheet of the model number on the stepper motor body. Look
up the Vref setting for the required current in Table 6-4, then adjust the trim
potentiometer as close as you can to this voltage. Once the reference voltage
is set, it’s time to turn on the power supply to the motor and test the stepper
motor for movement. If you can’t find the voltage or current requirements
for your motor, you can start with the smallest Vref and try slowly increasing
it until your motor starts moving smoothly at the torque you need. The
A4988 requires an 8-35V power supply, so it would not be a good choice
for controlling a 5V stepper motor. Lower-voltage motor drivers like the
L298N motor driver module, the L293D IC, or the A3967 EasyDriver
(capable of microstepping) would be better suited to a 5V stepper motor.

There are many libraries available for the A4988 stepper motor;
however, the following basic sketch will help start you off, and is also
available on the course website (A4988.ino). The sketch should move the
stepper motor forwards and backwards by 200 steps:
// A4988 test sketch
const int stepsPerRev=200; //change as needed for motor
byte n; // multiplier for microstepping
const byte ENA=11; // set ENA low to enable motor
const byte MS1=10; // microstepping pins
const byte MS2=9;
const byte MS3=8;
const byte STEP=7; // sends a pulse for each step
const byte DIR=6; // changes direction of stepper

void setup(){
 Serial.begin(9600);
 pinMode(ENA,OUTPUT);// set pins to output
 pinMode(MS1,OUTPUT);
 pinMode(MS2,OUTPUT);
 pinMode(MS3,OUTPUT);
 pinMode(STEP,OUTPUT);
 pinMode(DIR,OUTPUT);
 setMicroStep(0); // 0:full step mode (choose 0-4)
}

void loop(){
 Serial.println("Stepping clockwise.");
 motorStep(200,10); // clockwise 200 steps @10rpm
 delay(1000);
 Serial.println("Stepping counter-clockwise.");
 motorStep(-200,10); // CCW 200 steps @10rpm
 delay(1000);
}

Section 6

204

void setMicroStep(byte RES){
 const bool MSvals[5][3]={
 {0, 0, 0}, // RES=0: full steps
 {1, 0, 0}, // RES=1: 1/2 steps
 {0, 1, 0}, // RES=2: 1/4 steps
 {1, 1, 0}, // RES=3: 8th steps
 {1, 1, 1} // RES=4: 16th steps
 };
 digitalWrite(MS1,MSvals[RES][0]);
 digitalWrite(MS2,MSvals[RES][1]);
 digitalWrite(MS3,MSvals[RES][2]);
 n=pow(2,RES); // calculate multiplier for steps/rev
}

void motorStep(int mSteps, float rpm){
 //convert rpm to time delay:
 float t=60000.0/(rpm*stepsPerRev*n*2.0);
 unsigned int timer=millis();
 if(mSteps<0){ // set dir (use mSteps>0 to reverse)
 digitalWrite(DIR,0); // counter-clockwise
 }else{
 digitalWrite(DIR,1); // clockwise
 }
 digitalWrite(ENA,LOW); // enable motor
 for(int i=0;i<abs(mSteps);i++){ // STEP pulses
 digitalWrite(STEP,HIGH);
 delay_(t);
 digitalWrite(STEP,LOW);
 delay_(t);
 }
 digitalWrite(ENA,HIGH); // disable motor
}

void delay_(float x){ // allows for delays <1ms
 if(x>1.0){
 delay(x);
 }else{
 delayMicroseconds(x*1000.0); //convert to usec
 }
}

Upload the sketch and see if the motor spins properly. You may need to
exchange or reverse the wire pairs with the power off if you find the stepper
motor doesn’t spin well in both directions. Changing the wiring on a motor
driver with the power on will likely damage it. If the motor is wired
incorrectly, or if there is a poor connection, the motor will just vibrate. One
very frustrating afternoon was spent realizing that one of the wires on a

Process Control 205

stepper motor connector was broken, so keep the integrity of your
connections in mind while troubleshooting.

Now with your motor spinning, you may find you need to adjust the
current. If the motor or the motor driver is “growling” or running too hot to
the touch, you can gently turn down Vref on the trim pot counter-clockwise
to a lower level that still results in smooth movement. If the motor doesn’t
seem to be moving at all, try slowly increasing Vref. Unfortunately, since
these drivers are so prone to damage if miswired, trying a new motor driver
might also yield better results.

If you notice your motor is spinning in the opposite direction you were
anticipating but still reversing direction properly, you can either keep the
wiring as is and reverse direction in your programming code, or you can
reverse the stepper motor wire pairs to the motor driver (connect the A+ and
A- terminals to where B+ and B- were connected, and vice-versa).

If you would like to run a Nema-17 (or other) 4-wire stepper motor
without an A4988 (for instance, with another motor driver), an example
sketch (4WStepper.ino) is provided in the appendix, which uses the Arduino
IDE’s built-in stepper motor library: Stepper.h. This sketch for instance
would appropriately control a low current 5V stepper motor salvaged from
A CD-ROM drive using the L298N motor driver. Another sketch is
provided that does not need an external library (4WStepper_noLib.ino). In
this sketch, you can see the sequence of pulses that advance the stepper
motor with each step.

Servo Motors

A servo is a geared DC motor with
its own built-in microcontroller. The
microcontroller performs two basic
functions: it receives a control signal
to control the position of its shaft, then
it adusts the shaft position and
monitors it through a feedback
mechanism, like an encoder wheel
(also called a position sensor). By
varying the duty cycle of the signal to
the servo (often a 1-2 msec duty cycle
over a 50 Hz frequency, or 20 msec
period), the motor position will change. (Tower Pro Datasheet 2017) If a
servo skips a step accidentally, or is manually twisted off course, it will
compensate and return to the calibrated position as long as the signal

Figure 6-11. MG995 servo with
shaft attachments.

Section 6

206

persists. Servos are very popular in automotive, robotic, and radio-
controlled applications.

One limiting factor with a servo is the range of rotation. Many servos
have a 180° range. Some servos have a wider range (e.g. 360°), but can only
perform one rotation, and not turn continuously. A servo would be better
suited as a rudder on a radio-controlled model helicopter or boat than the
wheels on a model car. A servo can also be designed (or hacked) to allow
for continuous rotation. However, a stepper motor is usually better suited to
these applications.

The gears in a servo convert the high speed, low torque motion of a DC
motor to low speed and high torque. The servo sometimes has weight as a
specification (e.g. 9g for the SG-90 in Figure 6-11), since weight is a critical
design parameter for most radio-controlled applications. A weight
specification can also refer to a servo’s working torque (e.g. the 13 kg
MG946R). Protection diodes are not required for servos, as they already
have built in protection for their internal electronics. Higher quality servos
have metal gears which are less prone to breaking or stripping than plastic.
Figure 6-11 shows the metal-geared MG995 servo, whereas the SG90 has
plastic gears which can jam more easily. However, lower cost servos do not
have reverse polarity protection, so take care when wiring a servo to wire it
properly.

System Control Strategies

There are many different strategies for controlling a system, or piece of
equipment (also called a plant). We can borrow ideas from engineering
control theory for our scientific devices. (Bellman 1964, 186-200) We will
limit our discussion to single-output systems. The basic, entry-level types
of control systems are open-loop control, feed forward, and closed loop
control (feedback).

Open-Loop Control

The simplest form of a control strategy is open-loop control, which
works well for predictable systems, especially for batch processes
(processes that work on batches, like your dishwasher).

Chances are you’ve toasted bread before, so let’s use control system
terminology to describe how open-loop control works using your toaster to
illustrate. Table 6-5 describe this process, written without, and with control
system terminology.

Process Control 207

Table 6-5. The process of toasting bread in a toaster, described without
(left) and with (right) control system terminology.

1) You put toast in the toaster, then
rotate the toaster timer knob to 4
minutes.

2) The toaster knob turns on a
switch, which allows 120V AC
voltage to flow through the
heating element.

3) The toaster starts toasting.
4) At 4 minutes, the knob returns

back to zero, switching the
heating element off.

1) User sets the SETPOINT on the
controller for 4 minutes.

2) The controller sends a
DRIVE=ON signal to the actuator,
which switches the INPUT stream
ON, to control the plant.

3) The process runs.
4) At 4 minutes, the controller sends

a DRIVE=OFF signal to the
actuator. The actuator switches the
INPUT stream OFF.

If we could summarize what the controller does in this example, it would
be:

FOR 4 MINUTES, DRIVE = ON. THEN, DRIVE = OFF.

We can call this our control algorithm.
To summarize the terminology and show a clearer picture of what’s

going on, we can draw a functional block diagram of this system for our
toaster example, in Figure 6-12.

Figure 6-12. Functional block diagram of toaster control system.

How does the controller know when to start and stop? It doesn’t know
at all. It’s up to the user to select a SETPOINT. In the design phase, the
controller was calibrated by toasting bread for varying durations. Whoever
designed the toaster observed for example that 7 minutes resulted in dark
toast, and 1 minute resulted in light toast. Then, they printed little light and
dark toast icons around the toaster knob (Figure 6-13). There is no sensor in
this system, only pre-calibrated settings that are hopefully relevant to the

Section 6

208

end user, who perhaps becomes more familiar
with them after burning a few pieces of toast.

Let’s use another very typical example of a
control system: controlling the speed of a car.
Using an open-loop control strategy, on a flat
empty highway on a windless day, you could
find out the relationship between how far down
you press the gas pedal, and how fast the car
goes. If you observe that pressing the gas pedal
¾ of the way down results in a speed of 100
kph, then you can use the same setting next
time, and “fix” the gas pedal in that position,
just like our toaster setting. Once you figure out this relationship, you don’t
need a sensor. You know that pushing the gas pedal ¾ of the way down (or,
DRIVE=75%) will get the car’s speed to 100 kph on a flat surface on a
windless day. Now we can estimate an open-loop gain constant, kL, that
establishes a linear relationship between the desired SETPOINT and the
DRIVE signal:

DRIVE = kL × SETPOINT
75%×DRIVE = 100 kph
 kL = 75% DRIVE / 100 kph = 0.75%DRIVE/kph

DRIVE = (0.75%/kph) × SETPOINT

(Note: this is not C++ code, just the algorithm, or set of instructions)
Our open-loop gain constant might not be perfect. If it’s off, we can tune

it a bit, using more experiments. We have now proposed a relationship
between our SETPOINT, and the DRIVE we need to get to a certain speed
on a flat road. This is our control algorithm. We can devise a cruise control
system with this algorithm, so that if the user wants a setpoint of 90 kph, the
controller (in this case, a cruise control circuit) could send the following
DRIVE signal to the actuator:

DRIVE = 0.75%/kph 90 kph = 67.5%

This strategy could work well enough on a flat road. However, the control
algorithm won’t account for a big hill your car needs to climb. What then–
what if you see a big hill the car needs to climb, coming up ahead in the
distance? Our control algorithm can’t adjust to the incline because it doesn’t
have a sensor to detect the inclined angle of the car.

Feed Forward Control

Open-loop control systems lack the ability to measure the process. They
rely on how well the system is calibrated. If you are able to detect

Figure 6-13. Toaster
setting dial – an example
of open-loop feedback
control.

Process Control 209

disturbances on an INPUT stream of your plant with a sensor, you can have
better control of your OUTPUT, because you can detect and react to a
disturbance before it reaches your plant. If you monitor your INPUT stream
with a sensor, this is called a feed forward control strategy.

Figure 6-14. Adding a sensor to a system on an INPUT stream and using that
information to adjust DRIVE is a feed-forward strategy.

In Figure 6-14, we have added a sensor to the INPUT stream of our plant.
The user sets the SETPOINT. The sensor sends a MEASURED signal to
the controller. The controller uses the MEASURED signal and the
SETPOINT to make decisions about what DRIVE signal to send to the
actuator, to control the plant. It’s useful to point out that in this diagram,
SETPOINT, MEASURED, and DRIVE are all signals. They are
information, sent or received, between elements of the system.

Let’s go back to our car speed example. What if we were to install a
gyroscopic sensor in the car that could measure its pitch angle? We would
then be considering a new input (the angle of the road). We could set up the
following control algorithm:

DRIVE = (kL × SETPOINT) + (kF × MEASURED)

The DRIVE signal now depends on an open loop control term, and a feed
forward control term. Here is our functional block diagram (in Figure 6-15):

open loop feed forward

Section 6

210

Figure 6-15. Example of a feed forward control system.

If the car is pointing uphill, the MEASURED angle of the car will be
positive, and the DRIVE signal will be larger to compensate. The gas pedal
will be pushed down farther, responding to the slope of the hill. If the car is
pointing downhill, the MEASURED angle of the car will be negative, and
the DRIVE signal will be smaller than on flat road to compensate. The gas
pedal would be pushed down less, because the car would presumably be
going faster downhill–it would need less power to maintain speed. We
define a feed-forward gain constant: kF, to convert the MEASURED angle
to a change in DRIVE. In order to adjust the drive in the correct direction,
you would want kF in this context to be positive. Solving a feed-forward
model rigorously is not a straightforward task. It involves modeling the
system using Laplace transforms, and explicitly solving for the resulting
response curves. This approach is beyond the scope of this introductory
chapter, but it is important to point out that mathematical modeling in this
area is much more complicated than the simplified way it is presented here.
What we can do is tune the gain constant the same way we tuned kL: with
testing, until we find values that give us results that converge nicely to the
correct speed.

A disadvantage of a feed-forward control strategy is that it can’t possibly
account for the unexpected. What if something happens to your plant that is
independent of your inputs? We know that wind resistance, road surface
(e.g. paved vs. dirt road), weather, wildlife, construction, and traffic should
all affect speed, but it becomes very complicated to sense all of these
variables and factor them into our gas pedal position in anticipation. Feed
forward misses the unexpected (and the difficult to model). It also doesn’t
make use of the most important piece of information: the OUTPUT variable,
in this case the car’s current speed.

Process Control 211

Feedback Control

You may be familiar with the term feedback as something negative or
corrective that your teacher or boss says about your performance. The term
feedback originates in part from rocket science. Early rockets were launched
into the sky, and were off course–by a lot. Considering the first rockets were
actually missiles, being off course meant obliterating the wrong target.
Rocket scientists realized that no matter how well they tried to aim the
rockets on the launch pad (feed forward), it would be helpful to take
corrective measures while the rocket was in flight. Despite their violent
etymology, feedback systems find utility everywhere now, especially in
manufacturing, scientific instrumentation, medical devices, and
pharmaceutical industry.

Feedback in control theory means putting a sensor on the OUTPUT
stream to measure how much the plant is off target. This information gets
fed back into the controller to make adjustments. Figure 6-16 is a block
diagram of a single input, single output feedback system:

Figure 6-16. Example of a feedback control system.

In this scheme, the controller can send a DRIVE signal that takes the
measured OUTPUT into account. Before we begin talking about how
feedback strategies work, we need to put some practical constraints on the
plant:

1) The plant should be strong enough to reach the setpoint at full power
(100% DRIVE).

A plant that is underpowered for the task will have trouble reaching the
desired setpoint. In lay language, don’t try to heat a stadium with a lightbulb.
Your intended setpoint range will also put constraints on the plant (for
instance, a -80 °C freezer will require a much stronger cooling mechanism
than a 4 °C refrigerator). You can also try modifying the system so the plant

Section 6

212

doesn’t have to work as hard (e.g. by insulating the walls of a stability
chamber with styrofoam).

2) The plant should have something to work against, or be capable of
exerting the opposite effect.

If your plant overshoots the setpoint, the physics of the system should
be able to bring the output back down. For this reason, stability chambers in
pharmaceutical industry heat against cooling for more precise control.

On-Off Controller

The simplest feedback strategy is one we have already used in our hot
plate thermostat: the on-off controller. The DRIVE signal is either ON or
OFF with this strategy, just like our toaster example, but the DRIVE state
now depends on whether or not the MEASURED signal of the OUTPUT
has reached the SETPOINT. The control algorithm for our hot plate
thermostat would look like this:

ERROR = (SETPOINT – MEASURED)
IF ERROR > 0 THEN: DRIVE = ON
ELSE: DRIVE = OFF

The ERROR is how far off the MEASURED signal is from the SETPOINT.
The DRIVE is now dependent on the ERROR, rather than a calibrated timer,
or feed forward gain constant. You can see from the control algorithm that
the DRIVE term only has two states: completely on, or completely off. For
this reason, it is also called a 2-step controller, bang-bang controller, or
relay-switch circuit.

One more improvement: it might be a good idea not to have your control
loop be too picky. You can decide a TOLERANCE level, where the
controller stops adjusting the actuator if the MEASURED signal is close
enough to the SETPOINT. This avoids the system getting locked up waiting
for perfection (which can happen with float variables), and can also prevent
the output from overshooting. We just need to change our control algorithm
to:

ERROR = (SETPOINT – MEASURED)
IF ERROR > TOLERANCE THEN: DRIVE = ON
ELSE: DRIVE = OFF

Now, the controller won’t bother reacting if ERROR<=TOLERANCE.
Temperature has a large response lag and can change slowly, so on-off

controllers are often used to control temperature. Your furnace, electric
stove, and fridge are likely controlled by on-off controllers.

Process Control 213

Going back to the car’s speed as an example, instead of measuring the
angle of the car on a hill, our sensor can be the speedometer. If your car is
going too slowly, you press the gas pedal all the way down. If it’s going too
fast, you let go of the gas pedal completely. This is a feedback control
system. However, an on-off controller would make your passengers car
sick. We need smoother control than a relay switch. What we need then is a
proportional controller.

Proportional (P) Controller

Figure 6-17. Example of a proportional feedback control system.

A car’s gas pedal is capable of graded control. The farther down we
press the gas pedal, the faster the car accelerates. We can therefore introduce
a proportional response to our controller, rather than just an all-or-nothing
relay switch strategy. What if the closer our measurement gets to our
SETPOINT (the smaller the ERROR), the less we push on the gas pedal?
This would mean that we might actually be able to converge to a constant
speed, for example, a setpoint of 50 kph. We would also have full throttle
where we need it–when we are far from the setpoint. Our DRIVE signal can
be graded now, not just ON or OFF. DRIVE can be positive or negative,
and can be dimensionless, but for now let’s think of it as a percentage.
DRIVE=100% means the gas pedal is floored (trying our hardest), and
DRIVE=0% means completely off the gas pedal, and we have access to all
values in between. We define a proportional gain constant: kP, to scale the
magnitude of the ERROR to a DRIVE signal:

For a proportional feedback controller,
DRIVE = kP×(SETPOINT - MEASURED) = kP×ERROR

 Proportional gain constant

Section 6

214

What value should we give to kP? That entirely depends on our plant,
and what we are measuring. A simplistic approach is to start with any
arbitrary value for kP, and tune it (try different values) until we are happy
with the way the system reacts to a change in setpoint.

Let’s say the car is stopped. We program kP=200 into our proportional
controller and a setpoint of 50 kph, and then we observe the speed response
in Figure 6-18.

Undamped Feedback Response

Figure 6-18. Undamped feedback response.

What’s happening? The measured speed never converges to the
SETPOINT. The speed oscillates between too high, and too low. This is
called an undamped response (and a nauseating road trip). The speed never
settles, or converges to a single value–the system is unstable. This is the
same type of response as the hot-plate relay circuit in Activity 5-1.

We decide that kP=200 is way too assertive, so we try setting kP=1. We
then observe the speed response in Figure 6-19.

Process Control 215

Over-damped Feedback Response

Figure 6-19. Over-damped feedback response.

Success! The speed converged to the setpoint. You might notice that it
took a long time to attain the SETPOINT. In 1 hour, we would likely have
reached our destination before reaching our setpoint. We call this an over-
damped response. According to our control algorithm, every 1 kph away
from the setpoint gives us 1% of DRIVE (since kP=1). This makes our
control algorithm DRIVE= kP×ERROR = 1*50 = 50% when the car is at
0 kph initially, and as we get closer to the SETPOINT, DRIVE backs off
and becomes too wimpy.

How can we fix this? Crank up the gain! We can change the value of kP
to make DRIVE higher at smaller values of ERROR. What if we try kP
=100? Then, the controller will calculate DRIVE = kP×ERROR. At the
beginning when the car is at rest:

DRIVE = kP×ERROR
DRIVE = kP×(SETPOINT-MEASURED)
DRIVE = 100×(50-0)
DRIVE = 5000

The results of kP=100 are illustrated in Figure 6-20.

Section 6

216

Under-damped Feedback Response

Figure 6-20. Under-damped feedback response, illustrating the concepts of rise time,
overshoot, and settling time.

Since the maximum our drive signal can be is 100%, the software will
constrain the response to 100%. BUT, as the speed approaches the setpoint,
the drive is 100X higher, and so we can reach the setpoint much more
quickly. We call the time it takes the system to converge to the setpoint the
settling time.

However, you will notice that the controller overshot the setpoint, and it
took a few oscillations for the system to settle. This response is called
under-damped. If we increased kP even more, then the response would
eventually become undamped again, because our DRIVE would end up
behaving more like the on-off controller–all or nothing.

The goal in tuning a proportional controller is to find a value for kP that
results in the fastest settling time without overshooting. This can be found
experimentally–by tuning the value of kP to find an optimal response:

Settling time
Rise time

Overshoot

Process Control 217

Critically-damped Feedback Response

Figure 6-21. Finding a critically-damped feedback response.

Through trial and (literally) error, we found that a kP of 50 did the best
job under the circumstances. We call this particular response critically
damped. A lower value of kP results in a longer settling time, and a higher
value of kP results in under-damped behavior (oscillations).

The optimal value of kP can also change depending on what your
SETPOINT is, which will be a factor when tinkering around with your
system. This is especially true if the effect of the DRIVE on your plant is
non-linear, which can often be the case. For instance, it is not uncommon
for a DRIVE to more easily attain a lower setpoint than a higher one. Every
drive and plant have limits.

The bottom line is that we can use a proportional controller (also called
a P-Controller) for most applications, resulting in much tighter control than
an on-off controller. Even if your actuator only has two states (DRIVE=0%
and DRIVE=100%), you could still use a P-controller strategy by pulsing
the DRIVE, more or less frequently, in proportion to how big the ERROR
is. By pulsing the drive, you can attain better control than an on-off
controller alone.

Proportional-Integral (PI) Controller

In order to speed up settling time when critically damped proportional
control isn’t fast enough, or help out a system that is over-damped, we can
add a term to our control strategy that increases the DRIVE the longer the
measured signal is outside tolerance of the setpoint. We call this the integral
term, because it integrates (adds up) the error the longer it is out of tolerance:

Section 6

218

DRIVE = kP×ERROR + kI× ERROR

The proportional term adjusts the drive signal based on the present error

term, and the integral term adds some DRIVE based on all the error signals
added up to this point. This gives us a more assertive DRIVE signal closer
to the setpoint, if the settling time is taking too long. Let’s look at the same
example system, with a setpoint of 50 kph, and an (over-damped) kP=10:

Figure 6-22. Over-damped feedback response illustrating the effects of an integral
gain. This response overshoots a little, because of integral wind-up.

We need to impose some limits on the integral term, or it will spiral out
of control. If we “count” this term when the measured value is far away
from the setpoint, then it will really dominate the drive, and your system
will become undamped. The integral threshold is a range where you can set
the integral term to be active. When the MEASURED value is outside this
range, the controller sets this term to zero to prevent it from winding up and
becoming too large.

The following strategy works reasonably well for tuning a PI controller:
1) Set kI=0, and pretend the integral term doesn’t exist. Tune the

proportional gain until the system is critically damped.

Integral gain Integrated ERROR

Proportional term Integral term

Process Control 219

2) Define a threshold value inside which the integral term should work.
This should be a wider range than your tolerance, and narrow enough
to engage in the laggy region you are trying to improve.

3) You now need to keep track of your ERROR over time, adding it up
as you go along. Start with a low value of kI and observe the
response. The control algorithm can look like this:

ERROR = SETPOINT – MEASURED
IF ERROR < IntThresh THEN: INTEGRAL = INTEGRAL + ERROR
ELSE: INTEGRAL = 0
DRIVE = kP×ERROR + kI×INTEGRAL

4) Tune kI until you are happy with the response. Too high a kI will
also result in an under-damped or undamped response. In your
control algorithm, you also might want to reset the integral term
after you reach the setpoint, to prevent overshoot.

Proportional-Integral-Derivative (PID) Controller

Interestingly, there are philosophical ideas in feedback control. The
proportional term reacts to the present error (or present deviation from
setpoint). The integral term reacts to errors from the past. What’s missing?
The future! We can use the derivative of the error (or how quickly and in
what direction the error is changing) to predict the future, and adjust the
DRIVE accordingly.

Whereas the integral term helps out a system that does not attain the
setpoint quickly enough, the derivative term helps out a system that reaches
the setpoint too quickly, and overshoots it. Mathematically, the derivative
term is a gain constant kD, multiplied by the derivative of the error with
respect to time:

kD×(dERROR/dt)

The gain constant kD and contribution of this term are quantitatively
smaller in a tuned PID, especially when the measured value is far away from
the setpoint. The derivative term is most useful in helping the system settle
faster, by reducing and preventing overshoot, and dampening oscillations
about the setpoint (Tim Wescott 2000, 86). If your system approaches the
setpoint too quickly, then it's bound to go over it. The derivative term will
compensate for this effect. The higher the rate of change of your ERROR,
the more the derivative term works against the P+I terms. This happens on
both sides of the setpoint–above and below, dampening oscillations. A
colleague of mine calls this term the "bullseye factor", because it helps to
reduce the settling time, and attain the setpoint more quickly. Once the
system settles, the contribution of the derivative term should disappear, as

Section 6

220

the derivative (or rate of change of ERROR with respect to time) will be
zero. In a PID algorithm, a simple way of representing the derivative can
be:

kD×(ERROR - LAST_ERROR)

and since ERROR = SETPOINT–MEASURED, then this expression is
equal to:

kD×((SETPOINT-MEASURED) – (SETPOINT-LAST))
kD×(LAST - MES)

Notice the difference in time (t) is missing here, since the sampling interval
for the PID algorithm is constant, and kD is dimensionless anyway.

This results in the following controller equation: (Roberts 2011)

DRIVE = kP×ERROR + kI× ERROR + kD×(LAST – MEASURED)

Using a derivative to make decisions can be problematic. Derivatives
are notoriously noisy, particularly if your measurements are noisy. Having
a noisy derivative around the setpoint can steer the system out of control.
Tuning the kD gain constant will be a balance between trying to dampen
oscillations around the setpoint, and your controller producing erratic
results. Smoothing or filtering the measurements could help. Techniques to
smooth and filter your measurements will be discussed in Section 8. A kD
value that is too large will overwhelm the P+I terms, and will ultimately
amplify oscillations, resulting in an unstable (in other words, undamped)
system. Derivative control is used only when needed, and when good
control is not attained with P+I strategies alone.

To consider a derivative term in a PID strategy, start by following the
same steps as before to tune kP and kI. After the system response is critically
damped and the settling time is as fast as possible without
overshooting/oscillating, if that response time is not fast enough, it’s time
to try adding and tuning the derivative term. Since derivatives can be noisy,
keep this gain small relative to the other gains. Tune kP to speed up the
overall drive response. As the system is critically damped, this will result in
an underdamped system (oscillations). Start with a small value for kD. Try
dampening these oscillations not by lowering kP, but by slowly increasing

Proportional term Integral term Derivative term

Measured output
now Derivative gain

Measured output
last time

Process Control 221

kD to allow for a faster critically-damped response. If no value for kD
works, then try lowering kP a bit, and repeat the process, starting with a
small value for kD. You will be working on the interplay between kP and
kD, in order to produce the fastest settling time possible. To see the effect
of the derivative term, we need to look at what’s going on in the vicinity of
the setpoint (Figure 6-23). The derivative term in this case turns an under-
damped response into a critically damped response–not by lowering kP, but
by raising kD. If kD is raised too high, the system becomes undamped.

Figure 6-23. Adjusting the derivative gain to attain the setpoint.

Putting it all together, and adding an acceptable setpoint TOLERANCE,
we need to do something with DRIVE once we calculate it. The algorithm
in Figure 6-24 works reasonably well for a PID-controlled feedback loop.
(Roberts 2011)

Programming-wise, this algorithm is fairly straightforward. You can
either program this as a void function that exits when the setpoint is attained,
or set it up as a function that issues the next DRIVE command and then
exits, adjusting DRIVE differently the next time it is called (or not at all if
MEASURED is within tolerance of the setpoint).

Section 6

222

Figure 6-24. A simple PID control algorithm.

Combining Feedback Strategies

The strategies outlined here are not mutually exclusive, they can work
quite well together. Combining open-loop with feedback may yield much
better control of your system. You only need to add those terms into the
control algorithm to make use of the strategies together.

There’s another matter to consider if you are planning on using a
feedback strategy. If the value of DRIVE can be equal to zero when the
system settles, a P-control algorithm will work well:

Process Control 223

DRIVE = kP×ERROR

However, if our DRIVE needs to continue working to maintain a setpoint,
this feedback equation calculates DRIVE = 0 when SETPOINT =
MEASURED, and the system will be unstable. To illustrate this problem,
let’s say we are controlling the speed of an airplane propeller. We would
like the propeller speed to be 24,000 RPM, from a starting speed of 0 RPM.
The above equation will bring it there, but once SETPOINT=MEASURED,
DRIVE will be zero, and the controller will tell the propeller to turn off. Not
good! We still need to fly. Here are two ways to handle this:

1) Combine an open-loop and/or feed-forward strategy with a feedback
strategy. This will always result in a non-zero DRIVE when the
system settles:
DRIVE = kL×SETPOINT + kP×ERROR

2) A quick work-around is to have the control iteratively change the

previous DRIVE signal, rather than calculate an entirely new one:
DRIVE = DRIVE + kP×ERROR

If both methods are properly tuned, they should result in similar control.
The first method will converge to DRIVE=kL×SETPOINT as ERROR
approaches 0, and the second method will converge to a value of DRIVE
that results in ERROR=0.

Some programmable PID controllers have auto-tune features, and there
are algorithms and sketches available to build this functionality into your
PID controller. However, the best judge of a controller’s performance is
you. Does the controller perform the way you want it to? If so, then you
have succeeded in your control strategy.

open loop proportional

previous value of DRIVE

Section 6

224

Activity 6-1: L298N Motor Driver
Controlling a DC Motor

Goal: In this exercise, you will be controlling a 5V DC motor with an
L298N motor driver, powered by an ATX power supply.

Materials:
 Arduino Nano MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply
 1 x Breadboard

 1 x 5V DC Motor
 1 x L298N Motor Driver
 8 x Male/Male Jumpers
 4 x Male/Female Jumpers
 1 x Microspatula or Small

Screwdriver

Procedure:
Build the following circuit.

Figure 6-25. Circuit diagram for Activity 6-1.

Note: Make sure ENA and ENB jumpers are open (see Figure 6-5).
1) Write a void function, with an integer as an input argument (expected

range: -255 to 255), that sets the DC motor speed and direction
accordingly:
 -255 to 0: counter-clockwise rotation
 0 to 255: clockwise rotation
 Have the ENA, IN1, and IN2 pin numbers as input arguments to

your function, so that you could use the same function to control
a different motor concurrently.

Process Control 225

2) Write a sketch that prompts the user for a number on the serial
monitor, and uses your function to set the motor speed.

Programming Hint:
If speed < 0, set IN1=HIGH, IN2=LOW, then analogWrite the (-speed) to ENA.
If speed > 0, set IN1=LOW, IN2=HIGH, then analogWrite the speed to ENA.

Activity 6-2(a): 28BYJ-48 Stepper Motor

Goal: In this activity, we will be wiring up a 28BYJ-48 stepper motor to a
ULN2003 motor driver. For this exercise, we will control motor position
with a 10K potentiometer.

Materials:
 Arduino Nano MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply

 1 x Breadboard
 1 x 28BYJ-48 Stepper Motor
 1 x ULN2003 Motor Driver
 1 x 10K Potentiometer
 8 x Male/Male Jumpers

Procedure:
1) Assemble the 28BYJ-48 circuit following Figure 6-26 below.

Figure 6-26. Circuit diagram for Activity 6-2(a): 28BYJ-48 stepper motor with
ULN2003.

Section 6

226

2) Download the sketch 28BYJ-48.ino from the course website.
Replace the loop function of the 28BYJ-48 sketch with the following
code:

void loop(){
 static int previous; //declare previous as static int
 int val=analogRead(A2); //read pot on pin A2 (0-1023)
 motorStep(val-previous,10); //move displaced #steps
 Serial.println(val);
 previous=val; // remember last reading
}

3) Now compile and upload the sketch. Start the serial monitor.
4) Try the following modifications:

 Changing the speed (fastest stable speed = ?).
 Changing the way you call the motorStep() function.
 What does declaring the integer previous as “static” do in the

loop function? What would happen if it weren’t declared as a
static variable type?

Activity 6-2(b): Nema-17 Stepper Motor

Goal: In this activity, we will be wiring up a Nema-17 stepper motor to an
A4988 motor driver. For this exercise, we will control motor position with
a 10K potentiometer.

Materials:
 Arduino Nano MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply
 1 x Breadboard
 1 x Nema-17 Stepper Motor

 1 x A4988 Motor Driver
 1 x 100 μF Electrolytic

Capacitor
 1 x 10K Potentiometer
 8 x Male/Male Jumpers
 1 x Microspatula or Small

Screwdriver

Note: You can put any integer in the motorStep() command. If you
exceed the #steps/revolution (+ or -), the motor will just keep turning the
requested number of steps. We chose a potentiometer to control this motor,
but we could have easily left the potentiometer out, and specified a series
of movements by calling motorStep() in the program.

Process Control 227

Procedure:
1) Assemble the Nema-17 circuit following Figure 6-27 below. Do not

power on the ATX power supply until after completing all the
connections, or the motor driver may get damaged.

Note: Be careful to connect the electrolytic capacitor respecting the
correct polarity (longer leg positive). If the capacitor is wired backwards
in this circuit, it may explode.

Figure 6-27. Circuit diagram for Activity 6-2(b): Nema-17 stepper motor with
A4988.

2) Adjust the trim on the A4988 to an appropriate voltage for the current
requirements of the motor (see Table 6-4, use Rcs=100 mΩ).

3) Download the sketch A4988.ino from the course website. Replace
the loop function of the Nema-17 sketch with the following code:

void loop(){
 static int previous; //declare previous as static int
 int val=analogRead(A2); //read pot on pin A2 (0-1023)
 val=map(val,0,1023,0,200); //rescale to 1 revolution

Section 6

228

 motorStep(val-previous,10); //move displaced #steps
 Serial.println(val);
 previous=val; // remember last reading
}

4) Now compile and upload the sketch. Start the serial monitor.
5) Adjust Vref down by turning the trim potentiometer counter-

clockwise if the motor is running very loud or hot.
6) Try the following modifications:

 Changing the speed (fastest stable speed = ?).
 Changing the way you call the motorStep() function.
 Changing the setMicroStep(0); input argument to 1, 2, 3, or 4

to try stepping the motor using to microsteps.
 What does declaring the integer previous as “static” do in the

loop function? What would happen if it weren’t declared as a
static variable type?

Activity 6-3: SG90 Servo Control

Goal: In this activity, we will be wiring a servo directly to our
microcontroller. We will control the servo using a 10K potentiometer.

Materials:
 Arduino Nano MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply
 1 x Breadboard
 1 x SG90 Servo (9g)

 1 x 10K Potentiometer
 8 x Male/Male Jumpers
 1 x Burette, Burette Clamp, and

Retort Stand
 1 x Vinyl Retort Clamp (to

secure the servo)

Procedure:
Assemble the following circuit:

Note: You can put any integer in the motorStep() command. If you
exceed the #steps/revolution (+ or -), the motor will just keep turning the
requested number of steps. We chose potentiometer control in this strategy,
but we could have easily left the potentiometer out, and specified a series
of movements by calling motorStep() in the program.

Process Control 229

Figure 6-28. Circuit diagram for Activity 6-3.

Note: The SG90 runs on low-enough current to be powered directly
from Arduino’s +5V DC power pin. A higher-power servo could be
powered using an external power supply (e.g. red wire of ATX supply)
instead of the Nano’s 5V pin. The external power supply would need to
share ground with the microcontroller.

1) Write the following sketch:
// control servo with potentiometer
#include <Servo.h>
Servo myServo; // create servo object called myServo
byte potPin=A2; // pin for wiper of 10k potentiometer
byte servoPin=9; // PWM signal for servo
int val=0; // to store voltage from pot wiper
byte stepsPerRev=179; //0-179 gives 180 steps (1/2 rev)

void setup(){
 Serial.begin(9600); // start the serial monitor
 myServo.attach(servoPin);
}

void loop(){
 val=analogRead(potPin); // read pot (0-1023)
 Serial.println(val); // print val
 val=map(val,0,1023,0,stepsPerRev); // rescale
 myServo.write(val); // send setpoint to servo
 delay(15);
}
Compile and upload this sketch, then test the servo.

Section 6

230

Make it meaningful: Try attaching your servo to the spigot of a burette
with some rubber bands, to create your own auto-titrator. Be careful with
water and electricity. Keep your electronic components dry.

Activity 6-4: PID Control of a 12V CPU Fan

Goal: The following circuit builds upon the circuit in Activity 5-2
(transistor as a switch for a DC motor). We are adding a temperature sensor,
the LM35 (an IC). Normally with temperature, an on-off controller would
suffice. However, this circuit will illustrate how the DRIVE signal responds
to deviations from setpoint.

Materials:
 Arduino Nano MCU & USB

cable
 Laptop with Arduino IDE

installed
 1 x ATX Power Supply
 1 x Breadboard

 1 x 12V DC Fan
 1 x LM35 Temperature Sensor
 1 x 10K Resistor
 1 x 2N2222 Transistor
 1 x 1N4007 Diode
 10 x Male/Male Jumpers

Procedure:
Build the following circuits:

Figure 6-29. Circuit diagram for Activity 6-4.

Process Control 231

Notes:
 Connect ATX ground (black wire) to Arduino ground.
 The black fan wire does not go to ground.

In this circuit, we are controlling the temperature of the circuit board.
Our temperature sensor is an LM35 integrated circuit. Our actuator is the
CPU fan, and our DRIVE signal will be controlling fan speed, to keep our
plant (the breadboard) from getting too hot. We are using the Arduino Nano
as a PID controller, with a SETPOINT of 21 °C.

The goal of this exercise is to tune the PID controller for the fastest
settling time, without resulting in oscillations. We will be using the serial
monitor to see the response. Once you assemble the circuit, download the
sketch PID.ino from the course website (or copy it from the appendix), and
read through the code.

Figure 6-30. Functional block diagram for Activity 6-4.

Read over the section on how to tune a PID controller, and then adjust

kP, kI, and kD to see how these terms contribute to setting DRIVE to control
the temperature of a circuit-board temperature sensor. What values of kP,
kI, and kD result in the best fan response, and temperature control?

Learning Objectives for Section 6

After having attended this class, the student will be able to:
1) Identify the basic parts of a DC motor.
2) Design an appropriate control circuit for a DC motor, stepper motor,

servo motor, and PC fan.
3) Write an appropriate sketch to control the above circuits.
4) Compare and contrast the strengths and weaknesses of different

motor types.

Section 6

232

5) Identify and categorize feedback responses to a change in setpoint or
system disturbance (undamped, over-damped, under-damped,
critically damped).

6) Draw a basic process control functional block diagram, identifying
the actuator, plant, sensor, and controller.

7) Program and tune a PID control algorithm with satisfactory results.
8) Describe what the three terms in a PID controller mean, and how

they are calculated.
9) Describe your own practical example illustrating feedforward and

feedback control, using engineering control theory terminology.

Process Control 233

Section 6 - Station Content List, Activities 6-1 & 6-3

• Arduino Uno or Nano MCU &
USB cable

• 1 x ATX Power Supply
• 1 x Breadboard (170 tie points)
• 1 x 5V DC Motor

(optional: double-sided tape,
filter paper to make a spinner)

• 1 x L298N Motor Driver
• 1 x SG90 Servo (9g)
• 1 x 10K Potentiometer

• 10 x Male/Male Jumpers
• 4 x Male/Female Jumpers
• 1 x Burette, Burette Clamp, and

Retort Stand (optional- for
titrator)

• 1 x Vinyl Retort Clamp (to
secure the servo)

• 1 x Microspatula or Small
Screwdriver

Figure 6-31. Station setup for Activities 6-1 and 6-3. Not shown: ATX power supply.

Section 6

234

Section 6 - Station Content List, Activities 6-2(a,b), 6-4

• Arduino Nano MCU & USB
cable

• 1 x Digital Multimeter
• 1 x ATX Power Supply
• 1 x Breadboard (400 tie points)
• 1 x 28BYJ-48 Stepper Motor
• 1 x ULN2003 Motor Driver
• 1 x Nema-17 Stepper Motor
• 1 x A4988 Motor Driver
• 1 x 10K Potentiometer
• 1 x 10K Resistor

• 1 x 100 μF Electrolytic
Capacitor

• 10 x Male/Male Jumpers
• 6 x Male/Female Jumpers
• 1 x Microspatula or Small

Screwdriver
• 1 x 12V DC Fan
• 1 x 2N2222 Transistor
• 1 x LM35 (Temperature sensor)
• 1 x 1N4007 Diode

Figure 6-32. Station setup for Activities 6-2 and 6-4. Not shown: ATX power supply.

SECTION 7

OPERATIONAL AMPLIFIERS

What You’ll
Be Learning

Lecture: Op-amp wiring: inverting vs. non-inverting inputs,
output, power rails. Open loop: comparator. Closed loop: buffer,
inverting, inverting+bias, non-inverting, non-inverting+bias,
differential, summing inverting, summing non-inverting.
Negative voltage. Signal attenuation. Wheatstone bridge.

What You’ll
Be Doing

Choose one of the following activities:
Activity 7-1: Load cell. Amplify the signal from a load cell
using an op-amp. Calibrate the load cell, and write a sketch to
output measured weight to the serial monitor, with tare function.
Store your device for Section 8.
Activity 7-2: pH meter. Shift and gain a pH electrode from (-0.5
to +0.5V) to (0 to +3.3V) using op-amps. Calibrate a pH probe,
and write a sketch to output measured pH to the serial monitor.
Store your device for Section 8.
As this is a lengthier build, there will be no demos for this class.

Files you
will need

All course files are available
for download at:
http://pb860.pbworks.com

 scaleCal.xlsx
 pHCal.xlsx

Introduction

Before digital computing was around, electronic circuits were analog.
Transistors and operational amplifiers did much of the heavy lifting in logic
circuits. An operational amplifier (or “op-amp” for short) gets its name from
its originally intended purpose. Op-amps were designed to perform unit
operations on one or more signals: addition, subtraction, multiplication, and
division–of voltages. They are still used for this purpose today, although
they find utility in many more applications. A signal can be a fixed voltage,
a measurement from a probe (e.g. pH probe or thermocouple), high
frequencies coming out of a guitar pickup, and other electrical signals
modulate voltage. Small building note: If you connect your signal directly
to Vcc or ground, it will short your signal–and it will be gone (like the off
switch of a microphone).

Section 7

236

The circuit diagram symbol for an op-amp is illustrated in Figure 7-1.

Figure 7-1. Circuit diagram symbol for an operational amplifier.

An ideal op-amp has the following characteristics:
1) No current flows into or out of the inputs;
2) The op-amp tries to make both inputs the same, by adjusting the

output;
3) The output cannot be greater than V+, or less than V-, the voltages

provided to the op-amp’s power rails.

Open Loop Configuration (Comparator)

In open loop configuration, the op-amp acts as a comparator. If the
inverting input is lower (even 1 mV lower) than the non-inverting input,
the op-amp will output a voltage as high as it can (~V+). Conversely, if the
inverting input is higher than the non-inverting input, the op-amp will output
a voltage as low as it can (~V-). The feedback response in open loop is
analogous to an on-off controller, if you think of Vout as DRIVE. It’s an all-
or-nothing response. This op-amp configuration is illustrated in Figure 7-2.

Open-loop, () lower Open-loop, () higher

Figure 7-2. Open-loop configuration of an operational amplifier.

Operational Amplifiers 237

Closed Loop Configuration

In open loop configuration, the op-amp “slams” the output to extremes,
because it is trying to make voltages at its inputs equal, but it can’t “see” the
output voltage. In closed-loop configuration, the output voltage is “fed”
back into the inverting input, so Vout can be more sophisticated than simple
on-off control. There are many closed-loop op-amp configurations. The
simplest is a voltage buffer.

Buffer

The most direct closed-loop configuration provides a feedback signal by
directly connecting Vout to the inverting input (). A signal (Vin) is
connected to the non-inverting input (+). This is called a buffer, or voltage
follower.

Figure 7-3. Buffer (or voltage follower) configuration of an op-amp.

Since an ideal op-amp tries to make the inverting and non-inverting
terminals the same, if Vout is forced to equal V(-), the only way to satisfy this
constraint is to have Vout = Vin. The output voltage of this op-amp will
therefore be equal to the input voltage. The relationship between output and
input voltages are expressed in terms of gain: = =

The gain of a buffer is 1 (Av = (Vout/Vin) = 1). If you set a sine curve as
Vin, and looked at Vin vs. Vout on an oscilloscope, you might see the
following waveforms:

Section 7

238

Figure 7-4. The voltage output of an ideal buffer follows the voltage input (Vout=Vin).

Why would you want/need a voltage follower?

At first glance, a voltage follower looks useless. After all, it looks like a
wire can do the same thing, with respect to voltage (and it can!). However,
some signals have the voltage you want, but the current is way too low. We
call this a high impedance signal. For the purposes of DC circuits, you can
think of impedance as being the same as resistance (although we use the
symbol Z for impedance, not R). Conversely, a signal with high current has
low impedance.

Buffering a signal increases the signal’s current. A buffer converts a
high impedance signal to a low impedance signal, without disturbing the
original circuit. We said before that an ideal op-amp has no current flowing
into or out of the inputs. Real op-amps have very tiny amounts of current
flowing into the inputs. For instance, the input resistance of the TL07x series
amplifiers is 1012 , meaning a 5V signal would have an input current of
I=V/R =5V/1012 =5 10-12A. So now you can think of op-amp inputs as
being very high impedance–the current is impeded (hindered) from going
in. Once a signal is buffered, you can use it to drive a load (like a speaker).
Op-amps are therefore very popular in musical instrument amplifiers. The
signal coming from a guitar pickup has a high impedance, and must be
buffered and amplified in order to drive a speaker and generate sound. Or,
you might buffer a signal so that you can read the voltage via the Arduino
Uno analog pins, or an ADC (analog to digital converter) module.

Another use for a buffer is to electrically isolate one part of a circuit
from another. By buffering a signal, you are preventing anything

Operational Amplifiers 239

downstream of the buffer from affecting that signal. This idea becomes
important later (in Section 8) when we will talk about higher order filters.

Op-Amp Characteristics

Output Short-Circuit Current

The output short-circuit current of an op-amp (Isc) is the maximum
theoretical output current you can get if you buffer a signal. This property
is important to know if you require a certain amount of current to drive a
load. Op-amps are designed to have different short-circuit currents. Some
op-amps are designed for specifically delivering power. For example, the
OPA541 power op-amp can deliver up to 10A. (Texas Instruments Inc
2016c) Some amps are specifically designed for audio. The TL07x op-amp
series is designed for audio signals, and has Isc values around 40 mA. Other
op-amps are designed for amplifying signals for scientific instruments (e.g.
the AD623 low-cost instrumentation amplifier). The selection of an
appropriate op-amp should take into consideration the output short-circuit
current required for the amplified signal.

Gain in dB (decibels)

Since gain numbers can get quite large, gain is typically reported in
decibels, using the following formula: () = 20 ×

A buffer by definition has a gain of 20 × (1)=0 dB. Op-amps will list
the maximum DC voltage gain on their datasheets. For instance, the
LM358 has a maximum gain of 100 dB, meaning:

 = 10 = 100,000

Headroom

Most op-amps can’t quite swing their output voltages all the way to the
top and bottom rails–there is a bit of a shortfall, or gap. This is called
headroom. An op-amp’s headroom can be complicated. It can depend on a
whole list of factors, like the voltages applied to the top and bottom rails,
the frequency of the signal going in, the load applied, and temperature. This
information is found on the op-amp datasheet. For example, the TL07x

Section 7

240

family of op-amps have a maximum peak output voltage vs. signal
frequency response depicted in Figure 7-5.

Figure 7-5. Maximum peak output voltage vs. frequency for the TL07x op-amp
series (RL=2kΩ, T=25 ºC). (Texas Instruments Inc 2017)

If you power the top rail of a TL07x series chip with +5V and the bottom
rail with -5V, for a lower frequency signal (flat part of the curve), the highest
voltage the TL07x chip can output will be about 3.4 V. The working range
for this amp at Vcc= 5V is -3.4V to 3.4V, and the headroom in this case is
1.6 V. If we were to use a TL07x chip as a comparator, we wouldn’t quite
get to 5V in this circuit because of this headroom (Figure 7-6, left), but we
could if we increased the voltage to the op-amp rails (Figure 7-6, right).

Figure 7-6. The op-amp on the right can swing higher because larger voltages are
provided to the power rails.

Operational Amplifiers 241

The effect of headroom can be surprising if you aren’t expecting it.
Headroom can affect both rails of the amp, and is dependent on the design
of the operational amplifier. An illustration of headroom is provided in
Figure 7-7.

Figure 7-7. Op-amp headroom means that the output of the op-amp can’t swing all
the way to the power rails. This is an illustration of the TL07x series, when the op-
amp is supplied with ±5V.

However, if you require a signal amplified over the headroom (or all the
way to ground), you can always increase the voltages applied to the power
rails. In particular, you need to be cautious when tying the bottom rail to
ground (Figure 7-8).

Figure 7-8. The output of a typical op-amp will not be able to swing all the way to
ground, if the negative rail is connected to ground.

Section 7

242

Particularly with scientific equipment, we are often interested in signals
close to 0V–this can be related to the sensitivity of the instrument. In this
case, a bias voltage can be added to raise the signal before amplifying, or, a
negative voltage applied to the bottom rail instead. Alternately, you can
purchase a rail-to-rail op-amp with essentially no headroom (Figure 7-9).

Figure 7-9. A rail-to-rail op-amp is able to swing its output within microvolts of the
power rails (virtually no headroom).

There are no hard and fast rules to headroom. Different op-amps will
have their own unique behaviours when they are pushed close to their
supply rail limits, depending on their design and purpose. The Texas
Instruments TL07x-series op-amps were designed with audio signal
amplification in mind, so swinging right to the bottom rail was not as
important as a wide voltage tolerance (up to 36V). (Texas Instruments Inc
2017) Some op-amps are designed to swing all the way to ground on a single
supply (meaning V+ is connected to a positive voltage, and V- is connected
to ground). For instance, the dual op-amp LM358 and quad op-amp LM324
can swing all the way down to ground, and up to 3.5V when the top rail is
connected to +5V and the bottom rail to ground. (Texas Instruments Inc
2015a; Texas Instruments Inc 2014a) The AD623 is a single or dual-supply
low-cost instrumentation amplifier, boasting rail-to-rail output swing.
(Analog Devices Inc 2016) Depending on the application, selecting the right
op-amp will have a very large impact on the output signal.

Slew Rate

The slew rate of an op-amp is how quickly it can react to a step change
(an instantaneous change in voltage) at the input. A faster slew rate means
that the op-amp can adjust Vout more quickly in response to a change in Vin.
This is usually measured in volts per microsecond. The TL07x-series op-
amps have a typical slew rate of 13 V/μsec, compared with the more pokey

Operational Amplifiers 243

response time (~0.3V/μsec) of the LM358 and LM324. (Texas Instruments
Inc 2017; Texas Instruments Inc 2014a; Texas Instruments Inc 2015a) This
makes the TL07x-series chips more capable of buffering and amplifying
audio signals.

Unity Gain Bandwidth

As you might imagine, the slew rate of an op-amp will limit its abilities
to respond to higher frequency signals. The unity gain bandwidth (B1) of
an op-amp is the highest frequency that an op-amp can amplify a signal with
a gain of at least one. (Mancini 2002) A similar type of parameter is the
gain-bandwidth product (GBW). If you are planning on amplifying a signal
that has a frequency greater than the listed unity gain bandwith or gain-
bandwidth product of an op-amp, it’s time to consider a faster op-amp. To
be safe, take the maximum frequency signal you would like to amplify, and
multiply it by 5 to get a rough estimate of the unity gain bandwith or gain-
bandwidth product required for the op-amp. The actual relationship is more
complicated, but this safety margin will get you started. (Analog Devices
Inc. 2009)

To provide an example, the TL07x-series op-amps have a unity gain
bandwidth of 3 MHz. This means that the gain of the op-amp will be less
than 1 when the frequency of the input signal is above 3 MHz. If you would
like to amplify a signal, make sure it has a frequency less than 3MHz / 5 =
600 kHz. The LM358 and LM324 have a listed unity gain bandwith of 1
MHz. (Texas Instruments Inc 2017; Texas Instruments Inc 2014a; Texas
Instruments Inc 2015a)

Inverting Amplifier

The most basic
configuration for using an op-
amp to amplify a signal (i.e.
gain>0 dB) is the inverting
amplifier. The signal (Vin)
goes into the inverting input
() (Figure 7-10).

What’s special about the
wiring of the inverting
amplifier is that the non-
inverting input (+) is wired to
ground. The gain for an

Figure 7-10. Inverting amplifier configuration
of an op-amp.

Section 7

244

inverting amplifier is consequently negative, because the op-amp tries to
make both inputs equal: = = −

The amplifier is called “inverting” because a positive voltage Vin will result
in a negative Vout, and conversely, a negative voltage Vin will result in a
positive Vout. The sign of the output is inverted with respect to the input. If
RF>R1, then the signal will also be amplified.

Always keep in mind that the output of any op-amp will depend on the
power its rails have access to. If you connect the bottom rail to ground (a
common thing to do), then the output won’t be able to swing lower than
ground.

Test your understanding with the two scenarios in Figure 7-11. The
inverting op-amp on the right is wired incorrectly:

 = = − = − 21 = −2 = = −2 × 1 = −2

= = − = − 21 = −2 = = −2 × 1 = −2

However, since the op-amp can’t swing
its output lower than bottom rail, then
Vout = 0V in this configuration (ideal
op-amp, no headroom).

Figure 7-11. An op-amp’s Vout is constrained by the voltage connected to its power
rails.

For the correctly-wired op-amp (Figure 7-11, left), the gain is -2. If you set
the Vin signal to be a sine curve swinging from -1 to +1V, and observed the
Vin and Vout waveforms on an oscilloscope, you might see the waveforms in
Figure 7-12.

Operational Amplifiers 245

Figure 7-12. Input and output of an inverting amplifier (gain of 2).

The Vout signal is inverted and gained with respect to Vin. This looks useful,
and it is! Inverting amplifiers can be used to raise the amplitude of a signal,
for instance: raising the volume of an audio signal, or the magnitude of a
sensor’s voltage response.

An inverting amplifier with a gain of 1 (RF=R1) is called an inverter,
illustrated in Figure 7-13.

Figure 7-13. Configuration (left) and performance (right) of an inverting amplifier
(unity gain).

By carefully matching resistors (check that they are as close in actual
resistance values as possible) you can use this configuration to invert a
negative voltage to the equivalent positive voltage (or vice-versa). You
could use the inverter in Figure 7-13 after an inverting amplifier, in order to
get the signal back to the original polarity (+ or).

Section 7

246

Biasing the Output of an Inverting Amplifier

If you would like to bias, or shift the output voltage of an inverting
amplifier by a fixed amount, one way to do this is to connect a bias voltage
(Vb) to the non-inverting input:

Figure 7-14. Biasing an inverting amplifier.

Let’s say we would like to shift a probe’s voltage range from (-1V to
+1V) to (+4.5 to +0.5V), by biasing an inverting amplifier. We must select
values of R1, RF, and Vb to produce a shift of +2.5V and a gain of -2. The
output signal we would like is the dashed line in the graph of Figure 7-14.

The equation to calculate Vout is: = − = + (1 −) = − + 1 +

The bias voltage, Vb is not simply added in this equation, because the gain
acts on Vb as well. Working through this example, if R1=1K: = − = −2 → = 2 × = 2 × 1 = 2

We know that when Vin is 0V, we would like Vout to be +2.5V. Solving for
Vb: = + (1 −) → = −1 −

= 2.5 − (−2 × 0)1 − (−2) = 2.53

Operational Amplifiers 247

→ = 0.833

How could we produce a Vb of +0.833 V? A voltage divider from V+ will
do the job, giving rise to the following op-amp configuration (and general
formula):
 = +

→ = − 1

= + (1 −) = − + 1 + +

Figure 7-15. Using a voltage divider to generate a bias voltage for an inverting
amplifier.

If we set V+ = +5V, and R2 = 1K, we can solve for R3 = 0.2K.
By biasing our signal, we can shift it into a range that can be read by the

microcontroller analog pins, which are not able to read voltages less than 0.
We can now double-check the math to make sure our shift and gain work
properly:

Table 7-1. Calculating the expected op-amp output across the expected
input range.

Vin,1 = + (−)
-1V −2 × (−1) + (1 − (−2))0.833 = 2 + 2.5 = 4.5
0V −2 × (0) + (1 − (−2))0.833 = 0 + 2.5 = 2.5

+1V −2 × (1) + 1 − (−2) 0.833 = −2 + 2.5 = 0.5

Test your understanding: what would the Vout signal look like if we
used the TL072 chip from before, with V+=+5V, and a headroom of 1.6V?

Non-Inverting Amplifier

Although an inverting amplifier is useful, it can be more convenient to
preserve the polarity of a signal, particularly when gaining a positive signal.

Section 7

248

To make a non-inverting amplifier, you connect the signal (Vin) to the non-
inverting input (Figure 7-16).

Figure 7-16. Configuration (left) and example performance (right) of a non-inverting
amplifier.

Figure 7-16 (right) illustrates the performance of a non-inverting
amplifier, with a gain of 3. Notice now, like the buffer configuration, that
the output signal is not inverted with respect to the input signal.

The gain for a non-inverting amplifier is calculated using the equation: = = 1 +

A sinusoidal input is shown to illustrate how the op-amp responds to a
changing signal. We can also set our signal to be a fixed voltage, and then
use the formula to predict what the expected output should be (Figure 7-17).

 = = 1 + = 1 + 21 = 3 = = 3 × 1 = +3

Figure 7-17. Calculating Vout for a non-inverting amplifier.

Operational Amplifiers 249

Biasing the Output of a Non-Inverting Amplifier

If you expect your signal to be negative and you would like to shift the
output into a positive range, you can also bias a non-inverting amplifier
(Figure 7-18).

Figure 7-18. Configuration (left) and example performance (right) of a non-inverting
operational amplifier, with a bias voltage.

Figure 7-18 (right) illustrates the performance of a non-inverting
amplifier with a bias voltage. See if you can figure out what the values for
gain and RF/R1 are for the op-amp, and check your answer on the footnote
of this page.6 No peeking!

As with the biased inverting amplifier, the output voltage is not shifted
by the value Vb. The actual relationship is: = 1 + = + (1 −) = 1 + −

A negative voltage is required to shift Vout upwards. The shift is multiplied
by RF/R1, which is something to keep in mind if you are planning on biasing
an inverting amplifier in this configuration.

A big advantage of a non-inverting amplifier is that it keeps the output
signal the right way around: in the positive region. This is especially

6 From the graph, Vout swings from 0.5 to 4.5 (4V), whereas Vin swings from -1 to
+1V, so the gain is 4V/2V = 2. Av=(RF/R1)+1, so RF/R1 = 2-1 = 1. This means RF=R1.
When Vin=0, the gain has no effect and Vout=2.5, so we can easily solve for the bias
voltage: Vb=(Vout-Av Vin)/(1-Av) = (2.5-2 0)/(1-2) = -2.5V.

Section 7

250

convenient since the Arduino Uno can’t read a negative voltage with an
analog pin–only a voltage from 0 to +5V. Inverting a signal doesn’t have to
be a problem, but it’s nice to know that op-amps can handle this job without
a second stage. With this configuration, you need to remember to add 1 to
the ratio of RF/R1 to calculate gain. So even if RF=R1, the gain is 2.

With a non-inverting amplifier, if you aren’t expecting Vin to be negative
or close to zero (which can happen), you can simplify your circuit by tying
the negative rail of the op-amp (V-) to ground.

Differential Amplifier

A differential amplifier is used for subtraction. It finds the difference
between two signals. The general configuration of a differential amplifier is
provided in Figure 7-19.

 = −

= − , + 1 + + ,

Figure 7-19. Differential amplifier configuration (left) and equations (right).

You might recognize this as an inverting amplifier with a bias–because
that’s exactly what it is. We can simplify this configuration by setting R1 =
R2, and R3 = RF. This results in a Vout equation of: = , − ,

To simplify this configuration further, if all resistor values in this
configuration are equal, then the equation simplifies to Vout=Vin,2 Vin,1. This
is the simplest form of a differential amplifier, as it simply subtracts the
input voltages without performing any gain.

For example, the circuit in Figure 7-20 subtracts two fixed voltages.

Operational Amplifiers 251

 = , − ,

= 11 (0.7 − 1.2)= −0.5

Figure 7-20. Calculating Vout example for a differential amplifier.

Test your understanding: what would the output voltage be if:
a) The negative rail is tied to ground?
b) R3 and RF are 2K resistors?

Summing Amplifier (Inverting)

A summing amplifier adds voltages together. Adding signals together
would be needed for example when you are mixing audio tracks together
during a live performance. The generalized inverting summing amplifier op-
amp configuration is shown in Figure 7-21.

 = − + + = = = : = −(+ +)

Figure 7-21. Inverting summing amplifier configuration (left) and equations (right).

Although three inputs are shown, an inverting amplifier can also have
two inputs (or more than three). For this configuration, the negative rail
can’t be tied to ground. If it were tied to ground, you will lose a positive
signal since the op-amp won’t be able to output a negative voltage. Figure
7-22 shows a worked example, adding only two voltages together.

Section 7

252

Since all of the resistors are of
equal value (10K): = −(+) = −(5.6 + 2.4) = −8.0

Figure 7-22. Calculating Vout example for an inverting summing amplifier.

Summing Amplifier (Non-Inverting)

Although slightly more complicated in terms of doing the math, a non-
inverting summing amplifier has the advantage of returning the “answer” in
the correct polarity. A general non-inverting summing amplifier
configuration is shown in Figure 7-23. This configuration is drawn with
only two inputs, although more are possible.

 = 1 + ++ +

Figure 7-23. Non-inverting summing amplifier configuration (left) and equations
(right).

If all the resistors are of equal value, then the equation for Vout simplifies
to: = (1 + 1) 12 + 12 = (+)

We can use this amplifier configuration to shift and gain any signal to a
convenient range (such as 0 to +3.3V, for the analog pin of your
microcontroller to read).

Operational Amplifiers 253

Figure 7-24 shows a worked example, with fixed voltages as inputs.
Note that because both inputs are positive, and this is a non-inverting
amplifier, we can just tie the negative rail to ground. Careful when doing
this though, because if the output voltage is too close to the bottom rail
(which is now 0) then a non-rail-to-rail op-amp (like the TL07x series) will
not be able to report signals close to the bottom rail.

 = (+)
= (0.6 V + 1.2 V)
= +1.8 V.

Figure 7-24. Calculating Vout example for a non-inverting summing amplifier.

Summing Amplifier (Non-Inverting) Equations Solved

One of the more practical
applications of a summing non-inverting
amplifier is to take an anticipated signal
from a sensor with a known (or
expected) voltage range, shift it with an
appropriate bias voltage (Vb), and also
gain it so that it spans the entire
analogRead() range of the Arduino
Uno (0-5V) without exceeding this
range. This will maximize the response
and resolution of the signal, and protect
the microcontroller from damage. The
op-amp configuration in Figure 7-25 is
up to the task.

We start with the Vout equation for this op-amp configuration:

(1) = 1 + +

Figure 7-25. This non-inverting
summing amplifier shifts and
gains the signal, Vin.

Section 7

254

This equation is a little more daunting, but broken into parts, it makes sense.
What this equation is saying is that the output voltage is a function of the
gain of the op-amp, set by the term 1 + , multiplied by the input voltage
at the non-inverting input Vin(+), which is determined by the voltage divider
network at that input + . A detailed derivation of
this term is provided in the appendix. We can then decide on a bias voltage,
solve for the resistor values R1 and R2, then plan the resistor values for the
gain we want by solving the equation: = 1 +

(2) = − 1
How do we use these formulas?

In order to illustrate how to these equations work, we need an example.
Let’s say we have a glass pH electrode that gives a signal voltage
proportional to the pH of a solution. A pH probe sends out a voltage signal
that varies linearly with pH, from about -420 mV (at pH 14) to +420 mV (at
pH 0), according to the Nernst equation. (Bard and Faulkner 2001; Omega
Engineering 2018) To allow for a little wiggle room at both ends, we can
widen the expected voltage range of our signal to be (-0.5V to +0.5V). We
would like to shift this signal up so that it is not negative, and we would like
to gain the signal so that it spans 0-3.3V. We select 3.3V (and not 5V) to
allow for some headroom with the op-amp output (the TL07x series gives
us about 1.6V headroom with a +5V positive rail, so 3.4V would be the
highest Vout the op-amp can report). Recall that we can also make use of the
microprocessor’s AREF pin so that the analog readings range from 0-3.3V,
giving us better resolution. (see Section 4: External Analog Reference:
AREF Pin).

There are two ways this method is solved here: a longer method which
explains how the signal makes its way through the op-amp, and a quicker
method which jumps straight to the math. Both arrive at the same answer.
If you would like less of an explanation, skip down to the quick way.

Operational Amplifiers 255

Solving the Summing Amplifier with Bias: Longer Method

a) The first step is to solve for the bias
voltage (Vb) that we would like to apply
to our pH electrode signal. This will be
responsible for shifting the signal
upwards. The equation governing how
the bias voltage affects the input voltage
at the non-inverting terminal is:

(3) () = +
A reliable arbitrary decision for a summing amplifier is to set
R1=R2=1K. Now we can solve a for bias voltage Vb that would make
the lowest Vin(+) = 0V. Let’s re-arrange Equation (3) to solve for Vb,
substituting in R2=R1=1K:

() = 11K + 1K + 1K1K + 1K

(4) → () = , so Vin(+) is just the average of Vin and Vb.
Re-arranging (4):

(5) = 2 × () −
At the lowest Vin (, = −0.5), we would like () = 0 : = 2 × 0 − (−0.5) = +0.5

b) Now we calculate what the voltage range will be at the non-inverting
input using equation (4), and we know a priori that the range of Vout
should be (0 to 3.3V). These values are summarized in Table 7-2.
The table includes the signal midpoint, Vmid, so you can see where it
ends up after shifting and gaining.

Table 7-2. Gaining and shifting a pH probe signal to a convenient range
for the analogRead() function (longer method).

 Vin

(pH probe)
Vin(+)
=(Vin+Vb)/2

Desired Vout range
for analogRead()

at Vin,min: -0.5V Vin(+)min = 0V Vout,min = 0V
Vmid=

(Vin,min+Vin,max)/2:
0V Vin(+)mid = +0.25V Vout,mid = +1.65V

at Vin,max: +0.5V Vin(+)max = +0.5V Vout,max = +3.3V

Figure 7-26. Voltage at the
non-inverting input, Vin(+).

Section 7

256

In looking at Table 7-2, we can now calculate the required Av of the op-
amp. This will be the gain necessary to amplify the range of Vin(+) (0 to
+0.5V) to the full range the Uno will read (0 to +3.3V).

Amplification will be applied after the voltage divider formed by R1 and
R2, so we need to use the inverting input range (Vin(+)max) on the denominator
of our equation for Av. We therefore need an Av of: = , − ,(), − (), = 3.3 − 00.5 − 0 = 3.30.5 = 6.6

We now have the
design parameters we
need to remap Vin to a
great working range for
our 5V microprocessor,
illustrated in Figure 7-
27.

The gained signal
will be more sensitive to
changes in pH, and there
won’t be any negative
voltages to potentially
damage the
microcontroller.

c) The next step is to solve the resistor values for the Av we need, using

Equation (2): = − 1 = 6.6 − 1 = 5.6

We can set R3=1K (arbitrary), so: = 5.6 × = 5.6 × 1 = 5.6

We have now solved the circuit completely, and we can re-draw it with
our set and calculated resistor values:

Figure 7-27. Shifted and gained pH electrode
voltage signal. Vb shifts the signal positive, and
after amplifying, the total shift is +1.65V.

Operational Amplifiers 257

Figure 7-28. Solved non-inverting summing amplifier for pH meter.

The final equation of our op-amp will be Equation (1), with all our
known values substituted in: = 1 + 5.6K1K 1K1K + 1K + 0.5 1K1K + 1K

= 6.6 + 0.52 = 3.3(+ 0.5) = 3.3 + 1.65

The overall signal gain of our Vin signal is 3.3, and the shift of that signal
is 1.65V. Note that these are different values from Av (our closed-loop gain
of 6.6) and Vb (our bias voltage of 0.5V).

The solved op-amp configuration in Figure 7-28 could have equally
worked with 10K for R1, R2, and R3, and 56K for RF. The op-amp would
have functioned just as well. So why start with 1K? A 1K resistor is a good
all-purpose value when you need to make an arbitrary decision like this.
Keeping things simple means you won’t have to go shopping for new
resistor values every time you start a project. The lab inventory has
thousands of 1K resistors. They are called for in almost every project.

Solving the Summing Amplifier with Bias: Quicker Method

To speed up solving this problem, we don’t need to think about what’s
going on at the inverting input of our amplifier. The math is already handled
in the summing with bias op-amp equation. Start with a table of the known
and desired ranges of Vin and Vout:

Section 7

258

Table 7-3. Gaining and shifting a pH probe signal to a convenient range
for the analogRead() function (quicker method).

 Vin

(pH probe)
Desired Vout range for
analogRead()

at Vin,min: -0.5V Vout,min = 0V
at Vin,max: +0.5V Vout,max = 3.3V

From Equation (1): = 1 + + + +

Set R1, R2, and R3 = 1K (arbitrary).
Writing out our Vin and Vout values in Table 7-3 helps us write Equation
(1) twice, and we can solve two unknowns with two equations.

At Vin,min = -0.5V, Vout,min = 0V. Substituting into Equation (1): 0 = 1 + 1 −0.5V 11K + 1K + 1K1K + 1K 0 = (1 +) −0.25V + 2 +0.25V = 2 → = +0.5

At Vin,max = +0.5V, Vout,max = 3.3V. Substituting into Equation (1): 3.3 = 1 + 1 +0.5V 11K + 1K + 0.5V 1K1K + 1K 3.3 = 1 + × 0.5V → = 5.6K

We can now write the solved Equation (1), substituting all known values: = 1 + 5.31K 1K1K + 1K + 0.5V 1K1 + 1K = 3.3 + 1.65

The overall gain of the signal is 3.3, and the overall shift is 1.65V (see
Figure 7-27).

Buffering Vin and Generating Vb

Even though we solved the resistor values we need, we are not quite
done yet, because the pH probe voltage needs to be buffered before being

Operational Amplifiers 259

added to the bias voltage. This is because the pH probe only puts out a very
tiny current, so buffering it before adding in the bias voltage will help
protect the signal and lower its impedance. We also still need to generate a
+0.5V bias voltage. This can be accomplished by using a voltage divider
from a 3.3V supply. To electrically isolate the bias voltage from the voltage
divider, it would be prudent to buffer it as well. Putting these ideas together
and adding a few more details, we obtain the circuit diagram in Figure 7-29.

Figure 7-29. The bias voltage is generated using a voltage divider, and then buffered
before adding it to the (buffered) probe voltage.

Stepping through the schematic in Figure 7-29, a bias voltage of +0.5V
is generated using a voltage divider, then buffered. The pH probe signal is
buffered. Then, the two signals (bias + probe) are combined, then gained in
a non-inverting summing amplifier. The resulting signal Vout is read by a
microcontroller analog pin.

A bias voltage is only needed if you are expecting negative volts out of
your sensor (e.g. pH probe, or K-type thermocouple). If you get rid of Vb,
this circuit simplifies to a non-inverting amplifier.

= +

= 3.3 18100 + 18 = 0.5

Section 7

260

Negative Voltage?

Negative voltage (e.g. -0.5V) just means
that the current runs the other way (recall that
conventional current runs from higher voltage
to lower voltage). If you reverse the voltmeter
leads on a fresh 9V battery, the voltmeter will
read -9V, instead of +9V. However, seeing a
negative voltage for the first time on a circuit
diagram can be a little mystifying. Where do
these negative volts come from? How can you
use them? What if you can’t tie the V- terminal
of an op-amp to ground, because you would
like it to work with a negative voltage? How
do you supply negative volts, depicted in
Figure 7-30? There are different approaches to answering this question.

Solution 1: Using a Virtual Ground

The negative just has to be relative to what the op-amp “sees”. You can
make the “ground” at a higher voltage than V- and just keep track of what
you are doing. Popular ways of doing this include a split power supply, or a
voltage divider.

In both cases, the op-amp is told that ground is a higher voltage than the
lowest voltage point in the system. This is often called a virtual ground, but
really, it’s just a different voltage reference point in the system. Either way,
the op-amp doesn’t care–and will operate with respect to whatever ground
you choose. The probe should be tied to the same virtual ground as the op-
amp, or the signal will be at the wrong voltage level. By tying the negative
terminal of the probe to the virtual ground (Figure 7-31, top: +9V, Figure
7-31, bottom: +4.5V) you are asking the probe to “float up” and work from
a higher voltage level.

Some probes might not like it when you ground them to a higher voltage,
but voltage is all about relative differences. As long as the probe doesn’t get
shorted against true ground, it shouldn’t matter. This is one of the reasons
why line workers don’t get shocked when they touch power lines. As long
as they don’t touch ground at the same time, they can safely touch a high
voltage line.

Compare this to other methods we discussed to bias operational
amplifiers, and you can see that this is a simpler method to shift Vout higher,
by telling the probe and the op-amp to work from a higher, virtual ground.

Figure 7-30. How do you
supply negative volts?

Operational Amplifiers 261

Split Supply:

Voltage Divider:

Figure 7-31. Splitting a power supply (top) and using a voltage divider (bottom) for
supplying a negative voltage to the bottom rail of an op-amp.

Solution 2: Negative Voltage Generator

Another practical option for providing
negative volts to an op-amp without a using
split supply or voltage divider is to use a
voltage converter, like the ICL7660 (Figure 7-
32). Wired in the configuration shown in
Figure 7-32, this chip acts as a negative voltage
generator. It generates a negative voltage
supply (down to -10V DC) from a positive
voltage source (up to +10V DC). It was
specifically designed for supplying op-amps
with negative voltage. It also has some other
interesting functions–it can be used as a

Figure 7-32. ICL7760 wired
as a negative voltage
generator (5V out on pin 5).

Section 7

262

voltage doubler, producing voltages twice as high as your power supply.
(Intersil Corporation 2013)

Solution 3: Negative Supply Line from an ATX Power Supply

Some power supplies have negative voltage terminals or wires that you
can easily access. For instance, the blue wire on an ATX power supply
provides a regulated -12V DC. If you are already using an ATX power
supply for your circuit, you can take advantage of this wire. With the power
supply unplugged, pry or clip the wire off the connector, carefully strip it,
and connect it to the bottom rail of your op-amp, making sure that you also
connect the ATX power supply ground to your breadboard ground rail. See
Table A-7 in the appendix for pin-out tables of the two main types of ATX
power connectors: 20 pin and 24 pin.

Op-Amps Can Do Calculus

Op-amps can differentiate, and even integrate a signal. This would be
useful if you need to know the rate of change of a signal, or how long a
signal has been at a specific value (e.g. in a PID controller). You can also
perform these functions mathematically using a microprocessor (for
example, the PID control strategy presented in Section 6). (Carter and
Brown 2016, 1-94)

Differentiator

 = −

Integrator

 = − +

Figure 7-33. Differentiator (left) and integrator (right) op-amp configurations.

Operational Amplifiers 263

Signal Attenuation: Reducing the Voltage

Many probes have annoyingly low voltages that need to be gained-up
using op-amps or other gain strategies. Occasionally, you may run into the
opposite problem: the signal voltage range of a probe is too high to be read
by the limited 0-5V range of an analog pin.

For example, let’s say you have a probe with a signal that can range from
0-12V. How would you scale this down? This is called attenuating a signal.
A simple way of handling signal attenuation is to use a voltage divider,
followed by a buffer. This strategy is shown in Figure 7-34.

Taking the impedance of the signal into consideration, any two resistor
values could be used for our example, as long as R2 0.7 R1 (e.g. R1=150 ,
R2=100).

= +

→ = − 1

= 12 5 − 1

= 0.7143 ×

Figure 7-34. Attenuating a probe signal using a voltage divider, then buffering the
output.

Activity 7-1: Load Cell Scale

Background: A load cell is a strain gauge
that has been designed to change resistance
as it bends very slightly under pressure. A
voltage is applied across it (V+), and the
output voltage (V) changes linearly with
weight. An op-amp is required to boost the
signal.

A load cell is a clever implementation of
a Wheatstone bridge (Figure 7-35), a device
that can measure very small changes in
resistance. Although its structure looks like a

Figure 7-35. Structure of a
Wheatstone bridge.

Section 7

264

diamond, you can think of a Wheatstone bridge essentially as two voltage
dividers wired in parallel. Are you seeing a common theme yet? Voltage
dividers are everywhere. An advantage of a Wheatstone bridge is that it is a
more accurate way to detect a change in resistance than the sense resistor
for our thermistor circuit in Section 4.

The math is quite straightforward. The voltage divider equation is used
twice: = +

= +

∆ = − = + − += + − +

How does a Wheatstone bridge work? Let’s say you have a purely
resistive sensor taking the place of R4. There are two basic strategies in
using a Wheatstone bridge: one of them involves replacing resistor R2 with
a potentiometer, then adjusting it until V is zero. Then, the resistance of
the potentiometer is measured–which will be equal to R4 (the sensor). This
method has the advantage of not being dependent on the value of V+ (which
can be noisy). Another strategy is to directly measure V, and correlate it
to the property you are sensing (in this case, the load). This is slightly easier
as it involves fewer steps. We will be using the second strategy with our
load cell.

Now you can see why the load cell has four wires: two are for supplying
power to the Wheatstone bridge (V+ and GND), and the other two are for
reading the voltage difference across the bridge (V).
Goal: In Activity 7-1, we will use an op-amp to amplify the tiny change in
voltage across the load cell, as weight is applied to it. A negative voltage
generator (ICL7660) is incorporated to provide the op-amp with the ability
to read voltages close to zero. If we tie the bottom rail to ground, the TL072
op-amp output might behave unpredictably around 0V, where we need it the
most, as we will be measuring voltage changes close to zero.

Operational Amplifiers 265

Materials:
 1 x Arduino Uno MCU & USB

cable
 1 x Digital Multimeter
 1 x Breadboard
 1 x Load Cell
 1 x Retort Stand with Vinyl

Retort Clamp
 1 x TL072 Op-amp (DIP)
 1 x LM358 Op-amp (DIP)
 1 x ICL7660 Negative Voltage

Generator (DIP)

 4 x 1K Resistors
 3 x 10K Resistors
 2 x 100K Resistors
 2 x 1M Resistors
 2 x 10M Resistors
 2 x 10 μF Electrolytic Capacitors
 1 x Momentary Switch
 1 x Set Calibration Weights
 15 M/M Jumpers
 1x Microspatula
 1 x Highlighter

Procedure:
1) Assemble the following circuits:

Figure 7-36. Circuit diagram for Activity 7-1 (load cell scale).

Section 7

266

Figure 7-37. Experimental setup for Activity 7-1 (load cell scale).

2) Write and upload a sketch that reads the load cell amplified voltage

on analog pin A1, and prints the results to the serial monitor.
Remember to add the “analogReference(EXTERNAL);” line to
the setup() function, and to connect +3.3V to the AREF pin.

3) Try different values of RF until you get a useable signal (one that
changes across the range of your calibrated weights, without maxing
out the signal).

4) Calibrate the load cell with the weight set, then modify your sketch
so that it reports measurements in grams. Weight is a linear function
of voltage:

weight=scaleInt+(scaleSlope*voltage);

To help you solve for scaleInt and scaleSlope, download
scaleCal.xlsx from the course website.

5) Program the momentary switch on the right of the circuit diagram as
a tare button. To work this into your program, have the program
subtract a global float tareWeight variable from the reported weight:

weight=scaleInt+(scaleSlope*voltage)–tareWeight;

6) How does op-amp type affect the output signal? Replace the TL072
in your circuit with an LM358 op-amp. The pin allocations are the
same for both chips, so you will not need to rewire the circuit. Does
the LM358 result in a different response of your signal?

Operational Amplifiers 267

Note: Are you having trouble finding your signal? Here are some
focused troubleshooting tips. Also see the Troubleshooting Guide in the
appendix for more suggestions.
� With a multimeter, check that pin 5 of the negative voltage generator

is actually producing close to -5V.
� Make sure the bare resistor wires aren’t touching other resistor wires,

creating unintentional connections.
� Check the wiring of your op-amp for loose or wrong connections.

Wiring an op-amp is tricky. Sometimes the best way to fix wiring is
to re-wire from the beginning.

� The TL072 has an unused op-amp in the circuit (pins 5, 6, and 7).
Consider using this op-amp as a second amplification stage
(configured as a summing, non-inverting amplifier), rather than
using one very large gain for a single op-amp. This will help preserve
your signal and keep it from maxing out.

Leave your circuit (connected to your Arduino Uno) assembled for
the next section.

Test your understanding: Which op-amp configuration is used in this
activity?

Activity 7-2: pH Meter

Background: A glass pH electrode probe puts out a very tiny current, too
weak to be read by a regular volt meter or analog pin. The probe signal
needs to be shifted and gained from (-0.5 to +0.5V) to (0 to +3.3V). This
problem is well-suited to operational amplifiers, and is a common problem
to solve for many different sensors.

The strategy illustrated in Figure 7-29 will be used. The TL074 is a great
choice for this application since it is a quad op-amp chip (meaning it has 4
independent op-amps included in one package). A negative voltage
generator (ICL7660) is incorporated to provide the op-amps with the ability
to read negative voltages from the pH probe.

The circuit diagram in Figure 7-29 has been redrawn here to reflect the
physical layout of the TL074 chip. This is a different circuit diagram style
than the “exploded” approach used in Activity 7-1, Figure 7-36 where the
two op-amps in the TL072 chip are depicted separately. Either approach is
valid for a circuit diagram. The first style (exploded components) makes
more visual sense in terms of understanding the process workflow of the
circuits. The second style preserves the physical layout of the integrated
circuit, and some find easier to build from because the connections are
drawn more literally. Which style do you prefer?

Section 7

268

Goal: To build a pH meter, and then calibrate it using pH standard solutions.

Materials:
 1 x Arduino Uno MCU & USB

cable
 1 x Digital Multimeter
 1 x Breadboard
 1 x Glass pH Electrode with

Stand
 1 x Female Coaxial Connector

for pH Electrode
 1 x TL074 Op-amp (DIP)
 1 x LM324 Op-amp (DIP)
 1 x ICL7660 Negative Voltage

Generator (DIP)
 3 x 1K Resistors
 1 x 5.6K Resistor

 1 x 18K Resistor
 1 x 100K Resistor
 2 x 10 μF Electrolytic Capacitors
 15 x M/M Jumpers (2 long)
 pH Standard Solutions (pH 4, 7)
 pH Electrode Storage Solution
 Tissues
 1 x Microspatula or Small

Screwdriver
 1 x Highlighter
 Plastic Squeeze Bottle with

Distilled Water
 1 x 250 mL Waste Beaker

Procedure:
1) Build the pH meter circuit in Figure 7-38.

Operational Amplifiers 269

Figure 7-38. Circuit diagram for Activity 7-2 (pH meter).

Note: Connect the pH probe to the op-amp using the female coaxial

connector.
2) Write and upload a sketch that reads the voltage on analog pin A2,

and prints the results to the serial monitor. Remember to add the
“analogReference(EXTERNAL);” line to the setup() function,
and to connect +3.3V to the AREF pin.

Section 7

270

3) Calibrate your probe with pH standards (4 and 7). You can download
pHCal.xlsx from the course website to help calculate the pH probe
slope and intercept for your program.

4) Edit your sketch to output the pH value to the serial monitor. The
probe voltage is a linear function of pH:

pH=probeInt+(probeSlope*voltage);

5) How does op-amp type affect the output signal? Replace the TL074
chip in your circuit with an LM324 op-amp. The pin allocations for
this chip are the same as the TL074, so you will not need to rewire
the circuit. Does the LM324 op-amp result in a different response
in your signal?

Note: Are you having trouble finding your signal? Here are some
focused troubleshooting tips. Also see the Troubleshooting Guide in the
appendix for more suggestions.

� With a multimeter, check that pin 5 of the negative voltage generator
is actually producing close to -5V.

� Make sure the bare resistor wires aren’t touching other resistor wires,
creating unintentional connections.

� Check the wiring of your op-amp for loose or wrong connections.
Wiring an op-amp is tricky. Sometimes the best way to fix wiring is
to re-wire from the beginning.

Leave your circuit (connected to your Arduino Uno) assembled for

the next section.
Did you know? A thermocouple also outputs a tiny voltage from -0.5V

to +0.5V. This circuit could double as a thermocouple amplifier, using the
same resistor values.

Operational Amplifiers 271

Learning Objectives for Section 7

After having attended this class, the student will be able to:
1) Identify the role an op-amp plays based on how it is represented in a

circuit diagram.
2) Explain the purpose and the effect on an input signal waveform for

the following devices:
 Comparator, buffer, inverting amplifier, non-inverting amplifier,

differential amplifier, summing amplifier (inverting and non-
inverting)

3) Appropriately wire the power rails on an op-amp, taking into
consideration headroom and signal characteristics.

4) From memory, draw a circuit diagram detailing how to provide
negative volts to an op-amp, using a split supply, voltage divider, or
negative voltage generator.

5) Given the equations relating Vin and Vout, calculate appropriate
resistor values for op-amp configurations to accomplish a specific
task (e.g. gain and/or shift).

6) Calculate appropriate resistor values to shift and gain a probe or
sensor signal to 0-3.3V for the analogRead() function, for any DC
probe.

7) Describe how a Wheatstone bridge works and be able to draw its
structure from memory.

Section 7

272

Section 7 - Station Content List, Activity 7-1

• 1 x Digital Multimeter
• 1 x Breadboard
• 1 x Load Cell
• 1 x Retort Stand with Vinyl

Retort Clamp
• 1 x TL072 Op-amp (DIP)
• 1 x LM358 Op-amp (DIP)
• 1 x ICL7660 Negative Voltage

Generator (DIP)
• 4 x 1K Resistors

• 3 x 10K Resistors
• 2 x 100K Resistors
• 2 x 1M Resistors
• 2 x 10M Resistors
• 2 x 10 μF Electrolytic Capacitors
• 1 x Momentary Switch
• 1 x Set Calibration Weights
• 15 M/M Jumpers (5 long)
• 1x Microspatula
• 1 x Highlighter

Figure 7-39. Station setup for Activity 7-1.

Operational Amplifiers 273

Section 7 - Station Content List, Activity 7-2

• 1 x Digital Multimeter
• 1 x Breadboard
• 1 x Glass pH Electrode with

Stand
• 1 x Female Coaxial Connector

for pH Electrode
• 1 x TL074 Op-amp (DIP)
• 1 x LM324 Op-amp (DIP)
• 1 x ICL7660 Negative Voltage

Generator (DIP)
• 3 x 1K Resistors
• 1 x 5.6K Resistor
• 1 x 18K Resistor

• 1 x 100K Resistor
• 2 x 10 μF Electrolytic Capacitors
• 15 x M/M Jumpers (5 long)
• 2 x M/F Jumpers
• pH Standard Solutions (pH 4, 7)
• pH Electrode Storage Solution
• Tissues
• 1 x Microspatula or small

screwdriver
• 1 x Highlighter
• Plastic Squeeze Bottle with

Distilled Water
• 1 x 250 mL Waste Beaker

Figure 7-40. Station setup for Activity 7-2.

SECTION 8

DATA FILTERING, SMOOTHING, AND LOGGING

What You’ll
Be Learning

Lecture: Data filtering: high pass, low pass, band pass filters.
Practical considerations of op-amps: input and output
impedance. Reducing signal noise. Measuring noise amplitude.
Data collection and smoothing: mean, median, mode, mean +
threshold. Data logging: time functions, SD card logging. Logic
shifting.

What You’ll
Be Doing

Pick any two of the following activities:
Activity 8-1: Design and incorporate an LPF (low-pass filter)
to filter incoming data from your Activity 7-x device.
Activity 8-2: Incorporate a data smoothing strategy in your
device sketch, using the smoothing library QuickStats.h.
Activity 8-3: Add an SD card reader to your Activity 7-x
device, and record the device output in .CSV format.
Demo 1: RTC clock - better time accuracy
Demo 2: Oscilloscope - interpreting signal and frequency
information. Function generator output.
Demo 3: RC filtering a signal (0.1 μF and 1 K, fc=1592 Hz).
LPF (RC) and HPF (CR). 60 Hz notch filter.

Files you
will need

All course files are available
for download at:
http://pb860.pbworks.com

 QuickStats.h

Data Filtering

The first thing you might notice when you assemble your first op-amp
circuit successfully is, wow is that signal ever noisy! There are different
approaches to dealing with noise. Specific undesired frequencies or bands
of frequencies can be identified and filtered out. We will begin our
discussion of data filtering by looking at first-order low-pass and high-pass
filters.

Data Filtering, Smoothing, and Logging 275

Low-Pass Filters (LPFs)

If your sensor readings look
really jumpy, the first type of
filter that you will be interested
in is a basic low-pass filter. Low
pass filters allow lower
frequencies to pass through
(hopefully your signal), but
attenuate (reduce) higher
frequency changes, which can
be unwanted noise from your
system.

The cutoff frequency–a very important parameter for a filter–is the
frequency above or below which the filter starts to “work”, filtering out
unwanted changes in voltage. Some texts refer to this as “corner frequency”.
With an RC filter (in Table 8-1), this frequency depends on the time constant
 of the RC network, via the equation = = .

Low-pass filters are quite common in sensor filtering, as high frequency
noise from AC power, fluorescent lights, and nearby equipment can really
bury a signal in unwanted peaks.

Table 8-1. First-order passive and active low-pass filters. (Texas
Instruments Inc 2013, 1-26)

Passive Low-Pass Filter

Cutoff Frequency: =

Pass-Region Gain: Vout<Vin

More specifically:

The capacitive reactance, Xc, of a
capacitor, with a signal of a given
frequency f, is: =

Active Low-Pass Filter

Pass-Region Gain: 0 dB
Cutoff Frequency: =

Figure 8-1. The effect of a carefully
designed low-pass filter (LPF).

Section 8

276

For an LPF: = × +

Active Low-Pass Filter:
Non-Inverting, Amplifying

Pass-Region Gain: 1+(RF/R1)

Cutoff Frequency: =

Active Low-Pass Filter:
Inverting, Amplifying

Pass-Region Gain: -(RF/R1)

Cutoff Frequency: =

You might notice in Table 8-1 that the power rail lines on the op-amps

have not been drawn. The power rails are still implied. They are left out here
to reduce circuit diagram clutter. It’s important to realize that the inverting
amp needs a negative voltage applied to the bottom rail, but the bottom rail
of the non-inverting amp can be tied to ground if a negative signal (plus the
headroom needed on the positive side, close to ground) is not anticipated.
Vin is the voltage from some probe we would like to filter, labeled PROBE
(+).

The biggest difference between a passive and active LPF is that there is
inevitably a bit of a voltage drop across the R1 resistor for the passive LPF,
which may or may not be important. The active LPF buffers the signal (and
amplifies it, if so configured) to compensate for the drop in voltage. A
caveat of the inverting active RC filter is that you will notice the signal is
connected to the inverting input. This means if this signal is positive, the
filtered signal will be negative (with consequences associated–e.g. negative

Data Filtering, Smoothing, and Logging 277

power supply needed on the bottom rail of the op-amp). The non-inverting
active RC filter provides filtering without inverting the signal.

These filters don’t completely remove all frequencies higher than fc. The
attenuation is more pronounced the higher the frequency is. To demonstrate,
Figure 8-2 shows a Bode Magnitude Plot, (pronounced boh-dee) which
graphs the effect an LPF has on the gain of a signal, depending on the
signal’s frequency. In the “PASS REGION”, the gain in decibels is zero
(Vin=Vout). However, as the signal frequency increases past fc, the gain
decreases–meaning that the output signal attenuates (lowers). This is called
the “STOP REGION”, where Vout<Vin.

Figure 8-2. Bode Magnitude Plot for a first-order LPF.

At the cutoff frequency, the gain is -3 dB, which means that: = −3 = 20 ×

− 320 =

= 10 = 0.7079

The slope of response above fc is -20 dB per decade, or -6 dB per octave.
For musicians, an octave higher is a doubling in frequency. Many musical
instruments are tuned to a fourth-octave A note, at 440 Hz. An octave higher
is 880 Hz, which is a fifth-octave A note. In electronics, the term octave is
also used with frequency, even though no musical instruments are involved.
A decade is change by a multiple of ten in frequency (rather than its familiar
meaning of 10 years). A decade above 440 Hz is 10 440Hz = 4,400 Hz

Section 8

278

(or 4.4 kHz). The frequency range of human hearing is about 20 Hz to 20
kHz, so it would still be in the audible range (although higher than the notes
on a piano keyboard). (Nagel et al. 2016)

Example: What is the
attenuation of an unwanted
frequency of 60 Hz, if the
cutoff frequency (fc) of a
low-pass filter is 6 Hz?

Answer: The gain of
the LPF is -3 dB at the
cutoff frequency (6 Hz).
One decade higher, the
gain will be:

 () = −3 – 1 × 20 = −23 = 20 = 10 = 0.0708

The output signal would be reduced to about 7% of the original voltage. Not
bad! By carefully selecting values for R1 and C1, an LPF can be designed to
filter out higher frequency noise from your signal.

Low Pass Filter Design: Worked Practical Example

Let’s say you have a very noisy signal. You determine the approximate

frequency of oscillation by looking on an oscilloscope, and find that the
distance between voltage spikes is 0.5 milliseconds. To convert this to a
frequency: = 1(0.5 × 1 1000) = 2000 = 2

Your signal is pretty much a constant DC signal, and not expected to
fluctuate very much. So you are considering using an LPF to filter this out.

Resistor values can be dialed in with a potentiometer. Capacitor values
are harder to come by and more limited (although variable capacitors do
exist). So rather than start with a resistor value and calculate the required

Figure 8-3. Calculation of the gain of an LPF, one
decade higher than the cutoff frequency.

Data Filtering, Smoothing, and Logging 279

capacitor value, we will start with a 100 nF (= 0.1 μF) capacitor, and find
out the required resistance for our filter.

If we planned for the cutoff frequency to be equal to the frequency of
noise, then we would only get a gain of -3 dB (or Vout/Vin=0.7). For the filter
to be effective, the cutoff frequency can be at least a decade below the noise.
Let’s opt for a cutoff frequency of 0.2 kHz, or 200 Hz. Now we can calculate
the resistor value required: = 12

= 12 = 12 (200)(100 × 10) = 7957.75 = 7.96

We now know we need about an 8K resistor with a 0.1 μF capacitor to filter
out our noise. We could choose a passive LPF (Figure 8-4, left), or if
buffering the signal is required, an active LPF (Figure 8-4, right).

Figure 8-4. Worked example for an LPF, fc=200 Hz. Left: passive LPF, right: active
LPF with unity gain.

The gain of the 2 kHz noise will be -23 dB, or ~7% of the original signal
amplitude. If signal amplification is required, we could also choose a non-
inverting active low-pass filter with RF=8K, C1=0.1 μF, and an R1 yielding
a desired gain, recalling that = 1 + for a non-inverting amplifier.
For R1, we could either select the closest fixed resistor value to 8K (8.2K in
Common Fixed Resistor and Capacitor Values), or we could use a 10K trim
pot, and dial in a resistance of 8K. This means adjusting the 10K trim to 8K,
using an ohmmeter. Then we could fine tune the resistance, monitoring Vout
with an oscilloscope, until we are happy with the attenuation of noise.

Section 8

280

High-Pass Filters (HPFs)

High-pass filters let higher
frequencies pass through. They
act in the opposite manner as
LPFs, in that they attenuate
(reduce) frequencies below fc.
Figure 8-5 illustrates the
possible effects of a high-pass
filter. This style of filter is
particularly useful with digital
signals, which can have very
high frequencies (e.g. see Figure 2-6, filtering out low frequencies).

A high-pass filter is typically built into every speaker that has a tweeter.
The high frequency sounds are sent to the tweeter, and the low frequency
sounds that would otherwise damage the tweeter are filtered out. Many
audio mixing boards also have a “low cut” button, which cuts out lower
frequencies (e.g. thumps and footsteps) with a high-pass filter.

Table 8-2. First-order passive and active high-pass filters. (Texas
Instruments Inc 2013, 1-26)

Passive High-Pass Filter

Cutoff Frequency: =
For an HPF: = 12 = × +

Active High-Pass Filter: Non-
Inverting, Unity Gain

Pass region gain: 0 dB
Cutoff Frequency: =

Figure 8-5. The effect of a carefully
designed high-pass filter (HPF).

Data Filtering, Smoothing, and Logging 281

Active High-Pass Filter: Non-
Inverting, Amplifying

Cutoff Frequency: =

Pass-Region Gain: 1+(RF/R2)

Active High-Pass Filter: Inverting,
Amplifying

Cutoff Frequency: =

Pass-Region Gain: -(RF/R1)

The shape of the Bode
Magnitude Plot for a
first-order high-pass
filter is the same as a
low pass filter, but
frequencies are
attenuated below fc (see
Figure 8-6).

The equation for the
cutoff frequency is the
same, only now the
signal is attenuated
below the cutoff
frequency, instead of
above it (-20 dB/decade
below fc).

Inverting AC Amplifier

For some sensors (e.g. a microphone) it becomes inconvenient or
undesirable to amplify a DC signal level, when the signal of interest changes
at high frequencies. A carefully selected capacitor in series with a resistor
will block DC levels in the signal and allow higher frequency fluctuations
to pass through. Figure 8-7 shows the configuration for an inverting AC
amplifier. (Mancini 2002)

Figure 8-6. Bode Magnitude Plot for a first-order
HPF.

Section 8

282

Figure 8-7. Inverting AC amplifier. Capacitor C1 filters out frequencies two decades
below fc. If V+=+5V, the output signal will be gained by RF/R1, and oscillate about
+2.5V.

The bias voltage applied to the non-inverting input (=V+/2) shifts the AC
signal up to V+/2. A benefit to this configuration is that a negative voltage
supply is not needed, and the signal oscillates conveniently right in the
middle of the op-amp’s working range.

The electret microphone preamplifier circuit in Figure 8-8 is a great
example of the inverting AC amplifier in action. (Scherz and Monk 2016)

Figure 8-8. Inverting amplifier example: electret microphone preamplifier.

Capacitor C2 forms a high-pass filter with resistor RF with a cutoff
frequency of 1/(2 ×100K×1.5nF) = 1061 Hz to attenuate the “squeal” from
the signal, and capacitor C3 removes the final 2.5V DC level, returning it
back to zero for a very useable amplified line-level audio signal. The 100K

= − + ; =

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

Vo
lts

 (V
)

Time
Vin
Vout

Data Filtering, Smoothing, and Logging 283

resistor (RF) could be replaced by a 100K potentiometer to control the the
output volume of the audio signal.

If you plan on building this circuit, note that electret microphones are
polar devices. To find the positive terminal, test for continuity between a
pin and the electret microphone body. The body should be connected to
ground, and thus continuous (resistance=0Ω).

Blocking the DC in your Signal: Charge Coupling

In the above example
(Figure 8-8), capacitor C3
blocked the 2.5V DC level
depicted in Figure 8-7 (right
panel). In this context, it is
called a coupling capacitor.
The process of transmitting
only an AC signal between
stages or components of a
circuit is called charge
coupling, or AC coupling. A
coupling capacitor is the
simplest form of a high-pass
filter. Figure 8-9 shows the basic configuration of a coupling capacitor.

 Calculating the capacitance value of this capacitor is quite complicated,
requiring knowledge of the input impedance or load resistance of the next
stage it will be connected to, and will depend on the frequency of the signal
you would like to pass through it.

An over-simplification of this calculation is to obtain the input
impedance to the next stage from the component’s datasheet, or measure it
(see Measuring Input Impedance, later in this section). Then, decide on the
lowest frequency you would like to pass through to the next stage, and aim
for a decade lower than that to make sure your signal will still get through.
For instance, if you are dealing with an audio signal, the frequency range of
human hearing is approximately 20 Hz – 20 kHz, varying with individual,
age, and number of rock concerts attended. (Nagel et al. 2016) If you decide
on a cutoff frequency a decade lower (2 Hz), and know that the next stage
of your circuit is a guitar effects pedal with an input impedance of 10 kΩ,
then you can roughly estimate the value of the capacitor required as: = = × × , Ω = 7.95 μ = 8 μ

Figure 8-9. A coupling capacitor transmits
AC and blocks DC.

Section 8

284

This value should block DC voltage levels and signal frequencies under 20
Hz, while allowing higher audio frequencies to pass through. However, if
this signal was going to the input stage of a non-inverting op-amp which
may have an input impedance on the order of 1 MΩ, the value would change
to: = = × × , , Ω = 0.0795 μ = 80

This same strategy is used with capacitor C1 in Figure 8-8, only the input
impedance to the op-amp is equal to R1. (Poole 2009) Consequently, the
cutoff frequency for this coupling capacitor is calculated by re-arranging the
equation: = = = Ω× . = 159.15

In Figure 8-8, coupling capacitor C1 will filter out frequencies effectively
about a decade lower than fc (~16 Hz).

Higher Order Filters

Band-Pass Filters

If you combine a low-pass filter with a high-pass filter, you can build a
filter that only lets a narrow band of frequencies pass through. This is called
a band-pass filter. A simple band-pass filter combines an LPF in series with
an HPF. The HPF has a lower cutoff frequency than the LPF. The math is
the same, you just need to do it twice. A circuit diagram and example Bode
Magnitude Plot are provided in Figure 8-10.

A band-pass filter has one pass region and two stop regions. The
resonant frequency (also called the centre frequency) is calculated as the
geometric mean of the cutoff frequencies of the HPF and LPF: = , × ,
This is the frequency that is attenuated the least through the filter.

The bandwidth is the difference between the cutoff frequencies: = , − ,
The Q-factor (or quality factor) is another interesting parameter,

relating to the “pointiness”, or selectivity of the filter at the resonant
frequency: =

Data Filtering, Smoothing, and Logging 285

A higher Q-factor means a narrower bandwidth, and consequently a more
discriminating filter.

Figure 8-10. An example band-pass filter (top) and corresponding Bode Magnitude
Plot (bottom).

For the example in Figure 8-10: = = , × ,, − , = √20 × 200200 − 20 = 63.2 Hz180 Hz = 0.351

The calculated bandwidth and resonant frequency are shown in Figure 8-10.
Test your understanding: If you swapped the positions of the LPF and

HPF in Figure 8-10, would it change the Bode Magnitude Plot?
You could use the same configuration in Figure 8-10, but with the

appropriate resistor and capacitor values, plan the high-pass filter to have a
higher cutoff frequency than the low-pass filter. This would result in a stop-
band filter, the inverse of a band-pass filter. A stop-band filter attenuates
frequencies within a narrow band, taking a “notch” out of the Bode
Magnitude plot (for example, 50 or 60 Hz noise from an AC power supply).

Section 8

286

For this reason, it is also called a notch filter, or band reject filter. However,
combining an LPF and HPF to form a stop-band filter is not very efficient.
A better stop-band filter design is the Twin-T notch filter (buffer optional),
illustrated in Figure 8-11.

Figure 8-11. Twin-T Notch Filter (left) and Bode Magnitude Plot (right). (Carter
2006, 19-26)

Recall that two resistors with equal resistance R in parallel will result in
a total resistance of R/2, and two capacitors with equal capacitance C in
parallel will result in a total capacitance of 2C, so you can build this circuit
with four resistors of equal value, and four capacitors of equal value. Try
R=39 K and C = 68 nF to filter out 60 Hz, and try R=47K and C = 68 nF to
filter out 50 Hz (calculated by the equation fc=1/(2 RC). These are common
jobs for notch filters – to get rid of noise produced by mains electricty.

Second Order Low-Pass and High-Pass Filters

Provided they have the
same cutoff frequencies, two
LPFs or HPFs in series create
a second-order filter, which
has twice the attenuating
slope (40 dB/decade). A
second-order filter can be
passive or active. For
example, two passive HPFs
together create a second-order passive HPF (Figure 8-12). Similarly, two
active LPFs together can create a second-order active low-pass filter (Figure
8-13). (Karki 2002, 24.)

Figure 8-12. Passive second-order HPF.

Data Filtering, Smoothing, and Logging 287

Figure 8-13. Non-inverting, amplifying second-order LPF.

There are many other and more effective types of filters, but this is

enough to get you started in the world of signal filtering.
Test your understanding: Could you draw a second-order, passive

LPF?

Operational Amplifiers: Practical Considerations

An ideal op-amp (Figure 8-14) is said to have infinite input impedance,
infinite gain, and zero output impedance, as explained in Figure 8-14.

Input impedance = ∞
means that essentially
no current flows into
the op-amp (infinite
resistance, Iin=0)

Output impedance = 0
means that no matter
how much current is
drawn (Iout), the output
voltage won’t change

Figure 8-14. Properties of an ideal op-amp.

So far, we have assumed the above is true, but in the physical world it

isn’t. Op-amps aren’t ideal. There is a little bit of current that flows into the
op-amp. There are limits to how much current you can draw from an
op-amp output without the voltage dropping, and how much you can gain
up a signal. This can have consequences to your circuit. Some of these
details are provided in the datasheet of the op-amp. We need to consider
these ideas in the context of our circuit.

Section 8

288

Impedance Considerations: Op-Amp Inputs

Let’s deal with the inputs first. If the input impedance is not ideal, then
a difference in signal impedances between inputs can unexpectedly
offset/bias your output. This is bad! Since there is a bit of current going into
one input, it’s a good practice to try and match it as much as possible to the
current going into the other input, with a comparable or appropriate value
resistor called a compensating resistor. Figure 8-15 shows how you can
balance the inputs on an inverting amplifier:

Before (unbalanced inputs)

After (balanced inputs)

 = || = + ≈ , ≫

Figure 8-15. Balancing the inputs of an inverting op-amp with a compensating
resistor.

The same value for Rc (=R1||RF) is calculated for a non-inverting

amplifier (and is placed at the same spot). If the gain is high, R1||RF R1, as
a reasonable approximation, people will use Rc = R1.

Impedance Considerations: Op-Amp Output

Just like the 10% rule for voltage dividers, we need to make sure our
current requirements downstream of the op-amp are reasonable for what the
op-amp produces. This concept is called impedance matching. The
datasheet for the op-amp will list the maximum current it can provide (the
short-circuit current, or ISC). The output impedance is a bit more
complicated to think about, because it depends somewhat on the frequency
of your signal and the gain of your op-amp. Output impedance for an op-

Data Filtering, Smoothing, and Logging 289

amp is typically somewhere between 10-500 , depending on the op-amp
(usually <50).

If you are transferring data (e.g. a digital signal) you want to lower your
output current (i.e. increase output impedance) by putting a series resistor
on the output considering the input impedance of the intended destination
(where Vout is connected). If you don’t consider this, sometimes you can
damage the component receiving the data. Generally speaking, you can find
out the input impedance of the next step, OR the current requirements. This
information amounts to basically the same idea–providing the right amount
of current from the op-amp.

Let’s say your next step after the op-amp is the MCU’s analog pin A0,
which has an input impedance of about 11M. You look up the output
impedance for your op-amp, finding that your particular model has an
output impedance of 200 . As a reasonable estimate, take the geometric
mean of the op-amp output impedance and input impedance of the Arduino
Uno analog pin. This example is worked through in Figure 8-16.

Before:

Op-amp output impedance: 200 Ω
MCU input impedance: ~11M

After:

 = 0.2 × 11,000 = 46.9
 use a 47K resistor (closest fixed

value, see Table A-5).

Figure 8-16. Matching the output impedance of an op-amp with the input impedance
of the next stage (in this case, the MCU’s analog pin).

If you are transferring power to drive a load, then make sure Isc > Iload,

or use another strategy (transistor, MOSFET, relay, or power op-amp). The
maximum power theorem states that in order to get the maximum power
transferred from a power source, then the resistance of the load should be
equal to the Thévenin impedance of the network supplying power. With a
battery, the Thévenin impedance is the internal resistance of the battery.

Section 8

290

You probably haven’t thought about batteries as having internal resistance,
but they do. The internal resistance of a battery starts out low (usually less
than 1Ω) and increases as it drains.

For example, let’s say a 9V alkaline battery has an internal resistance of
2 . The maximum power theorem states that the load should also be 2 for
maximum power transfer to take place. The load can certainly have a higher
resistance (and the battery will last much longer), but you won’t be getting
maximum power transfer from your battery.

Measuring Output Impedance

The output impedance of a circuit is equivalent to its Thévenin
resistance. If you can’t find a published value for the impedance of your
circuit, you can also try measuring it in two steps, using Thévenin’s
Theorem. Table 8-3 describes a convenient method for a general circuit.

Table 8-3. Measuring the output impedance of a signal. (Andy
Collinson 2018)

Step 1: Measure the open-circuit
voltage with a voltmeter or
oscilloscope (peak to peak for an
oscillating signal, or highest voltage
for a DC signal).

This is the Thévenin Equivalent
circuit of your signal, from the point
of view of the output.

Step 2: Put a load resistor at the output
(e.g. 1K) and measure the voltage drop
across the load resistor with the same
signal as Step 1.

Step 3: Calculate output impedance:

 = − 1

Measuring Input Impedance

If your input impedance is not published or available, it’s also something
you can try to measure. You can put a fixed resistor before the input pin,
then measure the voltage across it. From that voltage drop, you can calculate
the input impedance. Table 8-4 describes this method.

Data Filtering, Smoothing, and Logging 291

Table 8-4. Measuring the input impedance of the input pin of a device
(e.g. a microprocessor). (Andy Collinson 2018)

Step 1: Vs can be a generated AC
signal, or a fixed DC reference signal.
Connect the signal to the input pin
through a load resistor (e.g. 1K±1%)
then measure the voltage before the
load resistor (V1).

Step 2: Now measure the voltage after
the load resistor (V2).

Step 3: Calculate the input impedance: =

Practical Strategies to Reduce Signal Noise

Since this is a practical course, it is important to outline some practical
strategies you can use to reduce a lot of unwanted noise in your circuits.
These strategies work well, without having to do any calculations
whatsoever. They can perhaps save you the trouble of over-designing a
circuit, and also the headache of trying to remove noise that you can prevent
from ever entering your system in the first place. In no particular order, these
strategies are organized in Table 8-5.

Table 8-5. Ten practical tips for noise reduction and prevention.

1. Make sure your circuit and all lines/wires coming out
of it are away from other electrical equipment (mobile
phones, balances, hot plates, pH meters, etc.) especially
equipment that is plugged in. Electronics produce
electromagnetic waves, which cause noise.

Section 8

292

2. Make sure your circuit has a good solid connection to
ground. This applies especially to breadboards. A loose
ground wire is trouble. If the only connection to your
power source ground is a loose, sloppy fit, then the circuit
will not be very well-behaved or stable.

3. Breadboard connections are just plain awful. They are
meant to be temporary. Make sure all breadboard
connections are snug, with leads pushed properly into
holes. A soldered circuit (on a prototype board) will have
less noise, and fewer problems with faulty connections.

4. Avoid running any wires (especially bare/uninsulated
wires) over the top of an IC chip.

5. Position relays, solenoids, and other high-power switching devices physically
as far away from your logic as practical. Switching power generates noise.
Independently power these devices (using a separate supply) for better
performance and less switching noise.

6. Make sure your power supply is strong enough for
your circuit (for both voltage and current). Most
components aren’t happy when they don’t get enough
current. Even the Arduino Uno powered through your
USB port is running too lean–it will work, but not as well
as it was designed to. The Uno works best with an
external 9-12V power supply plugged into the DC jack,
with at least 250 mA. Consider the power supply itself as
a potential for noise. Older power supplies will often
yield noisy results–try switching supplies.

Data Filtering, Smoothing, and Logging 293

7. Every DC circuit can benefit from a
100 F capacitor across the positive
and negative rails, and a 0.1 F or 1 F
capacitor across the Vcc to ground for
each IC, as close to the chip’s Vcc pin
as physically possible. In this context,
the capacitors are called bypass
capacitors or decoupling capacitors.
(Ross 1997)

8. Tie any unused inputs on an IC to ground. Sometimes
the datasheet will suggest how to deal with unused pins.
Generally, pins left floating can cause noise in the circuit.
For unused op-amps in multi-amp chips, tie the non-
inverting input to ground and have the buffer follow it.
In general, leave unused outputs on chips floating
(disconnected).

9. Consider using a separate voltage regulator to supply a
reference voltage for resistive sensors. This can be the
3.3V pin on the Uno which makes use of an on-board
regulator, or one that you incorporate separately (e.g. a
low dropout 3.3V voltage regulator, like the LM1117-
3.3). As a last resort, try connecting a 0.01 F capacitor
between a noisy probe signal and ground. This will
dampen some of the noise.

10. Electronic circuits pick up less noise
and radio waves when they are mounted
inside a case–particularly a metal one.
You can try lining plastic cases with
tinfoil or aluminium tape (a
noise-dampening technique that likely
inspired the foil hat). A bare circuit
board directly open to the air can act as an antenna for noise. For the activities
in this course, we haven’t paid any attention to designing or using a case.
However, shielding your circuit is something to keep in mind if you are
working on an independent project.

Software approaches (e.g. data smoothing) are also easy and quick to

implement and can be considered after carefully implementing the noise
reduction strategies above. We will discuss data smoothing in more detail,
later in this section.

Section 8

294

Measuring Noise

Noise can also be expressed in decibels, in relation to the signal. A very
popular parameter you may have heard of is the signal-to-noise ratio
(SNR). The SNR expresses the ratio of amplitudes of signal and noise, so it
should hopefully be a large number. That way, your signal amplitude is
much higher than the noise amplitude, and easier to discern from random
fluctuations. = =

 = 20 ×

Example: Your car stereo advertises a signal-to-noise ratio of 100 dB.
What does this mean?

Answer: 100 = 20 ×

= 10 = 10 = 100,000

This means that the signal amplitude is 100,000X the noise amplitude –
impressively much larger, translating to a higher audio signal quality.

One thought that may occur to you if you have a noisy system is to
amplify your signal with an op-amp. However, an op-amp amplifies noise
as well, using the same gain, so that may not necessarily help.

Using an op-amp can help increase the resolution of your reading. For
instance, if your sensor range is 0 to 0.3V, the Uno analog pin (having
+5V/1024 steps, or divs = 4.9 mV/div) will only be able to return 0.3V/4.9
mV/div = 61.22 divs, so you will only get 61 different numbers through the
working range of the sensor–that’s not even 2 complete significant figures
of precision. However, if you amplify the signal to 3.3V, you can get
3.3V/4.9 mV/div = 673.5 divs, a much more precise measurement (with
continuous readings to 2 significant digits). Using an external AREF of
3.3V will increase the number of divisions in the sensor’s working range to
1024, enough for 3 significant digits. The AREF pin can also take a lower
voltage, so if you know your sensor range is within 0-1V, you can try using
an AREF of 1.0V, and get +1V/1024 divs = 0.977 mV/div.

If you find the analog pins constraining, you can invest in an external
ADC module like the ADS1115, a tiny, inexpensive module which has 12-
bit resolution in 4 channels (4096 steps). Using an external ADC isolates

Data Filtering, Smoothing, and Logging 295

your readings from everything else going on in your microcontroller and
circuit.

Data Smoothing

Even when the noise reduction strategies above are thoughtfully
followed, all measurements will still have some degree of noise, which can
be reduced mathematically. This is called data smoothing. There are many
fancy mathematical filters out there. I’m going to discuss four simple and
effective ones in this section that are easy enough to understand and use.

Smoothing can happen in your data acquisition sketch before it even
reports a number, or you can smooth the data later, long after it has been
recorded. Keep in mind though that it is better to reduce as much noise as
possible in your electronic circuit first, before you resort to smoothing the
data.

Mean Filter

The most common way to smooth your data is by using a mean filter (or
average filter), although it isn’t necessarily the best choice. An average is
most sensitive to sensor spikes. Mean filtering works by taking many
readings (e.g. 100) instead of taking just one reading, and then reporting the
average of all those readings. After all, it only takes an Arduino Uno ~120
microseconds to take a single analog reading, so 100 readings only takes
about 12 milliseconds. It might also make sense to program a delay between
readings to spread out your measurements, thus averaging over a larger time
duration.

For example, let’s say you have calibrated a probe so that you know the
relationship between some parameter of interest, and voltage: = + (×)

A quick mean filter for voltage on analog pin A1 can be implemented like
this:

const float probeInt=0.16; //calibration intercept
const float probeSlope=2.51; // calibration slope
float total=0.0; // for divs
for(int i=0;i<100;i++){ // take 100 readings
 total=total+analogRead(A1);// acquire one reading
}
float answer=total/100.0; // calculate avg divs
answer=answer*5.0/1023.0; // convert divs->volts
answer=probeInt+probeSlope*answer; // volts->measure

Section 8

296

If you plan on using a mean filter strategy by storing the total to an unsigned
integer with a large number of readings, recall that an unsigned integer can
hold a number from 0 to 65,535. This means that if every reading was 1023,
you only have 64 readings before the unsigned integer maxes out and wraps
around to zero, thus distorting the average. What then? You could switch to
an unsigned long variable. But what if the numbers you are averaging are
much larger than 1023? There is a clever, iterative approach for calculating
the average of a series of readings where you don’t have to generate a very
large number in fear of overflowing the variable type. The variable type
only needs to be able to store the largest measured reading. The numerical
recipe is called calculating an iterative mean: (Hoffmann 2005)

= , = 0+ −+ 1 , > 0

where i is a counter starting at 0, xi is the current reading, and avgi is the
updated average including reading xi. The following sketch is similar to the
previous mean filter sketch, but calculates the mean iteratively:

const float probeInt=0.16; //calibration intercept
const float probeSlope=2.51; // calibration slope
float avg=0.0; // for divs
for(int i=0;i<100;i++){ // take 100 readings
 avg+=(analogRead(A1)-avg)/(i+1); //iterative avg
}
float answer=avg*5.0/1023.0; //convert divs->volts
answer=probeInt+probeSlope*answer; //volts->measure

Median Filter

A median filter reports the median of a series of measurements. If you
sort a series of measurements in numerical order, the median is the middle
value of this set of numbers. If you happen to have an even number of
elements in this set, there is no exact middle, so the median is calculated as
the average of the middle two values.

Data Filtering, Smoothing, and Logging 297

Table 8-6. Calculating the median of a data set.

 e.g.: for an odd number of elements:

(1, 5, 2, 1000, 6, 1, 4)

First, sort the numbers:

(1, 1, 2, 4, 5, 6, 1000)

The middle value in this set is 4, so the
median of the set is 4.

e.g.: for an even number of elements:

(4, 2, 8, 8, 6, 391, 7, 2)

First, sort the numbers:

(2, 2, 4, 6, 7, 8, 8, 391)

The median is the average of the two
middle numbers (6+7)/2=6.5.

You can see how selecting the median in both cases “filtered out” the

big spike in each data set. Spikes happen (unfortunately) because of system
noise, communication errors, grounding problems, or sometimes bad luck.
Median filters are much better at filtering out spikes. The average of the
above data sets would be MUCH higher than any of the other numbers, and
not representative of the true measure.

Mode Filter

A mode filter reports the mode of a series of measurements. The mode
of a set of data is the most frequently occurring value. To find the mode of
a set of data, first sort the elements in numerical order, then count how many
of each unique measurement you have. Therefore, a data set might not even
have a mode (if no values are repeated), or it can have more than one mode.
The mode for the series: (1, 2, 3, 4, 5) is null (no mode reported). Let’s solve
for the mode of the following two data sets:

Table 8-7. Calculating the mode of a data set.

e.g.: for the following measurements:
(1, 5, 2, 1000, 6, 1, 4)

Sort the numbers, and tally the
frequencies:

(1, 1, 2, 4, 5, 6, 1000)

1:
×2

2:
×1

4:
×1

5:
×1

6:
×1

1000:
×1

The mode is the number(s) with the
highest frequency count. In this case,
the mode is 1.

e.g.: for the following measurements:
(4, 2, 8, 8, 6, 391, 7, 2)

Sort the numbers, and tally the
frequencies:

(2, 2, 4, 6, 7, 8, 8, 391)

2:
×2

4:
×1

6:
×1

7:
×1

8:
×2

391:
×1

There are two modes in this data set: 2,
and 8.

Section 8

298

The mode filter did a good job at filtering out the spikes, but in the first
case reported a really low number, and in the second case reported two
modes. You would then need to make a decision about which of the two
modes to select for your filter. Would you select the first one? The second
one? An average of the two? Neither? What if no elements are repeated–
what would you do then?

An advantage of reporting a mode is that it is always a measured data
point that was an element of the original data set. A data purist might prefer
mode over median or average.

Mean Filter with Threshold Rejection

Sometimes when you are looking at the output from your sensor,
common sense will tell you that there was a communication error. For
instance, if you are monitoring a -30°C freezer, and one of the readings is
suddenly 0.00, or 1000, you can be sure in the context of the other readings
around -30°C that something went wrong. It pays to follow up and try to
reduce the occurrences of these readings. Perhaps the communications baud
rate is set too high, a thermocouple grounded against a metal object in the
freezer, your probe connections are loose and would be better off soldered,
or part of the circuit is sitting in a puddle and shorting out. However,
sometimes data spikes happen regardless, and they can be rejected from
your filtering routine using expected realistic limits.

Let’s take the first example of data: (1, 5, 2, 1000, 6, 1, 4). How about
we ignore all negative numbers, and any number greater than 50? We can
change our mean filter routine to the following, making it less sensitive to
larger spikes:
const float probeInt=0.16; // calibration intercept
const float probeSlope=2.51; // calibration slope
float reading=0.0; // to hold voltage reading
float total=0.0; // to calculate average
byte duds=0; // to hold # dud readings
for(int i=0;i<100;i++){ // take 100 readings
 reading=analogRead(A1)*5.0/1023.0; //get reading in V
 reading=probeInt+(reading*probeSlope); //convert
 // Is reading outside 0 and 50? If so, it’s a dud.
 if(reading<0.0||reading>50.0){
 duds++; // add 1 to duds
 }else{
 total=total+reading; // include reading in avg
 }
}
total=total/(100-duds); // calculate final average

Data Filtering, Smoothing, and Logging 299

Note that we converted voltage to our unit of interest inside the for loop
this time to test it, which is computationally more expensive. You could
combine threshold rejection with any of the other filtering methods as well.

Occasionally with sensor readings, especially when dealing with
external modules, you might obtain NaN as a result. This is short for “Not
a Number”, or in other words, “sorry, that didn’t work.” NaN results can
really throw off your math! You can filter out NaN values with the test
isnan(). This function will return true if the value in a variable is NaN
(not a number), and false if the value is a number. If we just wanted to filter
out NaN values, we could re-write our above routine like this:

if(isnan(reading)){ // if reading is not a number
 duds++; // add 1 to duds
}else{
 total=total+reading;// otherwise include in avg
}

This code will reject any NaN values from our calculated average.
Table 8-8 provides a summary of our four filtering methods, with

examples. You can see how each method returns different results. Which
results do you “believe”?

Table 8-8. Comparison of four data smoothing methods.

Data
Filter

Pros Cons Example 1

(1, 5, 2, 1000,
6, 1, 4)

Example 2

(4, 2, 8, 8,
6, 391, 7, 2)

Mean
Filter

 Easy to code
 Fast

 Sensitive to
outliers & spikes

145.57 53.5

Median
Filter

 More robust
than average,
less sensitive to
outliers &
spikes

 More time
consuming,
computationally
more steps

4 6.5

Mode
Filter

 Truest to the
data–returns
real
measurements

 Doesn’t always
return a value,
the mode can be
on the extremity
of your data set,
and sometimes
more than one
mode exists

1 2, 8

Section 8

300

Mean
Filter with
Threshold
Rejection

 Easy to code
 Fast

 You really
need to
examine the
sensor data to
make it perform
well

3.17 5.29

Data Logging

An important consideration in circuit design, particularly if you are
designing scientific equipment, is how you are going to output and record
your data. The first step of data logging is for your microcontroller to be
able to report a date stamp and time stamp (the current date and time). This
is especially important if you are monitoring a kinetic reaction.

The C++ environment keeps track of time, curiously, as the number of
seconds that have elapsed since January 1st, 1970, at 12:00 am. This is called
epoch time, a reference point created around the time that the Unix
environment was “born”. (Op de Coul 2019) Epoch time is a large number,
because it has been many seconds since the 1970s.

You might have noticed a small, caplet-shaped silver thing on the
Arduino Uno board (Figure 8-17).

Figure 8-17. The 16 MHz crystal oscillator on the Arduino Uno, responsible for
microprocessor speed.

This component is a 16 MHz piezoelectric crystal oscillator. The crystal

oscillates about 16,000 times a second, and provides the microcontroller

Data Filtering, Smoothing, and Logging 301

with the pace of instructions, also called the clock speed. The crystal is
optimized for stability and not accuracy, and so keeping track of time with
the Uno has two challenges:

1) The processor clock isn’t particularly accurate, so it may be off a few
minutes per week if used as a “human” clock;

2) When the Arduino Uno is powered down, it will completely forget
the time, and start over when powered up again.

This isn’t a big problem if your
experiment only lasts a day or two.
However, if you are designing an
Arduino clock, or a project designed
to run for weeks at a time and you
require an accurate time stamp, it’s a
good idea to hook up an RTC (“Real
Time Clock”) module (Figure 8-18).
This inexpensive module houses a
CR2032 lithium battery, which will power the RTC module for years. It will
keep counting up epoch time even while the Arduino Uno is reset or turned
off.

The RTC module uses a separate library, the commands of which are
very similar to the TimeLib.h library in the next section. We will assume for
this course that a minute or two per week is an acceptable error. If you would
like to use one of these modules, an example sketch is provided on the
course website, and libraries such as RTClib.h by Adafruit are available
through the Arduino IDE Library Manager.

Arduino TimeLib.h Library

An external library written by Michael Margolis provides easy-to-use
time functions for time stamping your serial output. In the Arduino IDE
Library Manager, download and install the Time.h library by Michael
Margolis. (Margolis 2014)

The following sketch illustrates how to use the Arduino TimeLib.h
library, by setting the time, and reporting the date and time over the serial
monitor. We use unsigned long variables, because epoch time won’t be
negative. There are many websites where you can find out the current epoch
time. One such website is http://www.epochconverter.com/.

// Simple clock program - set the time,
// then report the time every second.
#include <TimeLib.h> // Time library (Margolis)
unsigned long t; // To store the time

Figure 8-18. RTC module for
keeping track of epoch time.

Section 8

302

unsigned long timer=0UL; // For timing log entries

void setup(){
 t=1556221236-(4*3600); // EST start time is GMT-4h
 setTime(t); // Set time with number stored in t
 Serial.begin(9600); // Start the serial monitor
 timer=millis(); // Store current time in timer
}
void loop(){
 t=now(); // Update the current time in t
 if(millis()-timer>1000){ // If 1 second has passed
 Serial.print("Date: ");
 Serial.print((String)day(t)+"/");
 Serial.print((String)month(t)+"/");
 Serial.print((String)year(t)+" ");
 Serial.print("Time: ");
 Serial.print((String)hour(t)+":");
 Serial.print((String)minute(t)+":");
 Serial.println((String)second(t));
 timer=millis(); // Reset the timer
 }
}

Update this sketch with the current epoch time. Compile and upload the
sketch, then open the serial monitor.

 Is the time stamp correct?
 What happens when you press the Arduino Uno’s reset button?

Test your understanding: Based on the epoch starting time in this
sketch, what date and time was it written?

Using millis() Instead of delay()

You will notice an important feature in this sketch: now that you can
have the microprocessor keep track of the time, you can schedule things to
happen rather than wait for them with the delay() function. The delay()
function ties up the microcontroller–it can’t continue to the next line in the
sketch until the delay is finished. By using the if() statement like this:

if(millis()-timer>1000){ // if 1 second has passed

the microcontroller is free to do other things. This is extremely liberating,
not just for logging, but for other tasks in your program. The most important
command above is the millis() command: it works without the TimeLib.h
library, and returns the number of milliseconds since the Arduino powered
up (or since the reset button was last pressed). The TimeLib.h library is only

Data Filtering, Smoothing, and Logging 303

loaded to report the date and time of day. The if command above will work
in any sketch. You can now replace a delay function like this:

delay(1000);

with an if() statement that checks how much time has passed:
if(millis()-timer>1000){ // if 1 second has passed
 // your code goes here
 timer=millis(); // reset the timer
}

Just make sure to declare the variable timer as an unsigned long variable
in global space. You can program multiple timers concurrently, adding
flexibility to your program. This can speed up your code immensely.
Replacing delay() commands with timers, and turning off all serial
communication (if not needed) is a really easy way of speeding up your
code. Here is a worked example of a sketch that uses the millis()
command to time an analog reading to be taken once a second.

//analog reading every second with millis() command
unsigned long timer=millis(); // to hold start time

void setup(){
 Serial.begin(9600);
}

void loop(){
 if(millis()-timer>1000){ // if 1 sec has passed
 Serial.println(analogRead(A0)); //take reading
 timer=millis(); // new start time
 }
 //other commands can go here without being held up
 //by a delay statement.
}

Notes about millis()

 You don’t need to include the TimeLib.h library to use it.
 An unsigned long variable will give you an integer up to

4,294,967,296 (=232). This means that after 49.71 days of running,
millis() will reset to zero. Will your program misbehave when the
timer resets? A diligent programmer should keep this in mind.

 If 1 millisecond is too slow to time your events, you can also try
using micros() to call the number of microseconds elapsed since
the microprocessor turned on, and delayMicroseconds() to delay
on the microsecond scale.

Section 8

304

Logging through the Serial Port

With your Arduino Uno hooked up to a PC, you can quite easily use
serial communications to log sensor data. The easiest way to save data is to
copy and paste it directly from the Arduino IDE serial monitor window. You
can also make use of the Arduino IDE’s serial monitor timestamp by ticking
“show timestamp” on the control bar, meaning that time stamping happens
on the PC side.

However, instead of sending data to the Arduino IDE’s built-in serial
monitor, you could log the serial output to a file, through the same serial
port. There are free port-logging programs (e.g. RS232 Data Loggers)
available online. In particular, the open-source Processing platform
(available at https://processing.org) is an Arduino IDE-like environment
that was designed specifically to handle controlling and communicating
with Arduino devices once they are compiled, via the serial port. Links to
port logging software in Processing and Microsoft Excel are provided on
the course website.

In order to log your data effectively, you can time stamp a reading, then
output the data using Serial.println(). For instance, a very simple
program to log an analog reading to the serial port every second might look
like this:
// Simple Port Logger
// Time since Arduino started, and analog reading

const byte sensorPin=A1; // Pin A1 for analog reading
unsigned long timer=0UL; // For timing log entries

void setup(){
}

void loop(){
 if(millis()-timer>1000){ // if 1 second has passed
 Serial.print(millis()/1000); // print #seconds
 Serial.print(","); // print comma (.CSV format)
 Serial.println(analogRead(sensorPin)); // reading
 timer=millis(); // reset the timer
 }
}

If you are using port logging software, the program on the PC side will
receive that data, then save it to a file. The serial monitor on the Arduino
IDE should be closed for this to work. Only one program can open and
access a COM port at a time.

Data Filtering, Smoothing, and Logging 305

Logging to an External microSD Card

We have already discussed .CSV format as a convenient way to output
data to the serial monitor. So why bother with an SD card?

 SD cards are inexpensive, and will not significantly increase the cost
of your project.

 SD cards hold a lot of data (1 GB is plenty).
 microSD cards are really tiny, and won’t bulk up your project.
 SD card reader modules are inexpensive.
 A storage module means you can run your experiments without

relying on a laptop or desktop computer, which might otherwise
crash, power down, freeze up, or stop acquiring data because of a
skype call or media program interrupting your work.

Using an SD card means that since you don’t need a PC to record your
data, you can set up many experiments in parallel. It’s also an excellent
back-up strategy for your experimental data, even if you don’t plan on
reading the SD card.

SD cards are also useful for storing pictures with a camera module (e.g.
the OV2640 2-megapixel camera module).

Logic Shifters

The SD card library is very simple to use. It works with both SD and
microSD cards. In Activity 8-3, we will be setting up an SD card module,
then logging data to a memory card. The microSD card modules purchased
for this exercise operate on 3.3V logic. The 5V modules are also available
around the same price, but the 3.3V modules allowed me to introduce
another very useful tool: a logic shifter. The Uno’s 5V logic level would
damage an SD card. A logic shifter converts a high voltage side (HV), in
this case the 5V logic level of the Arduino Uno, down to a low voltage side
(LV), in this case the 3.3V logic level of the microSD card module. The
logic shifter is bi-directional: it will lower a 5V signal leaving the Arduino
Uno to a 3.3V signal for the SD card module, and it will raise a 3.3V signal
leaving the SD card module to a 5V signal to be read by the Arduino Uno.
You can see how a logic shifter is connected in the circuit diagram in Figure
8-19.

If you didn’t have access to a logic shifter, you could also reduce the 5V
pin from the Arduino Uno to 3.3V by using a voltage divider (e.g. R1=1K,
R2= 2K). However, that will only reduce signals leaving the Arduino Uno
and being received by the 3.3V device. Signals leaving the 3.3V device and
going backwards up the voltage divider will not be converted to 5V through

Section 8

306

the voltage divider. However, 3.3V is enough for a digital input on the Uno
to read a HIGH signal, so if you dedicate a transmitting Arduino Uno pin
(TX) to send a message to a 3.3V module, you can get away with a simple
voltage divider for each TX (transmitting) pin. The RX (receiving) pins on
the Arduino Uno do not require conversion from 3.3V to 5V.

Figure 8-19. Circuit diagram (left) of a logic shifter (photo right), safely bridging a
3.3V microSD card module to the hotter 5V logic-level MCU.

One last warning about logic level: there are many online electronics
tutorials showing people directly connecting 5V microprocessor boards to
3.3V modules directly, without logic shifting (e.g. an Arduino Uno to an
ESP8266 wireless network card). This is generally a bad idea–the 3.3V
module might work for a while, but will run much hotter than designed, and
may get damaged. An inexpensive logic shifter or voltage divider can
prevent this damage at a marginal cost.

Data Filtering, Smoothing, and Logging 307

Activity 8-1: Noise Reduction

Goal: In Activity 8-1, we will try some basic electronic noise-reduction
strategies to reduce signal noise from your Section 7 device.

Materials:
 Stored device from Section 7
 Arduino Uno MCU & USB

cable
 1 x 100 μF Electrolytic

Capacitor

 1 x 1 μF Electrolytic Capacitor
 1 x 100 nF ceramic capacitor

(capacitor code: 104)
 Resistor for LPF to be provided

during class

Procedure:
1) Retrieve your device from Section 7 (the load cell scale, or the pH

meter circuit). Design and add a low-pass filter, to reduce high
frequency noise in your signal, using a 100 nF capacitor. Is
recalibration required? If so, recalibrate your device.

2) Use an oscilloscope to help decide a cutoff frequency, then observe
noise reduction after applying your filter.

3) Add a 100 μF decoupling capacitor to the power rails of your
breadboard, and a 1 μF capacitor to the V+ pin of your op-amp (see
Table 8-5 for details).

Activity 8-2: Data Smoothing

Goal: In Activity 8-2, we will try some data-smoothing strategies to reduce
signal noise from your Section 7 device. You will be modifying your sketch
to include a data smoothing filter. I have created a specific library for this
exercise, called QuickStats.h.

Materials:
 Stored device from Section 7
 Arduino Uno MCU & USB cable

Procedure:
1) Download QuickStats.h from the course website (or copy it from the

appendix), then place it in the same directory as the sketch for your
device. Close the Arduino environment, and re-load your sketch. The
library should load as a separate tab.

2) At the top of your device sketch in global space, add the following
line, without a semicolon:

#include "QuickStats.h" // custom library for filtering

Section 8

308

3) Convert the variable you store your reading into an array. For
example, for the pH sketch, in global space, define a float array for
your analogRead() values, and a float variable for the final
smoothed answer:

 float readings[100];// array to hold analog readings
 float smoothed; // to hold final filtered value

4) Now modify your reading function to fill up the array with 100
measurements. Your reading routine might look something like this:

for(int i=0;i<100;i++){ // take 100 readings
 readings[i]=analogRead(A2); // one measurement
 delay(10); // wait a tiny bit
}

The library will calculate the mean, median, or mode, depending on
which one you would like to use:

//Uncomment the filter you would like to use:
smoothed=average(readings,100); // mean filter
//smoothed=median(readings,100); // median filter
//smoothed=mode(readings,100); // mode filter

This will store the average analog reading (in divs) to the float
variable smoothed, for you to manipulate further.

5) Finish, compile, and run the program. Did the filter help reduce
measurement noise? How can you tell if the filter is working?

You can write your own library of functions, just like QuickStats.h. You
need only create a “.h” file, include it in the same directory as your sketch,
and remember to add the #include "whatever.h" statement in global
space of your new sketch. That way, it will be included when the sketch
compiles and uploads.

Test your understanding: How would you program threshold rejection
with any of the above data filtering strategies?

Data Filtering, Smoothing, and Logging 309

Activity 8-3: Data Logging to an SD Card

Goal: To set up an SD card module as a data logger for your Section 7
device.

Materials:
 Stored device from Section 7
 Arduino Uno MCU & USB

cable
 3.3V 4-Channel microSD card

module

 microSD card
 1 x Breadboard
 6 M/F jumpers
 8 M/M jumpers

Procedure:
1) To start this exercise, format your SD card in your computer. Then,

insert it into the microSD card module.
2) Build the circuit in Figure 8-19.
3) Let’s make a simple sketch to test out the card module. The sketch

will create a log file called “log.txt”, open it, write “I was here”, then
close the file. This will illustrate all the commands you will need for
logging a string to an SD card:

// Simple SD card program: open a file and write to it.
#include<SPI.h> // already installed in the Arduino IDE
#include<SD.h> // already installed in the Arduino IDE
byte CSPin=10; // pin 10 for chip select
String filename="log.txt"; //file name to create & open

void setup(){
 Serial.begin(9600); // Start the serial monitor
 if(!SD.begin(CSPin)){ // Initialize SD card
 Serial.println("Card error.");
 return;
 }
 Serial.println("Card initialized.");
}

void loop(){
 File myFile=SD.open(filename,FILE_WRITE); //open file
 if(myFile){ // if the file was opened successfully
 myFile.println("I was here.");//write msg to myFile
 myFile.close(); // close the file
 Serial.println("Data saved to SD card.");
 }else{
 Serial.println("Error writing to SD card.");
 }

Section 8

310

}

Once the file is open, you can write to it using the commands
myFile.print() and myFile.println(). These two commands are
similar to Serial.print() and Serial.println().

Notes:
 If the file doesn’t exist on the SD card, this sketch will create it.
 If the file already exists on the SD card, this method will open the

file and append data to it, without destroying existing data.
 Generally speaking, you should open the file each time you want to

write to it, then close the file each time you are done (if this routine
is inside a loop).

 myFile is an object name. You can replace it with whatever name
you like, and manage more than one file at a time in a sketch.

 To give you an idea of how much data a 1 GB card can hold, I created
an AC voltage logger, and ran it for a whole week, logging one
reading per second (date & time stamp, + AC voltage). The resulting
file was 20 MB, meaning that the SD card would run out of memory
in 50 weeks, and store over 30 million log entries!

4) Use the code from the logging sketch in this section to add SD card
data logging capabilities to your device.
 Add a timestamp (date and time) to each log line by using the

TimeLib.h library commands (see Arduino TimeLib.h Library for
more details).

 Create the output in .CSV format in the log file. Each line should
have the following information:
Date, Time, Voltage, Reading

 Run your device for a few minutes, to accumulate entries in your
log file.

 Try opening your SD card on your laptop and importing the .CSV
file into Microsoft Excel.

Data Filtering, Smoothing, and Logging 311

Learning Objectives for Section 8

After having attended this class, the student will be able to:
1) Visually identify circuit diagrams and Bode Magnitude Plots for

first-order filters: high-pass filters, low-pass filters, band pass filters,
and notch filters.

2) Select an appropriate RC combination to filter frequencies above or
below a cutoff frequency, using = .

3) Sketch a Bode Magnitude Plot for high-pass, low-pass, and band-
pass filters, based on provided cutoff frequencies.

4) Calculate and interpret signal-to-noise ratio in decibels.
5) Convert between microprocessor clock frequency and the

approximate time per clock step.
6) Use the TimeLib.h library commands to set the Arduino clock based

on epoch time.
7) Generate time stamps for log entries of acquired experimental data.
8) Schedule timed events using millis(), rather than using a

delay() to wait.
9) Add SD card logging functionality to any sketch.
10) Connect a logic shifter to communicate between modules operating

at different logic levels.
11) Calculate the mean, median, and mode for a set of data.
12) Implement an appropriate data smoothing strategy, considering the

smoothing method, and number of measurements.

Section 8

312

Section 8 - Station Content List

• Stored devices from Section 7
• 1 x microSD Card (1 GB) with

microSD to SD adapter
• 1 x 4-Channel Logic Shifter

Module
• 1 x microSD Card (1 GB) with

microSD to SD adapter
• 1 x 100 μF Electrolytic

Capacitor

• 1 x 1 μF Electrolytic Capacitor
• 1 x 100 nF ceramic capacitor

(capacitor code: 104)
• For Activity 8-1, resistors will

be provided during class.
• Digital oscilloscope (shared)
• Mini breadboard
• 15 M/M Jumpers
• 1 x Highlighter

Figure 8-20. Section 8 station setup.

SECTION 9

DESIGN PROJECT GUIDANCE

Introduction

This section will provide information pertaing to the design project of
this course. Suggested structure of the design project evaluation is provided
for the instructor, and various code snippets are provided for the student.

Design Project Selection

A design project will help solidify concepts learned throughout this text.
Design projects can be fun, intimidating, frustrating, and rewarding. Here
are some independent project ideas that students have explored in this
course in previous years:

Table 9-1. Some Design Project Ideas

• Laser light scattering photometer
• Turbidity meter
• Rolling ball viscometer (hall
sensor or laser break-beam)
• Tablet colour rejection circuit
• UV/Vis spectrophotometer
• Fluorimeter
• Automated microscope slide stage
drive (for cell counting)

• Melting Point Apparatus (with video)
• Fridge/freezer monitoring system
with notifications
• Flood sensor with notifications
• Tablet metal detector
• Stability chamber (heat and humidity
controlled)
• Automated mouse cage door with
laser break beam

Design Project Assessment

Although a good design never really feels “finished”, projects in this
course can be evaluated using different measures. Design projects by nature
have varying difficulty levels. Not all projects will resemble a completed
device by the end of the design project time in class.

Section 9

314

 The following is a suggested rubric for assessment of the design projects
in a small-class setting:

1) Design Project Proposal (10%)
2) In-class Project Demonstration (5-7 min/student) (5%)
3) Final Report (85%)

Design Project Proposal

In order to provide some scaffolding for your project, and to make sure

you are prepared with the resources to succeed, it will be helpful to come
up with a design proposal. A proposal should provide enough detail for a
launching point. You need to do some preliminary research to make sure
your design is feasible, relatively safe, and that the parts you need can be
easily sourced. The following elements can be present in a design proposal:

1) Design Project Summary and Description (3 marks)
• What will your device be called? Come up with a creative and

unique name.
• What will your device control and/or measure?
• What pharmaceutics principles will be explored?

2) Required Equipment (2 marks)
List specific equipment/items you think you will need. Try to be as
inclusive and specific as possible. When creating your equipment
list, consider:

• MCU board selection (e.g. Arduino Uno, Mega 2560, Nano,
Lily, Leonardo, NodeMCU, Linknode D1, ATtiny85)

• Power supply
• Data filtering (Low-pass or high-pass filter?)
• User interface (Buttons? Matrix touch pad? Serial interface?)
• Data collection, recording, and communications (e.g. Laptop

port recorder, SD card reader, internet logging
(thingspeak.com), bluetooth (e.g. HC-06 4-pin serial wireless
bluetooth RF transceiver module), nRF24L01, IR)

• Other equipment that will be required (e.g. breadboard,
jumpers, 9V battery, connectors, etc.)

3) Schedule of Planned Activities for Design Project Lab Periods (2
marks)
In order to make full use of laboratory time, create a schedule of the
specific tasks you plan on doing during each lab period. Consider:

• Design time;
• Testing Time;
• Calibrating;

Design Project Guidance

315

• Experimenting;
• Optimizing;
• Data collection and recording;
• The number of lab periods available.

4) Rough Equipment Schematic (2 marks)
Do some research on your selected topic, and sketch your own rough
schematic of the system you intend to create, including the
components you have listed in your Required Equipment section.
This will inevitably change. However, having a solid starting point
will provide you with a big advantage in starting your project.

• Include any preliminary circuit drawings.
5) References (1 mark)

• Keep track of and cite any references you have used to help come
up with your idea.

• You can build on the ideas of others. However, it is very
important to properly reference any libraries, schematics, ideas,
and strategies you researched from articles, datasheets, and
webpages. As this is a technical report, scientific articles and
datasheets are expected as references.

In-Class Project Demonstration

The last half hour of the last class period is designed as an informal

five-minute presentation of your design project to the rest of the class. The
presentation should constitute a small portion of the design project grade. It
will be a time where design ideas are shared and admired. Evaluation will
be based on:

• Innovation/Creativity (1%)
• Functionality/Completion (1%)
• Presentation Skills (2%)
• Question Period (1%)

Final Report

The final report brings all your design work together, presenting the

project results throughout the planning, design, and testing phases. The
following elements could be included in the final report:

Section 9

316

1) Introduction and purpose of your device (10 marks)
Include any background, and scientific principles involved. What is
the problem you are trying to solve?

2) Summary of Design Features (15 marks)
• How does your device work?
• Description of the main components
• Power supply strategy (e.g. USB via laptop, battery (if so, drain

time), USB wall charger, 12V wall charger)
• Data filtering strategy
• Data smoothing strategy
• Data recording strategy

3) Device Photos (5 marks)
• A close-up (detail) photo of your circuit, and a wide-view photo

of your project in action. Include an appropriate figure legend.
4) Detailed Circuit Diagram (10 marks)

Include a title or figure legend. Follow the conventions discussed in
this text (see Figure 1-35 for more details). This diagram should be
sufficiently detailed to allow someone to re-create your project
without having to ask you any clarifying questions (e.g. include all
resistor/capacitor values, include power rails on op-amps, label all
ICs and components).

5) Testing protocol (10 marks)
This section requires planning, while you are developing your
device. What tests did you plan to run? What constitutes a pass or a
fail? This should be a separate section, similar to the methods section
of a scientific paper.

• Even if your output is not quantitative (e.g. motor spins or
not) you can collect metrics on how many times the circuit
functions as expected, e.g.: Test operation of servo, n=10.
Document how many times servo functioned as expected
(report n passed / n total).

If your output is quantitative (e.g. a measurement) go beyond
capturing and reporting the raw data only. Consider capturing:

• A calibration curve, if you are collecting sensor data
• Mean ± %RSD of a standard (or typical) measurement
• A screenshot of the data collected

6) Experimental Results and Analysis (15 marks)
• Recorded results from your testing protocol
• Power consumption: Include the total measured current draw

when your device is on, and the total power your device

Design Project Guidance

317

consumes (including the microprocessor). You may combine
measured and theoretical values (with proper references).

• Diagrams, tables, figures, and example calculations as required.
7) Discussion of Errors and Project Refinements (5 marks)
8) Thévenin Equivalent Circuit (3 marks)

• Pick one component of interest in your circuit, and calculate the
Thévenin Equivalent circuit from the perspective of that
component. Show your work.

• If your simplest circuit is a Thévenin’s equivalent circuit (e.g. a
DC motor powered by a digital pin), measure and report the
output impedance of the digital pin in OUTPUT mode. This is
the Thévenin resistance from the point of view of the load.
Alternately, you can measure the input impedance of a digital pin
in INPUT mode, OR the input impedance of an analog pin. Show
your calculations. How does your measurement compare to a
literature value for the MCU?

9) References (2 marks)
• At least five references, used in introduction section, project

design, and analysis. Include references to libraries, datasheets
used, scientific articles, and credit for other people’s code if used.

10) Appendices (10 marks)
• Your sketch: you are expected to write the majority of your own

sketch, and provide proper references of code that you used from
libraries or other sources. See General Programming Etiquette.
and Programming Checklist in Section 4 for more guidelines
regarding your final sketch.

• A copy of your original design proposal.
• Any calculations required to design the circuit (e.g. gain, cutoff

frequency, battery life, etc.)

What if my design project doesn’t work?

If you are asking yourself this question, now is a good time to read the
preface of this manual, and the troubleshooting guide (and flowchart) in the
appendix. You will not likely finish your prototype; however, provided your
idea was well considered, researched, tested, and results recorded, an
incomplete device should not necessarily result in a poor evaluation. A
project that isn’t finished should not be confused with failure – but rather
deemed “in development”. Design is all about things not working the way

Section 9

318

you had imagined, which can be frustrating, but also very rewarding. There
is great opportunity here for creativity.

It is expected that after the many hours of in-class designing, building,
and testing, that at least part of your circuit works. If you are having extreme
difficulties with your project, changing or limiting the focus may also be
considered.

Another note is that you do not necessarily need to build something
overly complicated. Sometimes keeping your project simple is a much
better idea. The point of this project is for you to develop and test your own
ideas, and incorporate key concepts discussed in this course.

Code Snippets and Examples

Although it’s difficult to forecast the sorts of routines you might need
for your design project, the following example sketches will help you with
some common tasks, such as programming menus, buttons, and beeps. This
section will expand what you already know about microprocessing.

Serial Monitor Menu

If you are planning to use the serial monitor for your project as a means
of communicating with the user, you can set up a simple menu system to
allow the user to select between modes and functions of your program. The
following very simple sketch provides a basic routine to print a menu for
the user, then have them enter a choice as a char variable. An option is also
provided to enter an integer. Have a look at Parsing Serial Data in Section
5 for other ways of reading data from the serial monitor.

// Simple menu program
// Set serial monitor to "No line ending"
char choice='\0'; // initialize choice with NULL

void setup(){
 Serial.begin(9600);
 printMenu();
}

void loop(){
 if(Serial.available()){
 choice=Serial.read();
 } else if(choice=='r'){ // if user enters 'r'
 Serial.println("\nReading sample:");
 Serial.println(readSample());
 choice='\0'; //erase choice

Design Project Guidance

319

 printMenu(); //reprint user menu
 } else if(choice=='c'){ // if user enters 'c'
 Serial.println(readSample()); //continuous reads
 } else if(choice=='s'){ // if user enters 's'
 Serial.println("\nEnter servo value (0-255):");
 while(!Serial.available()); // wait for input
 int s=Serial.parseInt();
 s=constrain(s,0,255); // constrain to limits?
 Serial.println("Setting to "+(String)s);
 // commands for setting servo value go here
 choice='\0'; //erase choice
 printMenu(); //reprint user menu
 } else if(choice!='\0'){
 Serial.println("\nInvalid option.");
 choice='\0'; //erase choice
 printMenu(); //reprint user menu
 }
}

void printMenu(){ // user menu
 Serial.println("r: Read one sample");
 Serial.println("c: Continuous reads");
 Serial.println("s: Set servo value");
 Serial.println("Enter choice: ");
}

int readSample(){ // your sample reading routine
 return analogRead(A0);
}

The following sketch will read a single char variable from the serial
monitor (if available) and compare it to a list of possible responses using
switch case:

// Menu sketch using char variable input from serial
// monitor (switch case)

void setup(){
 Serial.begin(9600);
}

void loop(){
 if(Serial.available()){
 char choice=Serial.read();
 switch(choice){
 case 'A':
 Serial.println("You selected A.");
 //more commands can go here

Section 9

320

 break;
 case 'b': // char is case sensitive
 Serial.println("You selected b.");
 break;
 case 'c':
 Serial.println("You selected c.");
 break;
 case 10: // ignore the new line character
 break;
 default:
 Serial.println("Unknown input.");
 break;
 } // end of switch
 } // end if
}

An example of a serial monitor menu using strings is provided in
Comparing Strings, in Section 10.

Using EEPROM: Memory that Doesn’t Forget!

Any data acquired while a microprocessor is on will be erased from
memory after a power-down or reset. However, there is some more
permanent memory inside the ATmega328 chip called EEPROM.
EEPROM stands for Electrically Erasable Programmable Read-Only
Memory. It’s meant for long term storage, and will preserve the data even
after the microprocessor is powered down. The ATmega328 has 1 kb of
EEPROM. Writing to it and reading from it is a little more involved. Here
is a sketch that writes one byte to EEPROM and then reads it back:

// Example: Writing one byte to EEPROM, then
// reading it back from EEPROM
#include <EEPROM.h>
byte myNumber=240;

void setup(){
 Serial.begin(9600);
 //0 is EEPROM byte number (range is 0-1023)
 EEPROM.write(0,myNumber);
 byte temp = EEPROM.read(0);
 Serial.print("EEPROM byte 0 contains: ");
 Serial.print(temp);
}

void loop(){}

Design Project Guidance

321

Once this sketch is uploaded, the value 240 will remain at byte 0 in the
EEPROM until it is overwritten. If you would like to store more than a
single byte (for example, a slope and intercept), you can use the commands
EEPROM.put() and EEPROM.get() with structures. (Mellai 2018)
Structures are variable types organized in a group. See Structures in Section
10 for a more detailed discussion on how they are defined and used. The
following sketch will write the structure called calibration to EEPROM
memory:
// Example: Writing a struct to EEPROM
#include <EEPROM.h>
struct calibration{ // declare struct in global space
 float intercept; // intercept and slope are members
 float slope; // of the struct calibration
}; // Note: semicolon required here

calibration newRun; // use calibration structure for
 // newRun (to write to EEPROM)

void setup(){
 // this can go in the setup or loop function:
 newRun.intercept=0.0217; // intercept from newRun
 newRun.slope=1.4243; // slope from newRun
 EEPROM.put(0, newRun); // write newRun data @addr=0
}
void loop(){}

The following sketch will then read the data from EEPROM memory
(for example, in the setup() function when the board first powers up):
// Example: Reading a struct from EEPROM
#include <EEPROM.h>
struct calibration { // declare struct in global space
 float intercept; // intercept and slope are members
 float slope; // of the struct calibration
}; // Note: semicolon required here

calibration oldRun; // use calibration structure for
 // oldRun (to write to EEPROM)
void setup(){
 Serial.begin(9600);

EEPROM.get(0, oldRun); // read oldRun data @addr=0
Serial.println(oldRun.intercept,4);
Serial.println(oldRun.slope,4);

}
void loop(){}

Section 9

322

If you put these two ideas together, we can write a sketch that loads old
calibration curve data on startup, then allows for overwriting the stored data
with an updated slope and intercept:
// Example: EEPROM to load and update calibration data
#include <EEPROM.h>
byte buttonPin=2; // for a button

struct calibration{ // declare struct in global space
 float intercept; // intercept and slope are members
 float slope; // of the struct calibration
}oldRun,newRun;

void setup(){
 Serial.begin(9600);

pinMode(buttonPin,INPUT_PULLUP);
Serial.println("Loading stored calibration data.");
EEPROM.get(0, oldRun); // read oldRun at addr=0
Serial.println("Loading stored calibration data.");
Serial.println(oldRun.intercept,4);
Serial.println(oldRun.slope,4);

}

void loop(){
 if(digitalRead(buttonPin)==LOW){ // if button pushed
 Serial.println("Enter new intercept: ");
 while(!Serial.available()){} //wait for data
 newRun.intercept=Serial.parseFloat();
 Serial.println("Enter new slope: ");
 while(!Serial.available()){}//wait for data
 newRun.slope=Serial.parseFloat();
 Serial.println("Saving calibration data.");
 EEPROM.put(0, newRun); // write newRun at addr=0
 oldRun.intercept=newRun.intercept; // use new data
 oldRun.slope=newRun.slope; // use new data
 }else{
 float reading=analogRead(A0);
 reading=oldRun.intercept+reading*oldRun.slope;
 Serial.println(reading);
 delay(500);
 }
}

For more information: https://www.arduino.cc/en/Reference/EEPROM

Design Project Guidance

323

Generating Beeps to Alert your User: Arduino Tone Library

A piezoelectric crystal changes its shape
very quickly when a voltage is applied across
it – quickly enough to generate sound. A tone
library is available through the Arduino IDE
that generates a signal on any digital pin, to
create shrill, attention-getting tones through a
piezoelectric buzzer.

An interesting aspect of piezo electric
elements is that they also work in reverse. If
pressure is applied directly to the element, a
tiny voltage is created, and so piezoelectric crystals can also act as
microphones, and pressure sensors.

The following sketch will generate one-second 440 Hz beeps on a
piezoelectric buzzer (black item in Figure 9-1). For this sketch, the piezo
buzzer was inserted in pin 4 (for ground) and pin 7 (for signal), as that pin
spacing allows a generic piezo buzzer to be plugged directly into the Uno
female pin header (see Figure 9-2).

// Example: Tone Function
byte piezoPin=7;
void setup(){
 //set up Pin 4 as GND:
 pinMode(4,OUTPUT);
 digitalWrite(4,LOW);
 pinMode(piezoPin,OUTPUT);
}

void loop(){
 //440 Hz tone for 1 sec:
 tone(piezoPin,440,1000);
 delay(1000);
}

You can experiment with different
frequencies to find the loudest tone for
your specific piezo. Just be mindful of your user, or there might be
unintended consequences. A freezer monitoring system I developed was
unplugged over one weekend, because people didn’t appreciate the periodic
beeping.
For more information:
https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/

Figure 9-1. Piezoelectric
elements.

Figure 9-2. Piezoelectric buzzer
plugged directly into the Arduino
Uno.

Section 9

324

Programming One Button with Multiple Functions

Adding a button to a project isn’t difficult, especially with the
INPUT_PULLUP option for pinMode. However, adding a second button
for an infrequently used function can be circumvented by having the user
press the first button in a different way. For instance, holding a button down
during startup can be used to select between two modes of a device, or
holding a button down during normal operation for a given duration can be
used to trigger a different routine than a quick push. As long as the user is
provided with appropriate instructions, This can help minimmize the
number of components in your design.

The following sketch uses a single button to either take an analog
reading (short push), or zero the reading (long push).
// Two-function button sketch
const byte buttonPin = 12; // set button to pin 12
const byte sensorPin = A0; // sensor on pin A0
int blankVal=0; // to store analog reading

void setup(){
 Serial.begin(9600); // start serial monitor
 pinMode(buttonPin,INPUT_PULLUP); //input pullup mode
}

void loop(){
 Serial.println("Press: Reading. Hold: Zero.");
 while(digitalRead(buttonPin)==HIGH); // wait for push
 unsigned long buttonTimer=millis(); // start timer
 delay(1); //debounce
 bool longPush=false;
 while(digitalRead(buttonPin)==LOW){
 if((millis()-buttonTimer)>2000){ //timeout is 2 sec
 longPush=true;
 break; // stop waiting (break out of while loop)
 }
 }
 if(longPush){ // if button pushed for more than 2 sec
 Serial.println("*** ZEROING ***");
 delay(100);
 blankVal=analogRead(sensorPin); // get zero val
 Serial.println("Zeroing complete.");
 } else {
 Serial.println(analogRead(sensorPin)-blankVal);
 }
 delay(100); // debounce
}

Design Project Guidance

325

See Never Miss a Button Push Again in Section 10 for an example sketch
of attaching a button push to an Interrupt Service Routine, which will even
work during delay() statements.

Measuring Light Intensity

Depending on the sensitivity and reading speed required, there are many
different devices you can use to detect light intensity. This section provides
some details on how to wire up a few popular and low-cost options for light
sensors, including photoresistors (also called light dependent resistors, or
LDRs), photodiodes, phototransistors, light-to-frequency converters, and
ICs used to detect light.

Photoresistors

If you aren’t in a big hurry for a
measurement (for instance, if you
aren’t trying to transmit data using
light, or keep up with a stepper
motor during a wavelength scan),
photoresistors are an excellent,
sensitive, and reproducible way to
measure light. (Thal and Samide
2001, 1510-12) As light hits the
surface of a photoconductive cell, the
resistance will drop from the
megaohm range all the way to the ohm range. For visible-light LDRs, the
photoconductive material usually used is cadmium sulphide, absorbing light
wavelengths between 400-700 nm depending on their construction.
(Carolyn Mathas 2012) These components are dirt cheap, and available in
different sizes and sensitivities. The simplest way to wire up a photoresistor
is to wire it in series with a sense resistor to form a voltage divider, just like
the thermistor in Activity 4-1. A typical circuit diagram is presented in
Figure 9-4.

Figure 9-3. Photoresistors of various
sizes (5 to 12 mm).

Section 9

326

 = +

 = −

Figure 9-4. Voltage divider for a photoresistor.

A larger sense resistor (Rs) would lead to a greater change in Vout as light
hits the photoresistor. It may seem intimidating to look at a circuit diagram
and not see a specific resistor value given, but a good value for a sense
resistor really depends on the LDR selected and fiddling with the equipment
(light levels, etc.) until you find an acceptable working range. Start small
(e.g. 1K) and work your way up logarithmically (10K, 100K, 1M, 10M)
until you find useable dark and light response values that don’t saturate too
early or have too small a response for the analogRead() function or your
external ADC.

Photoresistors are used in many applications to turn on and off switches,
and even provide reference signals for loads. However, if a load is added to
Vout, it will change the balance of the voltage divider and alter the output
signal. How can you isolate Vout from the divider? One approach is to buffer
Vout with an op-amp. A more elegant approach is to abandon the voltage
divider, and use a transimpedance amplifier in Figure 9-5 (left). (Scherz
and Monk 2016)

Design Project Guidance

327

Figure 9-5. A transimpedance amplifier (left) converts current, Iin to voltage, Vout
with a gain of RF. An example (right) shows the LM358 amplifying the current
through an LDR, with a bias voltage Vb to raise the signal into the output voltage
swing of the amp (~0.1 V – 3.9V for op-amp supplies V+=+5V and V =GND).

This op-amp configuration converts a current to a voltage, so it is also called
a current-to-voltage converter. The theory is that as the photoresistor
resistance value drops when light hits it, the current will increase. This
current is connected to the inverting input of the op-amp, and flows through
feedback resistor RF. Consequently, the voltage drop across RF = ILDR×RF
(linearly dependent on the current). Adding a few more details in Figure 9-5
(right), we can connect the LDR to the inverting input and tie the lower rail
to ground. If the op-amp isn’t rail-to-rail, we can also add a bias voltage to
the non-inverting end, to boost up the signal to the working voltage output
swing of the amp. This potentiometer is adjusted while the signal is close to
ground (dark conditions), to bring it to the smallest non-zero output voltage.
If the signal is noisy, a capacitor can be wired across RF to form an active
high-pass filter (with cutoff frequency, =). Try different RF values
until your signal swings across your measured range, testing from
completely dark to light conditions, without maxing the signal out from your
op-amp or ADC. A value of 1M worked reasonably well when testing this
circuit with the equipment in the lab. Conveniently, the same two
configurations (voltage divider, and transimpedance amplifier) can be used
for many other types of light sensors.

As mentioned before, it takes some time for an LDR to equilibrate to a
change in light intensity – on the order of 10-100 milliseconds. This means
that if you would like to measure a change in signal that happens over a
shorter time span or faster frequency, the hysteresis of the device will slow
you down. I once tried to transmit a serial signal using laser light and an

Section 9

328

LDR as light receiver, without understanding the concept of signal rise and
fall time. On the receiver end, all I received was gibberish, even at the lowest
baud rate.

Photodiodes

Like a regular diode, a photodiode has a
very thin layer of P-type and N-type silicon.
The diode case is transparent to allow light to
pass through. As light hits the N-type silicon,
electrons will pass through the p-n junction,
and a tiny current is generated, that can be
measured. (Scherz and Monk 2016) Most
LEDs have this property to some extent (see
Figure 5-19), but photodiodes have been
engineered to maximize this effect. The
spectral range for a photodiode can be very
wide (e.g. the PD638C photodiode is
sensitive to light wavelengths spanning from
200-1200 nm). Black pastic casing may be used to limit the spectral range
to infrared. The PD638C has a rise and fall time of 50 ns, a significant
improvement over photoresistors. (Tsai and Everlight Electronics Co. 2005)

Figure 9-7. A photodiode wired in the voltage divider configuration with sense
resistor (left), and as an input for a transimpedance amplifier (right).

Figure 9-6. The PD638C
photodiode.

Design Project Guidance

329

Phototransistors

A phototransistor shares some
features of its BJT NPN-transistor
cousin, but the base terminal is replaced
with light, now acting as the transistor
switch. Photons cause electrons to jump
from p-type to n-type silicon, allowing
electrons to flow from the emitter to the
collector. The circuit diagram symbol
looks more like a transistor. Although the
construction is different than a visible
LED, phototransistors can look extremely
similar to conventional LEDs, so just like
of your electronic components, make sure
you label the storage bag well. The spectral ranges of these devices are
similar to photodiodes, and the sensitivities are comparable. An example of
an inexpensive phototransistor is the PT334-6C, a two-lead, 5 mm
phototransistor sensitive to light wavelengths spanning 400-1100 nm, with
a rise and fall time of 15 μs under typical conditions. (Everlight Electronics
Co. Ltd 2016) If you are looking to make the sensor more directional and
cut out stray light from the sides, it’s a good idea to wrap the phototransistor
body in a small loop of black electrical tape, so that the sensor only absorbs
light head-on (Figure 9-8, left).

As with the photoresistor and photodiode, the voltage divider and
transimpedance amplifier can be used to wire a phototransistor for
measuring light intensity (Figure 9-9).

Figure 9-9. A phototransistor wired in the voltage divider configuration with sense
resistor (left), and as an input for a transimpedance amplifier (right).

Figure 9-8. The PT334-6C
phototransistor (right), wrapped
in electrical tape (left).

Section 9

330

Integrated Packages

The high demand for reliable, sensitive light sensors has brought to
market some very interesting ICs that combine the above ideas in integrated
packages, requiring no extra parts and less fiddling with gain values. The
following are a few examples of such components.

Light to Frequency Converters

The TSL235R combines a photodiode with
a current-to-frequency converter on a single
CMOS chip. The result is a light-to-frequency
converter. This package has 3 pins (GND, Vcc,
and OUT) and only requires one digital pin to
be read from your microcontroller (Figure 9-
10). The output signal is a square wave
oscillating between Vcc and GND at a
frequency linearly proportional to light
intensity, ranging from the low hertz range at
low light conditions to about 100 kHz in bright
light. A small lens focuses light onto the
photodiode.

Measuring a frequency on a digital pin is
not something we have discussed so far. There are libraries available to do
this, such as FreqMeasure by Paul Stoffregen, available through the
Arduino IDE Library Manager. (Stoffregen 2015) The following sketch
TSL235R_lightsensor.ino works reasonably well, and is available for
download on the course website. The algorithm was adapted from a sketch
posted on the Arduino Playground by Rob Tillaard. (Tillaart 2011)

/* TSL235R Light to Frequency Converter
TSL235R - Uno:

Pin 1 - GND
Pin 2 - +5V
Pin 3 - Pin 2
*/
#define lightPin 2 // out pin of TSL235R
volatile unsigned long counter=0;

void setup(){
 Serial.begin(9600);
 pinMode(lightPin, INPUT); //use pin2 to read freq
}

GND Vcc OUT

Figure 9-10. TSL235R
light-to-frequency

Design Project Guidance

331

void loop(){
 // read sensor with 100 msec integration time:
 unsigned long freq=readTSL235R(100);
 Serial.println(freq); // return freq in Hz
}

unsigned long readTSL235R(int t){
 //t=100 msec: can measure up to ~140 kHz
 counter=0; // reset counter
 attachInterrupt(0, countFreq, RISING); //0: pin2
 delay(t); // wait a bit to collect data
 unsigned long Hz=counter*1000/t;
 detachInterrupt(0);
 return Hz;
}

void countFreq(){ // ISR for measuring frequency
 counter++; // increase counter on rising signal
}

This sketch attaches an Interrupt Service Routine (ISR) to count the
number of rising signals (from GND to +5V) on digital pin 2. ISRs provide
a much faster and easier way of handling this task than checking a pin state
through the digitalRead() function. For more information about how
ISRs are programmed, consult Interrupts in Section 10.

Another way to measure the frequency of a signal using the Arduino
IDE is by taking advantage of the pulseIn() function to measure the width
of one “pulse”:
pulseIn(pin number, HIGH or LOW, timeout in microsec);

If HIGH is selected as an option, this function waits for a digital pin to go
HIGH, then times how many microseconds it takes for the pin state to go
LOW again. If LOW is selected as an option, the logic is reversed, and a
low pulse is timed in microseconds. The timeout argument is optional,
defaulting to 1 second if no value is provided. A zero is returned if the
function times out before a pulse finishes. (Couto 2019) Have a look at how
pulseIn() is called in the following sketch. A mean data smoothing filter
could be invoked to help reduce measurement noise.

/* TSL235R Light to Frequency Converter
TSL235R - Uno:

Pin 1 - GND
Pin 2 - +5V
Pin 3 - Pin 2
*/

Section 9

332

#define lightPin 2 // out pin of TSL235R

void setup(){
 Serial.begin(9600);
 pinMode(lightPin, INPUT);
}

void loop(){
 unsigned long freq=readFreq(lightPin);
 Serial.println(freq); // return freq in Hz
}

unsigned long readFreq(byte pin){ // freq in Hz
 unsigned long t=pulseIn(pin,HIGH);
 unsigned long Hz=1000000/(2*t);
 return Hz;
}

Linear CCD

A CCD (or charge-coupled
device) is essentially an array of
photodiodes, oriented in a very fine
matrix of pixels. Digital scanners,
video cameras and still cameras
make use of CCDs to capture images
by focusing the image on the CCD
using lenses and possibly mirrors. The TCD1304 is an example of a linear
CCD that is relatively inexpensive, and useful in spectroscopic equipment.
(Haffner 2017) A linear CCD is a single row of sensors which measure light
intensity across one axis. Its ample 29.1 cm array offers an astounding 3648
pixels, running on a 1 MHz clock. The acquisition speed and quantity of
data pose challenges to the Uno’s memory and acquisition speed. (Toshiba
Corporation 2001) By speeding up the analogRead() function and
shuttling values to external SRAM memory, the Uno can acquire all 3648
pixels of data. However, a larger microprocessor (e.g. the Arduino Mega
2560) is better suited to the task. Alternately, the acquisition routine can be
shortened to collect 800 pixels without exceeding the Uno’s limited
memory. The TCD1304’s datasheet provides a recommended circuit
diagram to run the chip and transmit to a microcontroller. An example
sketch is available for download on the course website.

A typical spectrophotometer layout is a lightsource beam, split by a
monochrometer into separate wavelengths. The diffracted light is reflected

Figure 9-11. Toshiba TCD1304AP
linear CCD.

Design Project Guidance

333

or refracted through a narrow slit to select a specific wavelength. The beam
travels through a cuvette in its holder, and is then detected by a light sensor.
The wavelength is selected by rotating the diffraction grating with a stepper
motor. The diffraction grating could perhaps be a 1000 line/mm block, a
1389 lines/mm blank DVD, or a 658 lines/mm blank CD. (Balachandran
and Porter-Davis 2009) The DVD can be used as a reflective grating as is,
or split into two layers and the reflective layer peeled off with tape for use
as a transmission grating. A simplified schematic from the perspective of
the light could be:

light source diffraction grating slit sample detector
However, with a linear CCD, the undiffracted light can travel through the
sample, and be split after, directly onto the sensor. In this case, the entire
spectra can be collected without the need of a stepper motor:
 light source slit sample diffraction grating detector
This simplifies the design, as the stepper motor is no longer needed. Spectra
can be acquired much faster, as the entire spectra is collected at a single time
point.

Regardless of the sensor selected, wavelength can be calibrated using
spectrophotometric calibration filters, or a sample with expected peaks (e.g.
a holmium or didymium glass filter, or optical bandpass filters with known
passband wavelength ranges). Absorbance can be calibrated and confirmed
using neutral density filters. (Hellma 2008)

Daylight Sensors

There are a number of light sensor
modules that are calibrated to measure
daylight levels, and output measured light
levels as serial digital data (in lux).
Daylight sensors could be used for instance
to decide whether or not to switch an LCD
screen to night mode, or to brighten a screen
in harsh daylight for better visibility. When
this course first started, I stocked up on the
BHT1750 (GY-302) modules thinking that
they would make good sensors for
spectrophotometers. They functioned well when the incident light wasn’t
filtered, when the light source was pointed directly at the sensor through a
cuvette. However, these sensors lacked the sensitivity required after
splitting the light into separate wavelengths through a DVD disk layer or

Figure 9-12. BH1750 Light
Sensor module.

Section 9

334

diffraction grating. Nonetheless, these modules are small, inexpensive, and
function well at their designed tasks. Libraries are available to connect them
to the Arduino Uno, e.g. BH1750FVI by PeterEmbedded, available through
the Arduino IDE Library Manager. (PeterEmbedded 2018)

Laser Light Sensors

If your design project requires a
laser break-beam strategy, this small,
simple laser light receiver module is
calibrated to output +5V if visible laser
light is detected, and GND if it is not.
The response is binary, and quick. The
manufacturer warns against using it on
a sunny day, as the sensor can be fooled
by ambient light. If the circuit is
indoors, this isn’t so much a problem.
An on-board LED lets you know the
unit is powered. An interrupt routine
can be used to count duration, or
perhaps a do…while() loop with an exit condition of the beam being
broken. One student project involved using two of these sensors paired with
laser diodes in a rolling-ball viscometer.

Colour Sensor

The TCS3200 module is a low-cost
colour sensor. The colour sensor is an
8x8 photodiode array, with different
coloured filters covering different
diodes (red, green, blue, and no filter).
The sensor measures and reports how
much light gets through each colour
filter type. This is analogous to the way
our eyes detect colour, as the human eye
has different cones in the retina to detect
red, green, and blue light. The channels
that are returned (R, G, B) are the
amount of light absorbed from the
sensor, and their proportions can be
correlated to wavelength or perceived
colour (e.g. 520 nm, yellow, pink, etc.).

Figure 9-13. Low-cost laser light
receiver.

Figure 9-14. TCS3200 colour
detection module.

Design Project Guidance

335

The following sample sketch, adapted from Pamarthi Kanakaraja’s
forum post, provides a reading of the red, green, and blue channels of the
colour sensor. Applying a mean data smoothing filter over multiple readings
would help reduce signal noise. (Kanakaraja 2017)

/* TCS3200 color recognition sensor sketch
Color Sensor - Arduino Uno

 S0 -- Pin 8
 S1 -- Pin 9
 OE -- GND
 GND -- GND
 VCC -- +5V
 OUT -- Pin 10
 S2 -- Pin 12
 S3 -- Pin 11
*/
#define S0 8 // define pins here
#define S1 9
#define S2 12
#define S3 11
#define OUT 10
int RGB[3]={0,0,0}; // to store red, green, blue

void setup(){
 Serial.begin(9600);
 pinMode(S0,OUTPUT);
 pinMode(S1,OUTPUT);
 pinMode(S2,OUTPUT);
 pinMode(S3,OUTPUT);
 pinMode(OUT,INPUT);
 digitalWrite(S0,HIGH);
 digitalWrite(S1,HIGH);
}

void loop(){
 readColour(RGB); // read, store to RGB array
 Serial.print("R,G,B: ");
 Serial.print(RGB[0]);
 Serial.print(", ");
 Serial.print(RGB[1]);
 Serial.print(", ");
 Serial.println(RGB[2]);
 delay(500);
 }

Section 9

336

void readColour(int data[3]){
 digitalWrite(S2,LOW);
 digitalWrite(S3,LOW);
 data[0]=pulseIn(OUT,HIGH); //red
 digitalWrite(S2,HIGH);
 digitalWrite(S3,HIGH);
 data[1]=pulseIn(OUT,HIGH); //green
 digitalWrite(S2, LOW);
 data[2]=pulseIn(OUT,HIGH); //blue
}

Measuring Time Duration with Interrupts

Pins 2 and 3 have a special ability on the Arduino Uno – they can also
act as external interrupts. Interrupts can react independently from your
sketch, so that very small increments in time can be measured. The
following sketch could measure the time it takes a steel ball to roll between
two sensors in a rolling-ball viscometer, or a perhaps a bullet to travel
between two IR sensors in a ballistic chronograph. More background and
information regarding interrupts and ISRs are provided in Interrupts, in
Section 10.

// measuring time between two interrupt events
// variables changed in ISRs should be volatile:
volatile unsigned long time1=0UL;
volatile unsigned long time2=0UL;
unsigned long last1=0UL;
unsigned long last2=0UL;

void setup(){
 Serial.begin(9600);
 pinMode(2,INPUT_PULLUP); //this is INT0
 pinMode(3,INPUT_PULLUP); //this is INT1
 attachInterrupt(0,sensor1,FALLING); //pin 2
 attachInterrupt(1,sensor2,FALLING); //pin 3
}

void loop(){
 //a new time duration occurs when both times have
 //been updated, and time2 is later than time1.
 if(time1!=last1 && time2!=last2 && time2>time1){
 Serial.print("Timed event:");
 Serial.print(time2-time1);
 Serial.println(" usec");
 last1=time1;
 last2=time2;

Design Project Guidance

337

 }
}

void sensor1(){ // ISR for sensor 1
 time1=micros(); // get the time in microseconds
}

void sensor2(){ // ISR for sensor 2
 time2=micros(); // get the time in microseconds
}

Op-Amp Comparator with Bias Voltage: Turning an
Analog Signal into a HIGH or LOW Digital Level

The sketch that measures time duration above needs the sensor to output
a LOW voltage (GND) when the object of interest crosses the path of the
sensor and a HIGH voltage when it doesn’t. However, your sensor may not
provide this convenient a signal. What if a background sensor reading gives
you some middle-of-the-road signal, and only a modest change in voltage
when detecting the object? A comparator op-amp could help us here. We
could tie the signal to one input on the op-amp, and a bias voltage set by a
potentiometer to the other input.

This strategy is commonly used by many commercially-available sensor
modules marketed for the Arduino community. The modules tend to have
three pins: Vcc, GND, and Vout, as well as a trim potentiometer to adjust
the bias voltage. The circuit diagram in Figure 9-15 shows a typical setup.
The trim potentiometer R1 is adjusted so that the comparator output is HIGH
with a background reading, but that a meaningful change in the signal trips
it LOW. The logic can be reversed by exchanging the inputs.

In this way, you can set a threshold value Vb for any analog voltage
signal, and convert a value below this threshold to 0 to trigger an interrupt.
Even if the op-amp is not rail-to-rail, the range of Vout should be wide
enough to change the state of the digital pin. You could also use this circuit
with a regular digital pin, and the digitalRead() function. A low-pass
filter may be required before the signal if it is too noisy in relation to the
signal.

An advantage of this strategy is that you obtain a quick answer if all you
need is to detect the presence of something beyond a certain threshold (e.g.
sound, light, carbon dioxide, etc.). However, you lose the continuous
response of a sensor this way. An interesting design project used this
strategy to detect if a fridge door was left open, using an LDR inside the
fridge to detect lights. The LinkNode D1 microprocessor board that was

Section 9

338

used in this project has only one analog pin, which was already being used
to monitor temperature. This strategy allowed for light detection, even
though there were no free analog pins.

Figure 9-15. A comparator op-amp
with a carefully-selected bias
voltage changes a small signal
response into a digital signal
(HIGH or LOW).

Matrix Keypads and
LED Matrix Displays

If you need a series of
buttons or LEDs for your
device, you may find that you
quickly run out of digital pins.
One solution is to link these
devices together in a matrix of
rows and columns. The total
number of pins is then reduced
to reading a single pin for each
row and column of the matrix.
This section has two examples
of this: a matrix keypad, and an
LED matrix display.

Matrix keypads can be
purchased as modules, they are
salvageable from old electronics such as telephones, and they can also be

Figure 9-16. Mapping the pins of a matrix
keypad to rows and columns.

Design Project Guidance

339

built from scratch. In addition to providing the user with a better means of
selecting options, they can add novelty and style to a project.
 Your first task in adding a matrix keypad to your project is to look up or
figure out the keypad’s pin assignments for rows and columns. If the pin
numbers are unknown, draw a diagram like the one in Figure 9-16, with the
correct number of rows and columns for your keypad. Label the keypad
buttons at each row/column intersection.

Test continuity between any two pins, pressing every button on the
keypad until you find a button that completes the circuit. Write those pins
numbers down on the rows and columns of the diagram. (gratefulfrog 2013)
If no button push results in contact, then you have located pins on the same
row or column, or perhaps found unused pins. Keep trying different pairs of
pins until you have filled in all row and column pin numbers of your
diagram. The process is a bit tedious, but you are finished when all pins are
mapped, and you can successfully detect any button push based on your
completed map.

Once you have mapped out the row and column pin numbers, it’s time
to write the sketch. Many libraries are available to read matrix keypads,
which simplify coding. The following sketch will get you started.

// Matrix keypad example (4x4 matrix keypad)
#define ROWS 4 //#rows on matrix keypad
#define COLS 4 //#cols on matrix keypad
// Connections:
// Keypad row pins 1-4 to MCU pins 3-6
// Kepad col pins 5-8 to MCU pins 7-10
byte rowPins[ROWS] = {3, 4, 5, 6};
byte colPins[COLS] = {7, 8, 9, 10};

char keys[ROWS][COLS] = { //define keypad symbols
 {'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}
};

void setup(){
 Serial.begin(9600);
}

void loop(){
 char readKey=getKey();
 if(readKey!=0){
 Serial.println(readKey);
 delay(100); //short debounce

Section 9

340

 while(getKey()!=0); // wait until not pushed
 delay(100); // short debounce
 }
}

char getKey(){
 for(int i=0;i<ROWS;i++){
 pinMode(rowPins[i],INPUT_PULLUP);
 for(int j=0;j<COLS;j++){
 pinMode(colPins[j],OUTPUT);
 digitalWrite(colPins[j],LOW);
 if(digitalRead(rowPins[i])==LOW){
 return keys[i][j];
 }
 pinMode(colPins[j],INPUT);
 }
 }
 return 0; // if no key pushed, return null char.
}

Matrix keypads allow for more advanced user control, e.g. entering the
wavelength of a spectrophotometer, or the speed of a motor. They can also
be used to password protect your device.

You can organize LEDs in a
matrix display in a similar
manner, lighting them
individually by row and column
pins. The LEDs can be wired with
their cathodes chained together
by row, and their anodes chained
together by column. This is called
common row cathode. The
alternate arrangement,
connecting anodes together by
row and cathodes by column is
called common row anode.

 For common row cathode
LED matrices, Set the row of cathodes high for rows you don’t want to light
up, and the column of anodes low for columns you don’t want to light up.
Reverse this logic for the LED in the row and column you wish to light up.
This will light a single LED in your matrix. Accessing individual lights and
flashing them quickly enough can create the illusion that more than one
LED is on continuously, through the persistence of vision effect. The LED
matrix in Figure 9-17 was created by electronics enthusiast Jefferson Pun at

Figure 9-17. A custom LED matrix display.

Design Project Guidance

341

the Leslie Dan Faculty of Pharmacy. Prepackaged LED matrix displays are
also available. The following sketch will turn on a single LED in a 2-
dimensional LED matrix display (common row cathode).

// LED Matrix Example (4x4 LED matrix)
#define ROWS 4 //four rows (LED cathodes)
#define COLS 4 //four columns (LED anodes)
// Connections:
// LED row pins 1-4 to MCU pins 3-6
// LED col pins 5-8 to MCU pins 7-10
byte rowPins[ROWS] = {3, 4, 5, 6};
byte colPins[COLS] = {7, 8, 9, 10};

void setup(){
 writeLED(0,3); //light up LED on row 0, col 3
}

void loop(){
}

void writeLED(byte r, byte c){
 for(int i=0;i<ROWS;i++){
 pinMode(rowPins[i],OUTPUT);
 digitalWrite(rowPins[i],i==r?LOW:HIGH);
 for(int j=0;j<COLS;j++){
 pinMode(colPins[j],OUTPUT);
 digitalWrite(colPins[j],j==c?HIGH:LOW);
 }
 }
}

Charlieplexing LEDs

Another approach to increasing the number of LEDs you can control
with digital pins is called charlieplexing, a technique developed by Charlie
Allen at Maxim. (Maxim Integrated 2003) This strategy involves wiring two
LEDs in opposite directions between every possible pair combination of
digital output pins you select for LED control. This results in n pins being
able to drive n×(n-1) LEDs. To prevent unwanted LEDs from lighting up,
pins are strategically placed in INPUT mode. With an LED matrix
configuration, four digital pins would only control four LEDs (no savings
there). With charlieplexing, you could control up to twelve LEDs using the
same number of digital pins. Table 9-2 provides pin states and an example
circuit diagram using four charlieplexed pins. In order to use this technique
with a +5V logic MCU, the diodes need to be able to handle being reverse

Section 9

342

biased at 5V without getting damaged. Current-limiting resistors should be
used for each digital pin (110 Ω for typical LEDs, powered using 5V pins).

Table 9-2. Charlieplexing LEDs.

LED Pin 0 Pin 1 Pin 2 Pin 3
A 1 0 INPUT INPUT
B 0 1 INPUT INPUT
C 1 INPUT 0 INPUT
D 0 INPUT 1 INPUT
E 1 INPUT INPUT 0
F 0 INPUT INPUT 1
G INPUT 1 0 INPUT
H INPUT 0 1 INPUT
I INPUT 1 INPUT 0
J INPUT 0 INPUT 1
K INPUT INPUT 1 0
L INPUT INPUT 0 1

The following is an example sketch for charlieplexing four digital pins.

// Charlieplexing example: 12 LEDs using 4 pins
byte charliePins[4]={5,4,3,2}; // use pins 5,4,3,2

void setup(){}

void loop(){
 for(int i=0;i<12;i++){
 charliePlex(i,charliePins); // light up each LED
 delay(250);
 }
}

void charliePlex(byte LED, byte Pins[4]){
 //3 states for pins: 0:LOW, 1:HIGH, 2:INPUT
 byte charlieStates[12][4]={
 {1,0,2,2}, //a (pin 0-1)
 {0,1,2,2}, //b (pin 1-0)
 {1,2,0,2}, //c (pin 0-2)
 {0,2,1,2}, //d (pin 2-0)
 {1,2,2,0}, //e (pin 0-3)
 {0,2,2,1}, //f (pin 3-0)
 {2,1,0,2}, //g (pin 1-2)
 {2,0,1,2}, //h (pin 2-1)
 {2,1,2,0}, //i (pin 1-3)
 {2,0,2,1}, //j (pin 3-1)

Design Project Guidance

343

 {2,2,1,0}, //k (pin 2-3)
 {2,2,0,1} //l (pin 3-2)
 };
 for(int i=0;i<4;i++){ //set state of each pin
 if(charlieStates[LED][i]==2){
 pinMode(Pins[i],INPUT);
 }else{
 pinMode(Pins[i],OUTPUT);
 digitalWrite(Pins[i],charlieStates[LED][i]);
 }
 }
}

Need More Digital Pins?

With only 11 free digital pins on the Arduino Uno (plus 6 analog pins
that can be declared as digital output pins, see Using Analog Pins as Digital
Output Pins in Section 4), occasionally there are projects where you run out
of digital pins. For example, the lab’s LED clock has 37 elements to light
up in order to display the time. What then? This may appear to exclude the
Uno from the task; however, you can enlist the help of shift registers, which
could tie up as few as three digital pins on your MCU to do this job. Shift-
out registers provide you with more digital output pins, and shift-in
registers provide you with more digital input pins.

Shift-Out Registers

A shift-out register
provides more digital
output pins for your
project. In order to send
data to a shift-out
register, three digital pins
are required from your
microcontroller: a clock
pin, a latch pin, and a
data pin. A shift-out
register sets the state of
its digital output pins
(either HIGH or LOW)
based on data pulsed
from the microcontroller. The clock pin drums out the pace of data transfer,

Figure 9-18. A SN74HC595 shift-out register, with
digital output pins Q0 – Q7.

Section 9

344

the latch pin tells the shift register when you are sending new data to it, and
the data pin sends a series of high or low pulses, depending on how you
would like to set the states of the shift register’s digital output pins. Shift-
out registers can be daisy chained, so you can add as many digital output
pins as you need. The 74HC595 is a shift-out register that has eight settable
digital pins. It has a wide operating voltage of 2-6V. (Texas Instruments Inc.
2015)

Figure 9-18 provides a basic connection schematic for a single 74HC595
shift-out register. The next register (optional) could be connected from pin
9 to its data pin, and share the latch and clock pins of the first shift-out
register. Any of the MCU’s free digital pins may be used to control the shift
register. The selection of D4 to D6 in Figure 9-18 was arbitrary.

The Arduino IDE does not require an additional library to communicate
with shift registers. The following example sketch will write the HIGH and
LOW output states according to the byte pinStates to the shift-out register
in Figure 9-18. (Maw and Igoe 2006)
// Shift-out One Bit: SN74HC595
#define dataPin1 4
#define latchPin1 5
#define clockPin1 6

byte pinStates = 0b10101010; // example byte

void setup(){
 pinMode(dataPin1,OUTPUT);
 pinMode(latchPin1,OUTPUT);
 pinMode(clockPin1,OUTPUT);
}

void loop(){
 //shift out:
 byteOut(pinStates,dataPin1,latchPin1,clockPin1);
}

void byteOut(byte Q, byte DAT, byte LCH, byte CLK){
 digitalWrite(LCH, LOW);
 shiftOut(DAT, CLK, LSBFIRST, Q);
 //use MSBFIRST to reverse order
 //(Most Significant Bit First)
 digitalWrite(LCH, HIGH);
}

Design Project Guidance

345

If you would like to shift more than one byte out from daisy-chained
chips, revise the byteOut() function: turn Q into an array of bytes, set the
latch pin LOW, use the shiftOut() command for each byte to be shifted,
then set the latch bit HIGH. The following is an example sketch for two
daisy-chained shift-out registers.
// Shift-out Multiple Bits: SN74HC595
#define dataPin1 4
#define latchPin1 5
#define clockPin1 6
#define n 2 //# daisy-chained shift-out registers
byte pinStates[n] = {0b10101010, 0b11110000};

void setup(){
 pinMode(dataPin1,OUTPUT);
 pinMode(latchPin1,OUTPUT);
 pinMode(clockPin1,OUTPUT);
}

void loop(){
 byteOut(pinStates,n,dataPin1,latchPin1,clockPin1);
}

void byteOut(byte Q[], byte N, byte DAT, byte LCH, byte
CLK){
 digitalWrite(LCH, LOW);
 for(int i=N;i>=0;i--){
 shiftOut(DAT, CLK, LSBFIRST, Q[i]);
 }
 //use MSBFIRST to reverse bit order
 //(Most Significant Bit First)
 digitalWrite(LCH, HIGH);
}

Shift-In Registers

A shift-in register provides more digital input pins for your project. In
order to collect data from a shift-in register, three digital pins are required
from your microcontroller: a clock pin, a load pin, and a data pin. A shift-in
register reads the state of its digital input pins (either HIGH or LOW), then
sends that data to your microcontroller. The clock pin drums out the pace of
data transfer, the load pin tells the shift register when you want to read the
pin states, and the data pin sends the information to your MCU. Shift-in
registers can also be daisy chained so that you can have as many digital
input pins as you need. The 74HC165 is a shift-in register that has eight

Section 9

346

digital pins you can read the state of (so it sends 8 bits, or 1 byte of
information).

Figure 9-19 provides a
basic connection schematic
for a single 74HC165 shift-
in register. The next register
(optional) could be
connected from pin 10 to its
data pin, and share the load
and clock pins of the first
shift-in register. Any of the
MCU’s free digital pins may
be used to control the shift
register. The selection of D8
to D10 was arbitrary. (Texas
Instruments Inc 2015b)

The following example
sketch will read the pin
states from Q0 to Q7 from
the shift-in register in Figure
9-19. (Alves 2015)
 // Shift-in one bit: SN74HC165

#define data2 8
#define load2 9
#define clock2 10

byte pinStates=0b00000000; // to hold pin states

void setup(){
 Serial.begin(9600);
 pinMode(data2,INPUT);
 pinMode(load2,OUTPUT);
 pinMode(clock2,OUTPUT);
}

void loop(){
 pinStates=byteIn(data2,load2,clock2); //shift in
 Serial.println(pinStates,BIN); //print in binary
}
byte byteIn(byte DAT, byte LOAD, byte CLK){
 digitalWrite(CLK,HIGH);
 digitalWrite(LOAD,LOW);
 delayMicroseconds(5);
 digitalWrite(LOAD,HIGH);

Figure 9-19. A SN74HC165 shift-in register,
wired to send the pin states from digital input pins
Q0 – Q7. In this configuration, pin 15 has been
wired to ground, so the chip is constantly enabled,
requiring one less control wire from the MCU.

Design Project Guidance

347

 delayMicroseconds(5);
 byte Q=shiftIn(DAT,CLK,LSBFIRST);
 //use MSBFIRST to reverse bit order
 //(Most Significant Bit First)
 return Q;
}

The digital pins of a shift-in register float, just like the digital pins of an
MCU in INPUT mode. Consequently, you will need to use pull-up or pull-
down resistors if you plan on connecting switches to them. It is also
advisable to ground any input pins you don’t plan on using, as they will float
randomly if not connected.

If you would like to shift more than one byte in from daisy-chained
chips, revise the byteIn() function: turn Q into an array of bytes, set the load
pin LOW then HIGH (as before), then use the shiftIn() command for
each byte to be shifted. The following is an example sketch for two daisy-
chained shift-in registers.
// Shift-in multiple bits: SN74HC165
#define data2 8
#define load2 9
#define clock2 10
#define n 2 //# daisy-chained shift-in registers

byte pinStates[n]; // to hold pin states

void setup(){
 Serial.begin(9600);
 pinMode(data2,INPUT);
 pinMode(load2,OUTPUT);
 pinMode(clock2,OUTPUT);
}

void loop(){
 byteIn(pinStates,n,data2,load2,clock2); //shift in
 for(int i=0;i<n;i++){
 Serial.println(pinStates[i],BIN); //print in binary
 }
}

void byteIn(byte Q[], byte N, byte DAT, byte LOAD, byte
CLK){
 digitalWrite(CLK,HIGH);
 digitalWrite(LOAD,LOW);
 delayMicroseconds(5);
 digitalWrite(LOAD,HIGH);
 delayMicroseconds(5);

Section 9

348

 for(int i=0;i<N;i++){
 Q[i]=shiftIn(DAT,CLK,MSBFIRST);
 //use LSBFIRST to reverse order
 //(Least Significant Bit First)
 }
}

Bareduino – Running the ATmega328 Alone

In considering your design project, you might find that a serial
connection to a computer isn’t essential, that you are constrained for
physical space, that you would like to extend battery life, or perhaps you
would like to cut costs down. Smaller platforms, like the Arduino Nano, Pro
Mini or Micro offer more compact options for controlling your devices. One
option worth mentioning is that once a DIP version of the Arduino Uno is
programmed, you can remove the ATmega328 chip from the board and run
it separately – on a breadboard or PCB prototype board. This can potentially
save some much-needed space.

 How do you do this? You can just purchase an Arduino Uno (make sure
it has the DIP version of the MCU, see Figure A-5, Arduino Uno Pin-out
Diagram). Upload your sketch as you normally would, and then carefully
pry the microprocessor chip off the board with a small screwdriver or
microspatula. The next step is to place the microprocessor carefully on a
breadboard, then hook it up to a power supply. Provide a regulated supply
to pins 7 and 20 (3.3V-5V, or as low as 1.8V for the ATmega328P), and
connect the supply ground to pins 8 and 22. You can use the voltage
regulator from Activity 2-2: LM317 Voltage Regulator for this task. A few
extra components are needed to run the MCU alone: a 16 MHz crystal, two
22 pF ceramic capacitors, a 10K pull-up resistor for the RESET pin, and if
you like, a momentary switch to act as a reset button. A 10 μF capacitor can
be used to smooth out the power going in. The schematic can be as simple
as Figure 9-20. (Navarro 2010)

Design Project Guidance

349

Figure 9-20 Configuring the ATmega328 chip outside the Arduino Uno. Pin
numbers follow the physical layout of the DIP chip (Pin 1 is RESET).

The chip can be re-programmed by removing it from your circuit,

plugging it back onto the Arduino Uno board, then uploading your sketch
as usual. Alternately, you can use an external inexpensive chip programmer
like the USBtinyISP (Figure 9-21). The USBtinyISP powers the MCU
through the Vcc and GND pins, so hooking up a separate supply isn’t
necessary to program the MCU. To use an external programmer, make the
connections provided in Table 9-3. (Willistein 2015)

Table 9-3. Connecting the 6-pin ICSP connector from the USBtinyISP
to the ATmega328, or the ATtiny85. The red cable shows which side
Vcc is on.

USBtinyISP ATmega328 ATtiny85 Pin-out, female
connector of
USBtinyISP

MISO Pin 18 (D12) Pin 6 (D1)

SCK Pin 19 (D13) Pin 7 (D2)
RST Pin 1 (RESET) Pin 8 (RESET)
GND Pin 8 (GND) Pin 4 (GND)
MOSI Pin 17 (D11) Pin 5 (D0)
VCC Pin 7 (Vcc) Pin 8 (Vcc)

Section 9

350

Once the chip programmer is connected, you will need to select
USBtinyISP as the programmer in the Arduino IDE (Tools Programmer

 USBtinyISP) and then install the appropriate drivers for it. At the time
of publication, USBtinyISP drivers were available for download at:
https://learn.adafruit.com/usbtinyisp/drivers

To upload your sketch, hold down
the shift key while pressing the upload
button, or alternately, select “Upload
using programmer” from the Sketch
drop-down menu.

Having a chip programmer on
hand is a good idea. Sometimes when
an MCU is shorted and seems to be
unresponsive, it can be revived by re-
burning the bootloader, using a
programmer through the ICSP header
of the Arduino Uno. To do this in the
Arduino IDE, select the board options
you’d like under “Tools Board”,
then select “Burn Bootloader”. Or,
perhaps the somewhat fragile FTDI
chip on the Uno dies (the chip
responsible for creating a COM port
through USB). If this happens, you
can still upload a sketch directly to the
ATmega328 chip via the Uno’s ICSP
header, using a chip programmer.

You can also program other MCUs
like the ATtiny85 with the
USBtinyISP by connecting it to the appropriate pins. Connections between
the ICSP header and the DIP version of the ATtiny85 MCU are provided in
Table 9-3.

With a chip programmer, you have more options in burning the
bootloader, which will give you better control over how the MCU operates.
With an additional library added to the Arduino IDE Board Manager, you
can even enable the ATmega328’s internal 8 MHz oscillator, so that the
external crystal in Figure 9-20 is not needed. One such library is available
at https://github.com/oshlab/Breadboard-Arduino. (Burkett 2016)

Note that the pin-out in Table 9-3 is the mirror image of the ICSP
headers on the Arduino Uno (see Figure A-5, Arduino Uno Pin-out

Figure 9-21. USBtinyISP chip
programmer, useful for re-burning
the bootloader onto an MCU,
uploading a sketch through the ICSP
header on the Arduino Uno, or
programming an MCU directly
through the appropriate pins.

Design Project Guidance

351

Diagram), since it was designed to plug directly into these pins for quick
bootloader burning.

Learning Objectives for Section 9

After having completed the design project, the student will be able to:
1) Organize and propose the initial design concept for a novel project,

selecting appropriate components and thinking through the design
before starting to build it.

2) Propose a testing protocol to help define what a successful device or
project will look like.

3) Plan class time to optimize use of resources and ensure that project
deliverables are met.

4) Create a circuit diagram for your own project, using the conventions
defined in this text.

5) Write your own sketch to control your device, and
debug/troubleshoot/fine tune it depending on your results.

6) Practice and articulate an elevator pitch (3-5 minute highlight
speech) for your project to communicate the core elements and
principles of your device.

7) Document your results in a scientific technical document with
enough detail for someone else to replicate your project.

8) Properly cite any webpages, ideas, libraries, or sketches used in your
project.

SECTION 10

ADVANCED TOPICS IN PROGRAMMING

Controlling MCU Registers, Interrupts and Timers

The reason this section is not covered in the lectures of this course is that
none of the applications planned for the activities specifically required
bitwise operations, or explicitly accessing the registers of the ATmega328.
However, if you venture out into the world of other people’s code, bitwise
operations can be found in sketches that handle port manipulation, shift
registers, LED matrix displays, and many other places. There is much more
fun to be had by fiddling with an MCU’s registers.

Just as shift registers hold data to be shifted in or out, an MCU has
internal registers that hold data, controlling the way it works. Changing the
bit values in these registers will give you access to interrupts, sleep modes,
quicker reading of digital and analog pins, and some other amazing features
that will be covered here. However, it is important to understand that
microprocessors have very different architectures, and as such have
different registers. If you write a sketch changing bit values in registers for
the ATmega328, it will not work as expected with other MCUs. To start
down this path, we need a quick lesson on bitwise operations and how they
work.

Bitwise Operations

If you haven’t seen a bitwise operator, they look confusing, but are really
quite simple. Bitwise operators function like boolean operators, but perform
the logical test on each bit in a byte variable, separately. So far, we have
thought of a byte as a string of 0’s and 1’s in binary that represent a base 10
integer, e.g.:

 0b00100011 = 25 + 21 + 20 = 32 + 2 + 1 = 35.
However, we can also think of a byte as an array of 8 separate bits,

without having to declare them as an array. We can use the byte example
above to mean:

Advanced Topics in Programming 353

Pin 7: LOW, Pin 6: LOW, Pin 5: HIGH, Pin 4: LOW, Pin 3: LOW, Pin 2:
LOW, Pin 1: HIGH, Pin 0: HIGH
where Pins 0 to 7 are any arbitrary digital pins for some device, and are not
related to the digital pins on the Arduino Uno in any way. We use reverse
order of pins here because it becomes convenient later to think about the
smallest value pin being at the end of the byte, however it doesn’t really
matter for the purpose of this discussion.

To summarize, we can think of a byte as a holder of 8 independent bool
variables. This is a convenient way of thinking, because it simplifies
handling the information to and from your pins, which all work by shifting
bytes of data in and out in this exact way. Let’s define a byte variable called
myPins with the above example:

byte myPins = 0b00100011;

 MSB LSB
We call the last bit in a byte the least significant bit (LSB), and the first bit
the most significant bit (MSB). For the example byte myPins, the MSB is
0, and the LSB is 1. The C++ language has a way of handling each bit
separately. These are called bitwise operations, because they can work on
specific bits within a byte, even without disturbing the other bits.

It’s far easier to explain bitwise operators with examples, so let’s look
at the first operator: the bitwise AND.

Bitwise AND (&)

Let’s say you had a byte of data stored in myPins, and wanted to find
out if a specific bit (e.g. Pin 5) in myPins is set high or low. The bitwise
AND symbol, “&” (single ampersand) could help with this. You can use the
& operator with a “1” in only that bit position, and zeros everywhere else.
The results from a logical AND operation will result in zeros at every other
bit position, and a 1 in the 5th bit position if the state of Pin 5 is currently
HIGH (or 1):

byte pin5state = myPins & 0b00100000;
What this does is set up the logical comparisons in Table 10-1 (made
independently in each column):

Section 10

354

Table 10-1. Example bitwise AND comparison: finding out a pin state.

Bit 7 6 5 4 3 2 1 0

Variable Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
myPins 0 0 1 0 0 0 1 1
bit mask 0 0 1 0 0 0 0 0
AND result 0 0 1 0 0 0 0 0

This operation is called bit masking, because the second byte we defined,
called a bit mask, sets all other positions to zero. The bit mask hides all
values except for (in this case) bit 5, representing the state of Pin 5.

We now have a byte variable called pin5state with the “answer” to
whether Pin 5 is HIGH or LOW. If we display this number as an integer, we
will see the number 25=32. If we display it as a byte, we will see
0b00100000. However, what this number means now is “Pin 5 is HIGH”.

The serial monitor has the capability of displaying bytes instead of
decimal values. The command:

Serial.print(pin5state,BIN);

 will show 100000, and the command:
Serial.print(pin5state,DEC);

or:
Serial.print(pin5state);

will print a value of 32 to the serial monitor.
Putting this logic in the context of a program, you can check the status

of the Pin 5 bit using the following commands:
byte pin5state = myPins & 0b00100000;
if(pin5state==0b00100000){
 Serial.println("Pin 5 is HIGH.");
}else{
 Serial.println("Pin 5 is LOW.");
}

Bitwise OR (|)

The vertical bar symbol “|”, also called “pipe”, is the bitwise OR
operator. It can be used for setting specific bits HIGH. Let’s say that we are
using myPins now to SET the state of the bits in myPins, rather than read
them, and we would like to set Pin 3 HIGH without disturbing the states of
the other bits. The bitwise AND operator can’t help us here. If we were to
try this:

Advanced Topics in Programming 355

myPins = myPins & 0b00001000;

then Pin 3 would stay on only if it was already on, and all of the other pins
would turn off. The bitwise OR command will do this for us:

myPins = myPins | 0b00001000;

This command makes the logical comparisons in Table 10-2:

Table 10-2. Example bitwise OR comparison: setting a specific pin
HIGH.

Variable Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin1 Pin 0
myPins 0 0 1 0 0 0 1 1
bit mask 0 0 0 0 1 0 0 0
OR result 0 0 1 0 1 0 1 1

Pin 3 turned on without disturbing the states of the other bits.
What if we would like to turn Pin 3 OFF now without disturbing the

other pin states? We would need to be clever. The OR comparison will
always result in a HIGH state if the pin state is already HIGH. Can you
guess the answer without reading ahead?

We will need to use a bitwise AND, but in a slightly different way. We
want to turn off only Pin 3, and leave all of the other pins untouched, so the
logic will look like this:

myPins = myPins & 0b11110111;

The “1”s in each position preserve the existing state of the pins with AND: LOW
stays LOW, HIGH stays HIGH. The “0” for Pin 3 will change a HIGH to LOW, or
leave a LOW pin state LOW. This is shown in Table 10-3.

Table 10-3. Example bitwise AND comparison: setting a pin LOW.

Variable Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin1 Pin 0
myPins 0 0 1 0 1 0 1 1
bit mask 1 1 1 1 0 1 1 1
AND result 0 0 1 0 0 0 1 1

Pin 3 turned off without disturbing the states of the other bits in myPins.

Bitwise NOT (~)

The above example is a great lead-in to the bitwise NOT operator, “~”
(or “tilde”). The NOT operator inverts the state of each bit separately. So

Section 10

356

we could have coded the above example (turning off Pin 3 and leaving the
other pin states alone) like this:

myPins = myPins & ~0b00001000;
This would result in inverting 0b00001000 to the binary number
0b11110111. In the order of operations, a bitwise NOT is performed first
(before other bitwise operations), so be careful how you use it.

Bitwise XOR (^)

The carrot symbol “^” is the bitwise
XOR operator. Recall from Section 2 that
XOR (exclusive OR) returns TRUE only
when A and B are different (see Table 10-
4).

The bitwise XOR operator can toggle
(in other words, invert) the existing state of
a pin, without disturbing other pin states.
Using the example above starting with Pin
3 set LOW, let’s toggle the value of Pin 3 without disturbing the states of
the other bits, using bitwise XOR. We would use the following expression:

myPins = myPins ^ 0b00001000;

This command makes the logical comparisons in Table 10-5:

Table 10-5. Example bitwise XOR comparison: toggling a pin state
HIGH.

Variable Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin1 Pin 0
myPins 0 0 1 0 0 0 1 1
bit mask 0 0 0 0 1 0 0 0
XOR result 0 0 1 0 1 0 1 1

Pin 3 was toggled on without disturbing the other bits. If we ran the same
command again, Pin 3 would be toggled HIGH, without disturbing the states
of the other bits (Table 10-6).

Table 10-4. XOR logic
table.

A B XOR(A,B)
0 0 0
0 1 1
1 0 1
1 1 0

Advanced Topics in Programming 357

Table 10-6. Example bitwise XOR comparison: toggling a bit state
LOW.

Variable Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin1 Pin 0
myPins 0 0 1 0 1 0 1 1
bit mask 0 0 0 0 1 0 0 0
XOR result 0 0 1 0 0 0 1 1

Shifting Bits with “<<” and “>>”

With LEDs arranged in a matrix, you have likely seen the practicality of
bit shifting, probably in a subway, airport, or store window. LED arrays are
extremely popular in media and advertising. You can scroll a message quite
easily across a matrix of LEDs by bit shifting from one position to the next.
In C++, there are two shifting operators: << (left shift) and >> (right shift).
You specify (with an integer number) the number of spaces you would like
to shift the data. If we were to take the original byte myPins and shift it two
spaces to the left:

myPins = myPins << 2;
Serial.print(myPins,BIN);

the results would be shifted left two spaces:
Before: 0b00100011
After: 0b10001100 (shifted left 2 spaces)

If we were to take the original byte myPins and shift it one space to the
right:

myPins = myPins >> 1;
Serial.print(myPins,BIN);

the results would be shifted right one space:
Before: 0b00100011
After: 0b00010001 (shifted right 1 space)
What happens to the data on the end as it gets shifted off in to space?

The answer is: nothing! It disappears, forever forgotten. Like your lost sock
in the dryer. Bon voyage! Have a nice non-existence.

We can shift bits to simplify our code a bit as well. Taking the first
example in this section (bitwise AND), we wrote the following code:

byte pin5state = myPins & 0b00100000;
if(pin5state=0b00100000){
 Serial.println("Pin 5 is HIGH.");
}else{

Section 10

358

 Serial.println("Pin 5 is LOW.");
}

We could bit shift the value of pin5state so our comparison could be
against a 1 or 0 in the if() statement, rather than the value of 32:
byte pin5state=myPins&0b00100000; // bit mask for pin 5
pin5state=pin5state>>5; // shift bit right by 5 spaces
if(pin5state==HIGH){
 Serial.println("pin 5 is HIGH.");
}else{
 Serial.println("pin 5 is LOW.");
}

Note: Be careful not to confuse Boolean operators with bitwise operators
(Table 10-7).

Table 10-7. Boolean operators vs. bitwise operators in C++.

Operator Boolean Bitwise
AND && &

OR || |

NOT ! ~

XOR ^

For more information: https://playground.arduino.cc/Code/BitMath

Bitwise Operators: Short Forms

Putting all these ideas together, we can use C++ short forms for each
operation. You will see these short forms in other people’s sketches,
because they are faster to write. Table 10-8 provides a summary chart of
worked examples, coded in different short forms, on the example byte
variable called myPins with a starting value of 0b00100011. In the Result
column, the bits affected as a result of each command are in boldface.

Advanced Topics in Programming 359

Table 10-8. Short forms for common bitwise operations, with examples.

Function Syntax Result
Check the status
of pin 5, and
return a 0 if
LOW, and 1 if
HIGH.

pin5state=myPins>>5&1;
// >> happens before &

pin5state is 1

pin5state=bitRead(myPins,5);

Set pin 3 HIGH,
and set all other
pins LOW.

myPins=1<<3; myPins is
0b00001000 myPins=_BV(3);

Set pins 3, 4,
and 5 HIGH,
and set all other
pins LOW.

myPins=(1<<3)|(1<<4)|(1<<5); myPins is
0b00111000 myPins=_BV(3)|_BV(4)|_BV(5);

Set pin 3 LOW,
and set all other
pins HIGH.

myPins=~(1<<3);
// parentheses are needed.

myPins is
0b11110111

myPins=~_BV(3);

Set pin 3 HIGH,
leaving other
pin states alone.

myPins|=1<<3; myPins is
0b00101011 myPins|=_BV(3);

bitSet(myPins,3);
bitWrite(myPins,3,HIGH);

Set pins 3, 4,
and 5 HIGH,
leaving other
pin states alone.

myPins|=(1<<3)|(1<<4)|(1<<5); myPins is
0b00111011

myPins|=_BV(3)|_BV(4)|_BV(5);

Set pin 3 LOW,
leaving other
pin states alone.

myPins&=~(1<<3);
// parentheses are needed.

myPins is
0b00100011

myPins&=~_BV(3);
bitClear(myPins,3);
bitWrite(myPins,3,LOW);

Set pins 3, 4,
and 5 LOW,
leaving other
pin states alone.

myPins&=~((1<<3)|(1<<4)|(1<<5)); myPins is
0b00000011

myPins&=~(_BV(3)|_BV(4)|_BV(5));

Change the
state of pin 3,
leaving other
pin states alone.

myPins^=1<<3; myPins is
0b00101011,
and toggles
back to
0b00100011 if
the command is
run again.

myPins^=_BV(3);

Section 10

360

Change the
state of pins 3,
4, and 5,
leaving other
pin states alone.

myPins^=(1<<3)|(1<<4)|(1<<5); myPins is
0b00011011, and
toggles back to
0b00100011 if the
command is run
again.

myPins^=_BV(3)|_BV(4)|_BV(5);

Shift the bits in
myPins left by
1.

myPins<<=1; myPins is 0b1000110.
This is useful in
scrolling LED matrix
displays.

Shift the bits in
myPins right by
1.

myPins>>=1; myPins is 0b00010001.
This is useful in
scrolling LED matrix
displays.

Combine
myPins as a low
byte, with
another byte
variable (HB)
as a high byte.

byte HB=0b11111111;
unsigned int result=0;
result=(HB<<8)+myPins;

result is:
0b1111111100100011
(high byte combined
with low byte)

Extract a high
byte (HB) and a
low byte (LB)
from a larger
data type

int x=0b1111111100100011;
byte HB=x>>8;
byte LB=x;

result is:
HB: 0b11111111
LB: 0b00100011 int x=0b1111111100100011;

byte HB=highByte(x);
byte LB=lowByte(x);

There are more ways to accomplish the above tasks. The syntax can look
confusing, but gets easier once you get the hang of it. The order of
operations is important (~ then <<,>> then &,|), so if you are in doubt, use
brackets to be explicit about what you would like to happen first. Be sure to
leave descriptive comments in your code, to remind the future version of
yourself what you meant. Bitwise operations can look very cryptic.
For more information: http://playground.arduino.cc/Code/BitMath

Introduction to Port Manipulation

As you get into the inner workings of microprocessors for more
complicated projects (e.g. setting up interrupts, changing clock speeds,
modifying PWM frequencies, etc.), the registers in these microprocessors
are set using bitwise operations. Accessing these registers is called port
manipulation. Port manipulation needs to be coded carefully. Set a register
incorrectly, and you can accidentally permanently lock yourself out of a
microprocessor. Nonetheless, these commands are common in online

Advanced Topics in Programming 361

sketches, since programmers who commit a project to a specific
microprocessor chip (e.g. the ATmega328) understand that port
manipulation is faster, more flexible, and can unlock hidden abilities of that
microprocessor. Sometimes, it pays to talk directly to your microprocessor
by changing register values directly. Doing so cuts out all the programming
shrubbery of baked-in commands like digitalWrite(). How would you
know how to do any of this? The microprocessor’s full datasheet is a great
place to start. The datasheet will describe the purpose and function of each
bit in each register, and recommend how to approach setting and reading
these bits.

Worked Example: Fast Analog Read

It’s difficult to imagine 120 microseconds as being too long a duration
for an analog reading. However, if analog data needs to be acquired at a
faster rate, the speed of the analog reading can be controlled using the
ADCSRA register of the ATmega328. Just keep in mind that a quicker
analog reading will have less time to equilibrate, and may also be more
noisy. We can use this example of setting the ADCSRA register of the
ATmega328 chip for the general problem of “how do you set or clear
register bits?” Having a look at this register will help us put the code into
context, and we will better understand what is happening. We will
consequently understand how to change bit values in other registers. If you
would like to skip the discussion and you just need the code for a faster
analog reading, jump to the end of this section for the final sketch.

The ATmega328 has many internal registers that change the way it
works. Each register is usually 1 byte (or 8 bits) of information long, with
each bit holding either a 0 or a 1. What makes these bits important is that
they set different modes in the MCU. In fact, many of the commands we’ve
learned so far, e.g. digitalWrite(), digitalRead(), and
analogRead(), access the MCU-specific registers behind the scenes in
their rolled-up code. The Arduino IDE simplifies this process by creating
functions that are easy to use and work across the variety of supported
microprocessors, so you don’t have to look up and manipulate the registers
yourself. It makes programming the microprocessors accessible to the
hobbyist, because it simplifies coding, and allows the same sketch to work
across all supported microprocessors.

Let’s have a close look at the ADCSRA register, which controls how an
analog reading is taken. This information comes from 21.9.2 of the
ATmega328 datasheet (complete version):

Section 10

362

Table 10-9. Structure of the ADCSRA, the ADC control and status
register (Atmel Corporation 2016)

Bit 7 6 5 4 3 2 1 0
ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Here we learn that ADCSRA is an 8-bit register, and each bit it contains can
be read from or written to (R/W). The datasheet then provides a table on
how to set the ADC prescaler (see Table 10-10). The prescaler in this case
is the MCU clock frequency (16,000 MHz) divided by the ADC input clock.

Table 10-10. Setting the ADC Prescaler value using the ADPS0, ADPS1,
and ADPS2 bits (Atmel Corporation 2016)

ADPS2 ADPS1 ADPS0 Prescaler
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

The information in Table 10-10 comes from Table 21-5 of the ATmega328
datasheet.

How long should it take to acquire an analog reading if we change the
prescaler value? Here is where we need to do a little math. The default
prescaler set for the ADCSRA is 128 (the longest setting). The datasheet
states that a normal conversion for the ADC takes 13 clock cycles, in single
conversion mode. That means that at normal speed, the frequency of an
analog reading would be: = × 13 = 16,000,000 128 × 13 = 9615

and that a single reading would take 1/fADC = 0.000104 sec = 104 μsec.
 Now we get to the good part. Armed with this information, we get to
speed up our reading, first by picking the prescaler value we want, and then
by setting the register with the appropriate value bits. Let’s choose a
prescaler value of 4. That means the frequency of the ADC will be:

Advanced Topics in Programming 363

= 16,000,000 4 × 13 = 307692

and a single read should take 1/fADC = 3.25 μsec. That’s much faster! How
do we change the bit values in the register?
 We have already covered bitwise operations in the previous section. If
you haven’t had a look, now would be a good time to go back. Our goal is
to change only the three bits ADPS2, ADPS1, and ADPS0 in register
ADCSRA. We don’t want to disturb the states of the other bits in this
register. That could have unintended consequences. There isn’t any fancy
code required to access the MCU registers. Thankfully, the libraries
installed for the Arduino AVR Boards Library in the Boards Manager have
set up the registers as byte variables that you can access, just like a regular
byte variable. If we would like a prescaler value of 4, we see from Table
10-10 that we need ADPS2=0, ADPS1=1, and ADPS0=0. We call writing
1 to a bit “setting the bit”, and we call writing 0 to a bit “clearing the bit”.
Worded in another way, we need to set bit ADPS1, and clear bits ADPS2
and ADPS0, without disturbing the other bits. This can be as simple then as
the following three commands:

ADCSRA &=~0b00000100; // clear ADPS2 only
ADCSRA |= 0b00000010; // set ADPS1 only
ADCSRA &=~0b00000001; // clear ADPS0 only

These methods of changing bit values are provided in Table 10-8. From
Table 10-8, you can also see that the following code is equivalent:

ADCSRA &=~(1<<2); // clear ADPS2 only
ADCSRA |=(1<<1); // set ADPS1 only
ADCSRA &=~(1<<0); // clear ADPS0 only

Here is yet another way to set these bits:
ADCSRA &=~_BV(2); // clear ADPS2 only
ADCSRA |=_BV(1); // set ADPS1 only
ADCSRA &=~_BV(0); // clear ADPS0 only

These three different ways of setting bit values in the register all perform
the same changes. They clear bits ADPS2 and ADPS0, and set ADPS1. This
tells the MCU we would like a prescaler of 4. Not so bad! It gets even easier,
because to write the above code, you would need to remember that ADPS2
is bit 2 in the register, ADPS1 is bit 1, and ADPS0 is bit 0. The Arduino
AVR Boards Library also includes these individual bits as defined names,
so you can use them directly in your code. Stored in these names are the
positions in their respective bit registers, e.g. Serial.print(ADPS2);
will print “2” on the serial monitor. This means you don’t have to go back
to the datasheet to find out the position of the bits within their register. The
following code will also work:

Section 10

364

ADCSRA &=~_BV(ADPS2); // clear ADPS2 only
ADCSRA |=_BV(ADPS1); // set ADPS1 only
ADCSRA &=~_BV(ADPS0); // clear ADPS0 only

Our work is now done. You will find registers and their bit names referenced
in other sketches, and hopefully now this process is demystified for you.
People tend to use any of the methods above to set and clear bits in registers.
You can also define the following two #define functions at the top of your
sketch, which will take care of the bitwise operations for you:
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

These two functions are standard methods to set or clear a single bit in a
register. See https://playground.arduino.cc/Main/AVR for more details.

In the body of the sketch, you can use the defined functions sbi() and
cbi() so that you won’t be tripping through the logic. If you’d like to set
ADPS1, and clear ADPS2 and APDS0 in register ADSCRA for a prescaler
of 4, you can just type:

cbi(ADCSRA,ADPS2); // clear bit ADPS2 in ADCSRA
sbi(ADCSRA,ADPS1); // set bit ADPS1 in ADCSRA
cbi(ADCSRA,ADPS0); // clear bit ADPS0 in ADCSRA

or alternately:
cbi(ADCSRA,2); // clear bit ADPS2 in ADCSRA
sbi(ADCSRA,1); // set bit ADPS1 in ADCSRA
cbi(ADCSRA,0); // clear bit ADPS0 in ADCSRA

We are now ready to write our sketch. Even though we could use any of
the methods above to set the register, let’s test drive the sbi() and cbi()
functions for fun. This code was adapted from Bruno Portaluri’s Arduino
Blog. It reports the average reading time of 1000 analog readings. (Portaluri
2015)

// Fast analog read (prescaler=4, ~3.25 usec/read)
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

void setup(){
 cbi(ADCSRA,ADPS2); // clear bit ADPS2
 sbi(ADCSRA,ADPS1); // set bit ADPS1
 cbi(ADCSRA,ADPS0); // clear bit ADPS0
 Serial.begin(9600);
}

void loop(){
 unsigned int timer1, timer2;
 timer1=micros();

Advanced Topics in Programming 365

 for(int i=0;i<1000;i++)analogRead(A0);
 timer2=micros();
 Serial.println(float(timer2-timer1)/1000.0);
}

Fast Digital Read and Write

In addition to taking analog readings faster, accessing the registers
directly gives us blazing read and write speeds to the digital pins. There are
three banks of pins for the ATmega328 microprocessor:

Table 10-11. ATmega328 pin banks. (Atmel Corporation 2016)

Bit Bank D Bank B Bank C
7 (first) PD7: digital pin 7 PB7: crystal -
6 PD6: digital pin 6 PB6: crystal PC6: reset
5 PD5: digital pin 5 PB5: digital pin 13 PC5: analog pin 5
4 PD4: digital pin 4 PB4: digital pin 12 PC4: analog pin 4
3 PD3: digital pin 3 PB3: digital pin 11 PC3: analog pin 3
2 PD2: digital pin 2 PB2: digital pin 10 PC2: analog pin 2
1 PD1: digital pin 1 PB1: digital pin 9 PC1: analog pin 1
0 (last) PD0: digital pin 0 PB0: digital pin 8 PC0: analog pin 0
Bits shaded grey: do not set or change the values of these bits in their registers.

Each of the ATmega328’s pin banks have three registers controlling

them, with their bit numbering as indicated in Table 10-11. The nine
registers controlling all the pin states are presented in Table 10-12.

Section 10

366

Table 10-12. DDR, PORT, and PIN registers for the three pin banks of
the ATmega328. Bit DDD1=1 if the serial monitor is needed, otherwise
it can be cleared. (Atmel Corporation 2016)

Bit: 7 6 5 4 3 2 1 0
DDRD: DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1*

(=1, tx)
DDD0
(=0, rx)

PORTD: PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0
PIND: PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

DDRB: DDB7

(=0,xtl)
DDB6
(=0,xtl)

DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

PORTB: PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0
PINB: PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

DDRC: - DDC6

=(0,rst)
DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

PORTC: - PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0
PINC: - PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

The method for setting up and accessing a digital pin is to first set the data
direction register for the appropriate pin bank (DDR), then set the PORT
register of that bank to set the pin state, then look at the PIN register if you’d
like to read the pin. The bank letter (D, B, or C) ends each register’s name.

1) The DDR registers sets the data direction:
 If a bit in the DDRx register is 0: set pin to INPUT mode.
 If a bit in the DDRx register is 1: set pin to OUTPUT mode.

The three DDR registers are DDRD, DDRB, and DDRC (for Bank
D, B, and C, respectively).

2) The PORT registers are used to change the pin states:
 If a bit in the DDR register is 1 (OUTPUT mode), then:
o If that bit in the PORT register is 0: set pin LOW
o If that bit in the PORT register is 1: set pin HIGH

 If a bit in the DDR register is 0 (INPUT mode), then:
o If that bit in the PORT register is 0: no internal pull-up resistor
o If that bit in the PORT register is 1: INPUT_PULLUP mode
The three PORT registers are PORTD, PORTB, and PORTC.

3) The PIN registers are used to read the digital value of the pin. The
three PIN registers are PIND, PINB, and PINC.

Logistically, you need to access two registers to set a digital output pin, and
three registers to set and read a digital input pin. An example of which
registers to access and how to set the bit values for Pin 12 is provided in

Advanced Topics in Programming 367

Figure 10-1. If a pin is in a different bank, replace the letter B in register
and bit names with the pin bank letter.

Figure 10-1. Using port registers to set and read digital pin 12 (PB4), in Bank B.

OUTPUT Mode Example: This is how you could set Pin 13 (in Bank B)
to OUTPUT mode, then change its state to LOW. From Table 10-11, we see
that Pin 13 is bit 5 (PB5). Let’s try using the _BV() function here:

DDRB |= _BV(5); //Set pin 13 to OUTPUT
PORTB &= ~_BV(5); //Set pin 13 LOW

Alternately, we could write:
DDRB |= _BV(DDB5); //Set pin 13 to OUTPUT
PORTB &= ~_BV(PORTB5); //Set pin 13 LOW

INPUT Mode Example: This is how you could set Pin 4 (in Bank D) to
INPUT mode, and then read the state of the pin:
Pin 4 is on Bank D, so the three registers we need to access are DDRD,
PORTD, and PIND. Front Table 10-11, we see that Pin 4 is the fourth bit in
these registers. Let’s try using the shifting operators here:

DDRD &= ~(1<<4); // set pin 4 to INPUT
PORTD &= ~(1<<4); // no internal pull-up on pin 4
byte pin4state = PIND>>4&1; //read pin 4 state

INPUT_PULLUP Mode Example: Here is how you could set Pin 7 to
INPUT_PULLUP mode, and read the state of the pin, using port
manipulation:

DDB4=1
(in register DDRB)

Pin 12 state
set HIGH

Pin 12 state
set LOW PORTB4=0

Pin 12 in
INPUT_PULLUP

mode

Pin 12 in INPUT
mode

Pin 12 in
OUTPUT

mode

Pin 12 in
INPUT
mode

Read bit
PINB4 (in

register
PINB)

DDB4=0

PORTB4=1
(in register PORTB)

PORTB4=0

PORTB4=1

Pin 12 is in
Pin Bank B

Section 10

368

Pin 7 is on Bank D, so the three registers we need to access are DDRD,
PORTD, and PIND. Pin 7 is the first bit in these registers. Let’s try using
the cbi() and sbi() commands here, and write our own little function to
read a single bit from the register:

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define rbi(sfr, bit) (_SFR_BYTE(sfr) >> bit & 1))
cbi(DDRD,DDD7); // set pin 7 to INPUT (clear DDD7)
sbi(PORTD,PORTD7); // set pin 7 internal pull-up
byte pin7state = rbi(PIND,PIND7); //read pin 7

If you don’t like any of the short forms above, you can always use bit masks
the way we first introduced them:

DDRD &= ~0b10000000; // set pin 7 to INPUT
PORTD |= 0b10000000; // set pin 7 internal pull-up

Multiple Pins Example: Now that you see how to set, change, and read a
single digital pin, the real savings in port manipulation is the ability to set
more than one pin at a time. If you need to set many pins in the same bank,
you don’t need to set them individually. For example, if you’d like to set
Pins 2 to 6 to OUTPUT mode, set Pin 7 to INPUT mode, then set Pins 2-6
HIGH, you could cover those changes using the following two commands:

DDRD = 0b01111110; // DDD1=1(tx),DDD0=0(rx)
PORTD |= 0b01111100; // set pins 2-6 HIGH only

The equivalent set of commands without port manipulation would be more
time and memory consuming, requiring six pinMode() statements and five
digitalWrite() statements.

This approach may look like a lot of effort, but once you get the hang of
it, port manipulation is much faster than a digitalRead() or
digitalWrite() function. In fact, sometimes you might need to add a
small delay before reading a pin, because the pin state might not have had
the chance to change yet when you read the PIN register.
For more information: https://www.arduino.cc/en/Reference/PortManipulation

Interrupts

Throughout this text, we have mainly stuck with the digitalRead()
function to find out the state of a digital input pin. If you’d like to plan an
event around a digital pin changing state (for instance, a button push), you
can read a pin state inside the loop() function, and as long as the loop()
doesn’t take too long, then this strategy works but is analogous to the
persistent “are we there yet?” question from a small child on a long car ride.

Advanced Topics in Programming 369

Worse off, if you have a delay() within the loop, digitalRead() won’t
work for you during that delay. Fortunately, microprocessors also come
with pins that you can program as interrupts. This means that regardless of
which part of the sketch your microprocessor is running, if a pin state
change happens on an interrupt pin, we can use that to trigger a short,
specific user-defined function immediately. This special function is called
an Interrupt Service Routine (ISR).

The ATmega328 microprocessor has two
external interrupts: one on digital pin 2 (called
INT0), and one on digital pin 3 (called INT1).
These two pins have this special capability. To
illustrate, let’s set up a momentary switch on
digital pin 2, shown in Figure 10-1.

In the following sketch, we will set the state of
pin 2 to INPUT_PULLUP so that pushing the
switch sets pin 2 low, without requiring an
external pull-up resistor. That way, the state of pin 2 will be HIGH when
SW1 is open (unpushed), and LOW when SW1 is closed (pushed). The
following sketch declares digital pin 2 as an interrupt pin, and runs the void
function myISR() when the button is pushed:

// Example: Button push to trigger INT0
// variables changed in ISRs should be volatile:
volatile int counter=0;
void setup(){
 Serial.begin(9600);
 pinMode(2,INPUT_PULLUP); // internal pullup pin2
 attachInterrupt(0,myISR,FALLING);
 //for the ATmega328: 0=INT0(pin 2), 1=INT1(pin 3)
}
void loop(){
 Serial.print("Interruped ");
 Serial.print(counter);
 Serial.println(" times so far.");
 delay(1000); // ISRs can run during delays
}

void myISR(){ // Interrupt Service Routine (ISR)
 counter++; // increase the counter
 // more commands can go here
}

After the interrupt INT0 is attached to the Interrupt Service Routine
(ISR), whatever you write inside that routine (in this case the one called

Figure 10-2. Momentary
switch connected to
INT0 (digital pin 2).

Section 10

370

myISR) will be executed when pin 2 falls from HIGH to LOW (when SW1
is pushed).

Internal (Pin Change) Interrupts

In addition to the two external interrupts on digital pins 2 and 3, the
ATmega328 has internal interrupts, also called pin change interrupts on
other digital pins (see PCINT pins in Figure A-5, Arduino Uno Pin-out
Diagram). This feature is more easily accessible by using external libraries
such as Mike Schwager’s EnableInterrupt library, installable through the
Arduino IDE Library Manager. (Schwager 2018) We can modify the above
sketch to work on any PCINT pin on the Arduino (including the analog
pins), making use of the EnableInterrupt library:

// Example: Pin change interrupt (button on Pin 7)
#include <EnableInterrupt.h>
#define buttonPin 7 // digital pin 7 to read button
// variables changed in ISRs should be volatile:
volatile int counter=0;

void setup(){
 Serial.begin(9600);
 pinMode(buttonPin,INPUT_PULLUP);
 enableInterrupt(buttonPin,myISR,FALLING);
}

void loop(){
 Serial.print("Interruped ");
 Serial.print(counter);
 Serial.println(" times so far.");
 delay(1000); // ISRs can run during delays
}

void myISR(){ // Interrupt Service Routine (ISR)
 counter++; // increase the counter
 // more commands can go here
}

If you try running this sketch, you may notice that the interrupt triggers
more than once per button push because it is picking up all the switching
noise (bouncing). Since delay() won’t work inside the ISR, it can be
difficult to debounce a pin change with interrupts. The next example sketch
provides a way of debouncing with interrupts.

Note that a limitation of a pin change interrupt is that it cannot wake the
microprocessor from sleep mode.

Advanced Topics in Programming 371

Never Miss a Button Push Again

A carefully-crafted ISR means that you never have to worry about
missing a button push from your user. The following sketch attaches an ISR
to Pin 3. The ISR is triggered when a FALLING state is detected on Pin 3,
when the button is pushed. The ISR code sets buttonState low. Inside the
loop, the value of buttonState is tested: if 0, then state of the on-board
LED on Pin 13 is toggled with the bool variable ledState, there is a
debouncing delay, then buttonState is reset to 1. This means that only
the first falling signal will trigger the onboard LED to toggle its state.

There’s no digitalRead() function needed. Inside the loop, you just
check whatever value happens to be in the volatile variable buttonState:

// Example: Debouncing with interrupts
const byte buttonPin=3; //connect button to pin 3
volatile bool buttonState=1; //0:pushed,1:not pushed
const byte ledPin=13; //for on-board LED
bool ledState=LOW; //for led state

void setup(){
 pinMode(buttonPin, INPUT_PULLUP);
 pinMode(ledPin, OUTPUT); // set ledPin to output
 // attach buttonISR to pin 3, falling:
 attachInterrupt(1,buttonISR,FALLING);
}

void loop(){
 if(buttonState==0){ // if button was pushed
 ledState=!ledState; // toggle led state
 digitalWrite(ledPin,ledState); //write led state
 delay(500); // debounce
 buttonState=1; // reset buttonState
 }
}

void buttonISR(){ // ISR for monitoring button push
 buttonState=0; // set buttonState to 0 (pushed)
}

An ISR need not be triggered only when a pin state falls from high to
low. The four options of triggering an Arduino Uno ISR are summarized in
Table 10-13. Some microprocessors also have a HIGH option.

Section 10

372

Table 10-13. Trigger options for interrupt service routines.

Interrupt Trigger Option in
attachInterrupt()

ISR will run when…

LOW the interrupt pin state is LOW.

HIGH (setting not available
for the ATmega328)

the interrupt pin state is HIGH.

CHANGE the interrupt pin state changes
(from LOW to HIGH, or from HIGH to LOW).

FALLING the interrupt pin state changes (falls) from
HIGH to LOW.

RISING the interrupt pin state changes (rises) from LOW
to HIGH.

A big advantage of using an interrupt is the blazing response time. The

microprocessor reacts as quickly as possible to the pin state change, without
having to repeatedly use the digitalRead() command in a loop,
continuously asking an input pin for its state. For example, you could use
an interrupt to trigger taking a photo of a bullet in mid-air, or to time a bullet
travelling through a calibrated distance, to calculate its velocity (See Section
9, Measuring Time Duration with Interrupts).

The interrupt routine will run regardless of any delay() or other
commands running in the loop. So their triggering is… bulletproof!

Rules for Writing an Interrupt Service Routine

There are a few recommendations and restrictions on how to write an
ISR: (Gammon 2012)

 The ISR is a special kind of function that must be void. It shouldn’t
return a value, and you can’t pass values into the ISR as arguments.

 No serial commands should go inside the ISR, unless there is zero
chance of the ISR running on top of itself (this happens when the
ISR is triggered before the last ISR has finished running).

 Functions that rely on timers won’t work inside the ISR, so don’t use
commands like delay(). The delayMicroseconds() command
will work inside an ISR. The millis() command won’t increment
inside the ISR, so don’t try to call it more than once .

 All variables you would like to change within the ISR should be
declared in global space, and have the word volatile in front of
their declaration (e.g. volatile int counter=0;). The

Advanced Topics in Programming 373

command volatile protects the variable from being removed
during compiling, so that it can be accessed by the ISR.

 The ISR function should be as short as possible.
External interrupts can be used to wake a microprocessor up from sleep

mode. This is something you need to take into consideration if you plan on
making your circuit battery powered, because putting a microprocessor in
sleep mode will prolong your battery life considerably (see Section 10,
Sleep Mode for more details).

You can attach the ATmega328’s two external interrupts to different
ISRs, each with different triggers, and have them working simultaneously.
The microprocessor will queue them if they are triggered too close together.
If you would like to turn off an interrupt in the middle of a sketch so the ISR
will no longer be triggered, you can use the detachInterrupt(pin)
command. For example, the command to detach INT0 would be:

detachInterrupt(0);

There are two more interrupt commands you can use, which operate on
all interrupts:

cli(); // disables all attached interrupts

This command prevents all interrupts from triggering. You want to do this
before running code that you are worried might get interrupted. It is like a
do-not-disturb mode for interrupts. To undo this quiet period, use the
command:

sei(); // re-enables all attached interrupts

We will use both these commands in the next section. In the Arduino IDE
language, the following two commands are equivalent: interrupts() and
noInterrupts().
For more information: https://www.arduino.cc/en/Reference/AttachInterrupt

Customized Frequencies for PWM

Digital pins 3, 9, 10, and 11 on the Arduino Uno are able to generate
PWM frequencies at about 490 Hz by default, and pins 5 and 6 generate
PWM frequencies at about 980 Hz. (Mellai 2017b) These frequencies can
be customized, by altering the settings of the timers that control them.
Microprocessors have built-in timers that can be manually set, and can work
in different modes. The ATmega328 microprocessor has three timers: Timer
0, Timer 1, and Timer 2. Timer 0 controls pins 5 and 6, along with the Uno’s
time-related functions, e.g. delay(). Timer 1 controls pins 9 and 10. Timer
2 controls pins 3 and 11. It’s well worth discussing the structure of these

Section 10

374

timers in relation to how they work, because that will help you set and
control them to do your bidding. We will deal with each timer separately.
Example code will be provided for how to set each timer.

Timer 0

Timer 0 is an 8-bit timer which functions as a counter, that counts from
0 to 255. This timer swings into action when you ask the Uno to set a PWM
signal on pins 5 or 6 (or both). In fast PWM mode, you can adjust the
frequency of the PWM signal by changing the settings of Timer 0. Use the
following code in your sketch to set a custom frequency on Pin 5:
//Fast PWM on Pin 5: (e.g. 390 kHz)
//Formula: frequency=fclk/((OCR0A+1)*N)
pinMode(5, OUTPUT);
TCCR0A=_BV(COM0A1)|_BV(COM0B1)|_BV(WGM01)|_BV(WGM00);
TCCR0B=_BV(WGM02); //fast PWM mode(WGM02,WGM01,WGM00)
//uncomment for your desired prescaler:
TCCR0B|=_BV(CS00); //N=1
//TCCR0B|=_BV(CS01); //N=8
//TCCR0B|=_BV(CS01)|_BV(CS00); //N=64
//TCCR0B|=_BV(CS02); //N=256
//TCCR0B|=_BV(CS02)|_BV(CS00); //N=1024
OCR0A=40; //counter limit: 255
OCR0B=20; //pin 5 duty cycle=OCR0B/OCR0A (lim:OCR0A)

The commands in the above code set the Timer Counter/Control
Registers that control Timer 0 (TCCR0A and TCCR0B), as well as the
output compare registers OCR0A and OCR0B, which tell Timer 0 when to
reset. For a more in-depth discussion about the structure of these registers,
have a look at the ATmega328 datasheet. (Atmel Corporation 2016) The
prescaler makes every increment of the timer increase after a multiple of
ticks from the processor’s clock instead of after each tick, which makes the
timer count up more slowly. Think about a prescaler of 2 like telling the
second hand on your watch to tick once every two seconds, instead of once
per second. This means your watch would now take two hours to tell you
that one hour elapsed. The Uno’s microprocessor speed is 16 MHz, which
works out to 62.5 nanoseconds per tick. With a prescaler of 1, when Timer
0 counts to 10, 625 nanoseconds have passed. However, if you set the
prescaler of Timer 0 to 8, then 8×10×62.5 nanoseconds have passed, or 5
microseconds. This allows you to use Timer 0 over a longer range before it
resets (when it gets to 255, it will automatically reset back to 0, since it is
only an 8-bit timer).

Advanced Topics in Programming 375

Setting OCR0A in the above code will determine the frequency of the
PWM cycle, according to the formula: = × (0 + 1)

where fclk=16,000,000 Hz and N is the prescaler you selected by
uncommenting the appropriate line in the above code. The value of OCR0A
should not exceed 255, the maximum value of Timer 0.

The duty cycle for this signal will be defined by OCR0B and calculated
by the formula: duty cycle=OCR0B/OCR0A. The value of OCR0B should
not exceed the value of OCR0A. The example code above creates a signal
on Pin 5 with a frequency of 390 kHz and a duty cycle of 50%. Here is a
table of example frequencies you can generate by changing OCR0A:

Table 10-14. Fast mode PWM frequencies in Hz for Pin 5 (Timer 0).

OCR0A N=1 N=8 N=64 N=256 N=1024
1 8,000,000 1,000,000 125,000 31,250 7,813
5 2,666,667 333,333 41,667 10,417 2,604

10 1,454,545 181,818 22,727 5,682 1,420
20 761,905 95,238 11,905 2,976 744
40 390,244 48,780 6,098 1,524 381
60 262,295 32,787 4,098 1,025 256
80 197,531 24,691 3,086 772 193

100 158,416 19,802 2,475 619 155
120 132,231 16,529 2,066 517 129
140 113,475 14,184 1,773 443 111
160 99,379 12,422 1,553 388 97
180 88,398 11,050 1,381 345 86
200 79,602 9,950 1,244 311 78
255 62,500 7,813 977 244 61

From Table 10-14, you can see that a PWM frequency can be generated

anywhere from 8 MHz all the way down to 61 Hz (about once per second).
For a Fast PWM signal on Pin 6 only, here is example code:
//Fast PWM on Pin 6: (e.g. 727 kHz)
//Formula: frequency=fclk/((OCR0A+1)*2*N)
//Duty cycle fixed at 50% in this mode.
pinMode(6,OUTPUT);
TCCR0A=_BV(COM0A0)|_BV(WGM01)|_BV(WGM00);
TCCR0B=_BV(WGM02); //fast PWM mode(WGM02,WGM01,WGM00)
//uncomment for your desired prescaler:
TCCR0B|=_BV(CS00); //N=1
//TCCR0B|=_BV(CS01); //N=8

Section 10

376

//TCCR0B|=_BV(CS01)|_BV(CS00); //N=64
//TCCR0B|=_BV(CS02); //N=256
//TCCR0B|=_BV(CS02)|_BV(CS00); //N=1024
OCR0A=10; // counter limit:255

This code generates a 727 kHz square wave on Pin 6 with a 50% duty
cycle. The OCR0A in this mode sets the frequency according to Table 10-
15:

Table 10-15. Fast mode PWM frequencies in Hz for Pin 6 (Timer 0).

OCR0A N=1 N=8 N=64 N=256 N=1024
1 4,000,000 500,000 62,500 15,625 3,906
5 1,333,333 166,667 20,833 5,208 1,302

10 727,273 90,909 11,364 2,841 710
20 380,952 47,619 5,952 1,488 372
40 195,122 24,390 3,049 762 191
60 131,148 16,393 2,049 512 128
80 98,765 12,346 1,543 386 96

100 79,208 9,901 1,238 309 77
120 66,116 8,264 1,033 258 65
140 56,738 7,092 887 222 55
160 49,689 6,211 776 194 49
180 44,199 5,525 691 173 43
200 39,801 4,975 622 155 39
255 31,250 3,906 488 122 31

If you wish to generate fast PWM signals for both Pins 5 and 6 at the same
time, the following code could be used:
//Fast PWM on both Pins 5 and 6 (e.g. 5,6: 62.5 kHz)
//In this mode, timer 0 always counts to 255.
//Formula: frequency=fclk/(256*N). This formula has
//more limited frequency settings.
pinMode(5,OUTPUT);
pinMode(6,OUTPUT);
TCCR0A=_BV(COM0A1)|_BV(COM0A0)|_BV(COM0B1)|_BV(COM0B0)|
_BV(WGM01)|_BV(WGM00); // inverting mode, fast PWM
//uncomment for your desired prescaler:
TCCR0B=_BV(CS00); // N=1 (62.5 kHz)
//TCCR0B=_BV(CS01); // N=8 (7.8 kHz)
//TCCR0B=_BV(CS01)|_BV(CS00); // N=64 (976 Hz)
//TCCR0B=_BV(CS02); // N=256 (244 Hz)
//TCCR0B=_BV(CS02)|_BV(CS00); // N=1024 (61 Hz)
OCR0A=50; //pin 6 duty cycle=(255-OCR0A)/255 (lim:255)
OCR0B=128; //pin 5 duty cycle=(255-OCR0B)/255 (lim:255)

Advanced Topics in Programming 377

When both pins are used simultaneously, the counter will run to the end
then reset, and the only way to change the frequency is by changing the
prescaler. The duty cycles of Pins 5 and 6 are set using OCR0B and OCR0A,
respectively. The example code generates a 62.5 kHz signal on Pin 6 with a
duty cycle of 80%, and a 62.5 kHz signal on Pin 5 with a duty cycle of 50%.

A disadvantage of using Timer 0 is that the Arduino’s time functions
(e.g. delay()) will be affected, and time measurements will return wonky
results.

Timer 1

Timer 1 controls PWM timing on Pins 9 and 10. It is unrelated to the
Uno IDE’s timer functions, so you can safely tinker with its settings without
the worry of impacting commands like delay() in your sketch. It does get
called by the servo library, so using Timer 1 may conflict with servo control.
Timer 1 is a 16-bit timer, meaning that it can count as high as 65535
(resulting in much slower programmable frequencies possible). It is
controlled with registers TCCR1A and TCCR1B to set the mode and
prescaler values. The following example code sets Pin 10 to 390 KHz with
a 25% duty cycle using Timer 1’s comparison registers, OCR1A and
OCR1B:
//Fast PWM on Pin 10: (e.g. 390kHz, 25%duty)
//Formula: frequency=fclk/((OCR1A+1)*N)
pinMode(10, OUTPUT);
TCCR1A=_BV(COM1A1)|_BV(COM1B1)|_BV(WGM11)|_BV(WGM10);
//fast PWM, 10bit resolution
TCCR1B=_BV(WGM13)|_BV(WGM12); // CTC mode
//uncomment for your desired prescaler:
TCCR1B|=_BV(CS10); //N=1
//TCCR1B|=_BV(CS11); //N=8
//TCCR1B|=_BV(CS11)|_BV(CS10); //N=64
//TCCR1B|=_BV(CS12); //N=256
//TCCR1B|=_BV(CS12)|_BV(CS10); //N=1024
OCR1A=40; //counter limit: 65535
OCR1B=10; //pin 10 duty cycle=OCR1B/OCR1A (lim:OCR1A)

The following table illustrates the range of frequencies possible when
setting different prescaler values for Timer 1 with OCR1A.

Section 10

378

Table 10-16. Fast mode PWM frequencies in Hz for Pin 10 (Timer 1).

OCR1A N=1 N=8 N=64 N=256 N=1024
1 8,000,000.0 1,000,000.0 125,000.0 31,250.0 7,812.5

10 1,454,545.5 181,818.2 22,727.3 5,681.8 1,420.5
50 313,725.5 39,215.7 4,902.0 1,225.5 306.4

100 158,415.8 19,802.0 2,475.2 618.8 154.7
500 31,936.1 3,992.0 499.0 124.8 31.2

1000 15,984.0 1,998.0 249.8 62.4 15.6
5000 3,199.4 399.9 50.0 12.5 3.1

10000 1,599.8 200.0 25.0 6.2 1.6
50000 320.0 40.0 5.0 1.2 0.3
65535 244.1 30.5 3.8 1.0 0.2

The following code sets a 24.4 kHz PWM signal on Pin 9:
//Fast PWM on Pin 9: (e.g. 24.4 kHz)
//Formula: frequency=fclk/((OCR1A+1)*2*N)
//Duty cycle fixed at 50% in this mode.
pinMode(9, OUTPUT);
TCCR1A=_BV(COM1A0)|_BV(WGM11)|_BV(WGM10);
TCCR1B=_BV(WGM13)|_BV(WGM12); //fast PWM mode
//uncomment for your desired prescaler:
//TCCR1B|=_BV(CS10); //N=1
TCCR1B|=_BV(CS11); //N=8
//TCCR1B|=_BV(CS11)|_BV(CS10); //N=64
//TCCR1B|=_BV(CS12); //N=256
//TCCR1B|=_BV(CS12)|_BV(CS10); //N=1024
OCR1A=40; // counter limit: 65535

Like Pin 6, the duty cycle in this mode is limited to 50%. Setting N and
OCR1A will change the frequency of the signal according to Table 10-17.

Table 10-17. Fast mode PWM frequencies in Hz for Pin 9 (Timer 1).

OCR1A N=1 N=8 N=64 N=256 N=1024
1 4,000,000.0 500,000.0 62,500.0 15,625.0 3,906.3

10 727,272.7 90,909.1 11,363.6 2,840.9 710.2
50 156,862.7 19,607.8 2,451.0 612.7 153.2

100 79,207.9 9,901.0 1,237.6 309.4 77.4
500 15,968.1 1,996.0 249.5 62.4 15.6

1000 7,992.0 999.0 124.9 31.2 7.8
5000 1,599.7 200.0 25.0 6.2 1.6

10000 799.9 100.0 12.5 3.1 0.8
50000 160.0 20.0 2.5 0.6 0.2
65535 122.1 15.3 1.9 0.5 0.1

Advanced Topics in Programming 379

Generating a signal on both Pins 9 and 10 simultaneously will limit the
range of frequencies selectable, as only the prescaler value will change the
output frequency. Both pins will have the same frequency in this mode.
However, by setting OCR1A and OCR1B, you can set the duty cycle of Pins
9 and 10, respectively. The following code would generate a signal on Pin
9 with a frequency of 15.6 kHz and a duty cycle of 50%, and a signal on Pin
10 with the same frequency (15.6 kHz) and a duty cycle of about 10%.
//Fast PWM on Pins 9 and 10: (e.g. 15.6 kHz)
//Formula: frequency=fclk/(N*1024). This formula has
//more limited frequency settings.
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);
TCCR1A=_BV(COM1A1)|_BV(COM1B1)|_BV(WGM11)|_BV(WGM10);
TCCR1B=_BV(WGM12); //Fast PWM mode
//uncomment for your desired prescaler:
TCCR1B|=_BV(CS10); //N=1 (freq=15625 Hz)
//TCCR1B|=_BV(CS11); //N=8 (freq=1953 Hz)
//TCCR1B|=_BV(CS11)|_BV(CS10); //N=64 (freq=244 Hz)
//TCCR1B|=_BV(CS12); //N=256 (freq=61 Hz)
//TCCR1B|=_BV(CS12)|_BV(CS10); //N=1024 (freq=15 Hz)
OCR1A=512; //pin 9 duty cycle=OCR1A/1024 (lim:1024)
OCR1B=102; //pin 10 duty cycle=OCR1B/1024 (lim:1024)

Timer 2

Timer 2 controls PWM timing on Pins 3 and 11. It is also unrelated to
the Uno IDE’s timer functions, so it will not impact time functions in your
sketch. It does however control the tone() function for generating piezo
beeps. If you use Timer 2, it will conflict with generating tones. Timer 2 is
an 8-bit timer, which means that it can count as high as 255. It is controlled
by setting the registers TCCR2A and TCCR2B to set the timer mode and
prescaler values, respectively. The following example code generates a
390 kHz PWM signal on Pin 3, with a duty cycle of 50% using Timer 2’s
comparison registers, OCR2A and OCR2B:
//Fast PWM on Pin 3: (e.g. 390 kHz)
//Formula: frequency=fclk/((OCR2A+1)*N)
pinMode(3, OUTPUT);
TCCR2A=_BV(COM2A1)|_BV(COM2B1)|_BV(WGM21)|_BV(WGM20);
TCCR2B = _BV(WGM22); // waveform generation mode
//uncomment for your desired prescaler:
TCCR2B|=_BV(CS20); //N=1
//TCCR2B|=_BV(CS21); //N=8
//TCCR2B|=_BV(CS21)|_BV(CS20); //N=32
//TCCR2B|=_BV(CS22); //N=64

Section 10

380

//TCCR2B|=_BV(CS22)|_BV(CS20); //N=128
//TCCR2B|=_BV(CS22)|_BV(CS21); //N=256
//TCCR2B|=_BV(CS22)|_BV(CS21)|_BV(CS20); //N=1024
OCR2A=40; //counter limit: 255
OCR2B=20; //pin 3 duty cycle=OCR2B/OCR2A (lim:OCR2A)

The duty cycle is set by the ratio OCR2B/OCR2A. Changing the prescaler
and values of OCR2A result in the following ranges of output frequencies:

Table 10-18. Fast mode PWM frequencies in Hz for Pin 3 (Timer 2).

OCR2A N=1 N=8 N=32 N=64 N=128 N=256 N=1024
1 8,000,000 1,000,000 250,000 125,000 62,500 31,250 7,813
5 2,666,667 333,333 83,333 41,667 20,833 10,417 2,604

10 1,454,545 181,818 45,455 22,727 11,364 5,682 1,420
20 761,905 95,238 23,810 11,905 5,952 2,976 744
40 390,244 48,780 12,195 6,098 3,049 1,524 381
60 262,295 32,787 8,197 4,098 2,049 1,025 256
80 197,531 24,691 6,173 3,086 1,543 772 193

100 158,416 19,802 4,950 2,475 1,238 619 155
120 132,231 16,529 4,132 2,066 1,033 517 129
140 113,475 14,184 3,546 1,773 887 443 111
160 99,379 12,422 3,106 1,553 776 388 97
180 88,398 11,050 2,762 1,381 691 345 86
200 79,602 9,950 2,488 1,244 622 311 78
255 62,500 7,813 1,953 977 488 244 61

The following example code could be used to generate a signal only on

Pin 11. This mode is limited to a duty cycle of 50%.
//Fast PWM on Pin 11: (e.g. 22.7 kHz)
//Formula: frequency=fclk/((OCR2A+1)*2*N)
//Duty cycle fixed at 50% in this mode.
pinMode(11,OUTPUT);
TCCR2A=_BV(COM2A0)|_BV(WGM21)|_BV(WGM20);
TCCR2B=_BV(WGM22); //fast PWM mode
//uncomment for your desired prescaler:
//TCCR2B|_BV(CS20); //N=1
//TCCR2B|=_BV(CS21); //N=8
TCCR2B|=_BV(CS21)|_BV(CS20); //N=32
//TCCR2B|=_BV(CS22); //N=64
//TCCR2B|=_BV(CS20); //N=128
//TCCR2B|=_BV(CS21); //N=256
//TCCR2B|=_BV(CS21)|_BV(CS20); //N=1024
OCR2A=10; // counter limit: 255

The frequency is set using OCR2A. The example code above generates
a signal on Pin 11 with a frequency of 22.7 kHz and a duty cycle of 50%.

Advanced Topics in Programming 381

Changing the prescaler and values of OCR2A result in the following ranges
of output frequencies:

Table 10-19. Fast mode PWM frequencies in Hz for Pin 11 (Timer 2).

OCR2A N=1 N=8 N=32 N=64 N=128 N=256 N=1024
1 4,000,000 500,000 125,000 62,500 31,250 15,625 3,906
5 1,333,333 166,667 41,667 20,833 10,417 5,208 1,302

10 727,273 90,909 22,727 11,364 5,682 2,841 710
20 380,952 47,619 11,905 5,952 2,976 1,488 372
40 195,122 24,390 6,098 3,049 1,524 762 191
60 131,148 16,393 4,098 2,049 1,025 512 128
80 98,765 12,346 3,086 1,543 772 386 96

100 79,208 9,901 2,475 1,238 619 309 77
120 66,116 8,264 2,066 1,033 517 258 65
140 56,738 7,092 1,773 887 443 222 55
160 49,689 6,211 1,553 776 388 194 49
180 44,199 5,525 1,381 691 345 173 43
200 39,801 4,975 1,244 622 311 155 39
255 31,250 3,906 977 488 244 122 31

Lastly, an example sketch for generating 7.8 kHz PWM signals on both

Pins 3 and 11 using Timer 2 is provided here (both at 50% duty cycle):
//Fast PWM on Pins 3 and 11: (e.g. 7.8 kHz)
//Formula: frequency=fclk/(256*N). This formula has
//more limited frequency settings.
pinMode(3, OUTPUT);
pinMode(11,OUTPUT);
TCCR2A=_BV(COM2A1)|_BV(COM2A0)|_BV(COM2B1)|_BV(COM2B0)|
_BV(WGM21)|_BV(WGM20); //fast PWM mode
//uncomment for your desired prescaler:
//TCCR2B=_BV(CS20); //N=1 (62.5 kHz)
TCCR2B=_BV(CS21); //N=8 (7.8 kHz)
//TCCR2B=_BV(CS21)|_BV(CS20); //N=32 (1.953 kHz)
//TCCR2B=_BV(CS22); // N=64 (976.6 Hz)
//TCCR2B=_BV(CS22)|_BV(CS20); //N=128 (488.3 Hz)
//TCCR2B=_BV(CS22)|_BV(CS21); //N=256 (244.1 Hz)
//TCCR2B=_BV(CS22)|_BV(CS21)|_BV(CS20);//N=1024 (61 Hz)
OCR2A=128;//pin 11 duty cycle=(255-OCR2A)/255 (lim:255)
OCR2B=128;//pin 3 duty cycle=(255-OCR2B)/255 (lim:255)

Timer 0, Timer 1, and Timer 2 are very flexible in terms of their output
frequencies and duty cycles. Being able to manually control them can be
helpful in many projects. You can also consider the 555 timer for this task
(See Using a 555 Timer as an External Clock in the appendix).
For more information: https://playground.arduino.cc/Code/FastPWM

Section 10

382

Timing your Interrupt Service Routines with CTC Mode

Now that you know how to set prescaler values and output compare
registers for the ATmega328’s three timers, you can use these timers not
only to generate specific PWM frequencies, but amazingly you can use them
to run interrupt service routines at a regular time intervals, regardless of
whatever else is going on in your sketch (e.g. a delay() command inside
the loop() function). You can do this by taking advantage of CTC mode
(Clear Timer on Compare). You just need to follow the Rules for Writing
an Interrupt Service Routine. Let’s convert a simple sketch that reads an
analog pin every second, from a delay()statement to a timed-interrupt
strategy. Our starting sketch is:
// analog read once per second (with delays)
int reading=0; // to store analog reading
void setup(){
 Serial.begin(9600);
}

void loop(){
 reading=analogRead(A0);
 Serial.println(reading);
 delay(1000);
}

The microprocessor spends most of the time in this sketch locked in the
delay() statement waiting, and unable to run other commands. Instead,
let’s try programming Timer 1 to schedule an analogRead() every second
(a sampling frequency of 1 Hz):
// analog read once per second (with Timer 1)
// variables changed in ISRs should be volatile:
volatile int reading=0; // to store analog reading
void setup(){
 Serial.begin(9600);
 //To set Timer 1 interrupt at 1Hz:
 cli(); //disable interrupts
 TCCR1A=0; //clear timer control register A
 TCCR1B=0; //clear timer control register B
 TCNT1=0; //clear timer counter 1
 TCCR1B=_BV(WGM12); //CTC mode
 //uncomment for your desired prescaler:
 //TCCR1B|=_BV(CS10); //N=1
 //TCCR1B|=_BV(CS11); //N=8
 //TCCR1B|=_BV(CS11)|_BV(CS10); //N=64
 TCCR1B|=_BV(CS12); //N=256
 //TCCR1B|=_BV(CS12)|_BV(CS10); //N=1024

Advanced Topics in Programming 383

 TIMSK1|=_BV(OCIE1A); //enable timer compare interrupt
 OCR1A=62499; // OCR1A=(fclk/(N*frequency))-1
 sei(); //enable interrupts
}
void loop(){
 Serial.println(reading);
}

ISR(TIMER1_COMPA_vect){ // Timer 1 interrupt routine
 reading=analogRead(A0); // ISR commands go in here.
}

In this sketch, the volatile integer reading is updated using the ISR
attached to Timer 1. (RobotFreak 2011) This frees up the microprocessor
for other commands instead of being stuck in a delay() statement. The
value needed for OCR1A is calculated using the formula: = × (+ 1)

or, rearranged: = × − 1

To set other frequencies using Timer 1, use the above equation, or consult
the chart for OCR1A and prescaler values in Table 10-16. The slowest
programmable frequency for Timer 1 is 0.2 Hz. If you would like a routine
to run less often (every n seconds), see TimedISR_N.ino in the appendix.
This sketch waits a multiple of 1-second cycles before running your
required code. If readings are infrequent, scheduling the analog reading
using the millis() function is a better approach (see Using millis()
Instead of delay() in Section 8).

Since Timer 2 is an 8-bit timer, the largest prescaler value (N=1024)
combined with the largest value possible for OCR2A (255) yields a lowest
possible frequency of 61 Hz, so Timer 2 would not be a good choice for the
above sketch. Here is an example sketch using Timer 2 that reads an analog
pin at 443 Hz, and lights up the onboard LED if the analog reading is greater
than 500:

// Reading an analog pin using Timer 2 (at 443 Hz)
volatile int reading=0; // to store analog reading
byte ledPin=13; // on-board LED
void setup(){
 pinMode(ledPin,OUTPUT);
 //To set Timer 2 interrupt at 443Hz:
 cli(); //stop interrupts
 TCCR2A=0; //clear timer control register A

Section 10

384

 TCCR2B=0; //clear timer control register B
 TCNT2=0; //set counter to 0
 TCCR2A=_BV(WGM21); //CTC mode
 //uncomment for your desired prescaler:
 //TCCR2B=_BV(CS20); //N=1
 //TCCR2B=_BV(CS21); //N=8
 //TCCR2B=_BV(CS21)|_BV(CS20); //N=32
 //TCCR2B=_BV(CS22); //N=64
 //TCCR2B=_BV(CS22)|_BV(CS20); //N=128
 TCCR2B=_BV(CS22)|_BV(CS21); //N=256
 //TCCR2B=_BV(CS22)|_BV(CS21)|_BV(CS20);//N=1024
 OCR2A=140; //OCR1A=(fclk/(N*frequency))-1
 TIMSK2|=_BV(OCIE2A); //enable timer compare
 //interrupt
 sei(); //enable interrupts
}

void loop(){

 // main loop is free to do other things
 // Pin A1 will be read at 443 Hz

}
ISR(TIMER2_COMPA_vect){ // Timer 2 interrupt routine
 reading=analogRead(A1);
 if(reading>500){
 digitalWrite(ledPin,HIGH);
 }else{
 digitalWrite(ledPin,LOW);
 }
}

To set other frequencies using Timer 2, use the equation:

 2 = × − 1

or consult the chart for OCR2A and prescaler values listed in Table 10-18.
Timer 0 is also an 8-bit timer, but has a larger prescaler available

(N=1024), so the slowest frequency that can be set with Timer 0 is: = 16,000,0001024 × (255 + 1) = 61

Let’s write a simple sketch to set a timed ISR using Timer 0 that will
digitalRead() a button pin at a sampling frequency of 61 Hz, and change
the state of the onboard LED pin accordingly.
// Reading a digital pin using Timer 0
byte ledPin=13; // on-board LED
byte buttonPin=2; // digital button on Pin 2
volatile bool buttonState=HIGH; // to hold button state

Advanced Topics in Programming 385

void setup(){
 pinMode(ledPin,OUTPUT);
 pinMode(buttonPin,INPUT_PULLUP);
 //To set Timer 0 interrupt at 61Hz:
 cli(); //stop interrupts
 TCCR0A=0; //clear timer control register A
 TCCR0B=0; //clear timer control register B
 TCNT0=0; //set counter to 0
 TCCR0A=_BV(WGM01); // CTC mode
 //uncomment for your desired prescaler:
 //TCCR0B=_BV(CS00); //N=1
 //TCCR0B=_BV(CS01); //N=8
 //TCCR0B=_BV(CS01)|_BV(CS00); //N=64
 //TCCR0B=_BV(CS02); //N=256
 TCCR0B=_BV(CS02)|_BV(CS00); //N=1024
 OCR0A=255; // OCR0A=(fclk/(N*frequency))-1
 TIMSK0|=_BV(OCIE0A); //enable timer compare interrupt
 sei(); //enable interrupts
}

void loop(){
 //main loop is free to do other things
 //button Pin will be read at 61 Hz (every ~16 msec)
}

ISR(TIMER0_COMPA_vect){ // Timer 0 interrupt routine
 buttonState=digitalRead(buttonPin);// read buttonPin
 digitalWrite(ledPin,buttonState); // write to LEDpin
}

To set other frequencies using Timer 0, use the equation:

 0 = × − 1

or consult the chart for OCR0A values listed in Table 10-14. Recall that
Timer 0 controls time functions like delay(), so these will not work as
expected in the rest of your sketch if attached to an ISR. In addition, other
functions that use these timers like analogWrite()will not work properly.
If you must use these functions, disable your interrupts with cli() before
running them, and re-enable with sei() after they are finished running.
For more information:
https://www.instructables.com/id/Arduino-Timer-Interrupts/

Section 10

386

Sleep Mode

Microprocessors burn up lots of energy just waiting for input. This
energy can be conserved by using a special ability of the MCU to go into
sleep mode. If you are running a circuit on battery power, sleep mode is
essential. Even if your circuit is powered using a wall adapter, saving power
is less wasteful, and kinder to the environment.

Microprocessors have their own specific set of commands to enter sleep
mode. We will cover two ways of waking up from sleep mode: 1) by a pin
state change attached to an external interrupt, and 2) by a watchdog timer
routine.

Wake on Pin Change

The easiest way to access sleep mode through an interrupt is by using
the AVR library, already installed in the Arduino IDE. (Boellmann 2016)
The following sketch illustrates how you can attach the external interrupt
INT0 (Pin 2), and put the microprocessor to sleep until a button wired to Pin
2 is pushed. After waking up, the microprocessor can run a set of
commands, then go back to sleep again, thus extending battery life.
(Macsimski 2006)
// Example: Wake on button push
#include <avr/sleep.h>
#include <avr/power.h>
#include <avr/interrupt.h>
byte buttonPin=2;

void setup(){
 Serial.begin(9600);
 pinMode(buttonPin,INPUT_PULLUP);
}

void loop(){
 Serial.println("Sleeping until button push.");
 sleep(); // run the sleep routine
 Serial.println("Ready to do your bidding!");
 delay(1000);
}
void sleep(){
 // Two options for ATmega328: 0 (Pin 2) or 1 (Pin 3)
 attachInterrupt(0, onWake, FALLING);
 delay(100); // allow serial commands to finish
 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
 /* set_sleep_mode() options:

Advanced Topics in Programming 387

 SLEEP_MODE_IDLE (least power savings)
 SLEEP_MODE_ADC
 SLEEP_MODE_PWR_SAVE
 SLEEP_MODE_STANDBY
 SLEEP_MODE_PWR_DOWN (most power savings) */
 sleep_enable();
 sleep_mode(); // MCU will sleep here
 sleep_disable(); // MCU will wake up here
 detachInterrupt(0); // detach INT0 while awake
}

void onWake(){ // ISR
 // Commands could go here. If MCU just needs to
 // wake up, leave this empty.
}

With the on-board voltage regulator, FTDI chip, and all the other
components of the Arduino Uno running, putting the MCU to sleep doesn’t
save a much power unless you move off the Uno platform and use the
microprocessor alone (see Bareduino – Running the ATmega328 Alone).
With the ATmega328p running off the Uno platform, current consumption
can drop as low as microAmps.

Wake on Timeout of Watchdog Timer

A different strategy for waking from sleep mode is to set up a watchdog
timer to periodically wake up, run something, and then go back to sleep.
Picture your neighbour’s dog waking you up every hour or so throughout
the night with his annoying barking. The following sketch sets a watchdog
timer to sleep for one second, wake up, then go back to sleep. In this way,
multiple sleep cycles can be scheduled for as many seconds as you like.
Effectively, the MCU will only be awake for a few milliseconds per second,
saving precious battery life.

The following example sketch to set up a watchdog timer for low power
mode was adapted from Jean Rabault’s sketch, posted on GitHub.com.
(Rabault 2016) The watchdog timer is set using the WDTCSR register
(Watchdog Timer Control Register).

Section 10

388

// Example: Wake after 5 watchdog sleep cycles
// (1second/cycle)
#include <avr/sleep.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>

void setup(){
 Serial.begin(9600);
 configure_wdt(); // configure watchdog timer
}

void loop(){
 Serial.println("Sleeping for 5 seconds.");
 sleep(5); // sleep for 5 seconds
 Serial.println("Ready to do your bidding!");
}
ISR(WDT_vect){ // define the watchdog ISR
 wdt_reset(); // reset watchdog timer
}

void configure_wdt(){
 cli(); // clear (disable) interrupts
 MCUSR=0; // the following are ATmega328-specific cmds
 WDTCSR |= 0b00011000; // set WDCE and WDE high
 //uncomment for your desired timeout:
 //WDTCSR = 0b01000000 | 0b000000; //16 msec timeout
 //WDTCSR = 0b01000000 | 0b000100; //0.25 sec
 //WDTCSR = 0b01000000 | 0b000101; //0.5 sec
 WDTCSR = 0b01000000 | 0b000110; //1 sec
 //WDTCSR = 0b01000000 | 0b000111; //2 sec
 //WDTCSR = 0b01000000 | 0b100000; //4 sec
 //WDTCSR = 0b01000000 | 0b100001; //8 sec
 //From: Table 8-2, Watchdog Timer Prescale Select,
 //ATmega328 datasheet
 sei(); // set (re-enable) interrupts
}

void sleep(unsigned long n){
 delay(100); // wait for serial commands to finish
 set_sleep_mode(SLEEP_MODE_PWR_DOWN); //max power down
 power_adc_disable(); // turn off adc
 for(int i=0;i<n;i++){
 sleep_mode(); // go to sleep here
 sleep_disable(); // wake up here
 }
 power_all_enable();
}

Advanced Topics in Programming 389

Resetting the MCU

Most MCUs have a dedicated pin for the RESET button. Having a way
to reboot the MCU is important in case it locks up on the user. Many
electronic devices have a hard-reset button somewhere, perhaps a small hole
where you push in a paperclip or safety pin. The Arduino Uno has a reset
button located at the corner of the board (see Figure A-5, Arduino Uno Pin-
out Diagram). When you press that button, the microcontroller restarts.
What if you would like to allow your sketch to reset the microcontroller?
This section describes different ways to reset the MCU.

Reset with a Watchdog Timer

The watchdog timer can be used to reset the microcontroller, so that if
the sketch hangs or gets stuck somewhere, you get another shot at regaining
control of the system. This could act as an important fail-safe mechanism.
In the following example, the watchdog timer is started in the loop function
with the wdt_enable(WDTO_1S) command. When the time elapsed since
this command was executed exceeds the option specified inside the
brackets, the MCU will reset. You can reset the watchdog timer at any time
in your sketch with the wdt_reset() command. You can deactivate the
timer with wdt_disable() if you would like to prevent a reset during an
expectedly long function. (Rabault 2016)
/* Example: Watchdog Timer for MCU Reset
 * Adapted from:
https://github.com/jerabaul29/ArduinoUseWatchdog/blob/m
aster/ArduinoCode/SimpleWatchdog.ino
 * wdt_enable() option:
 * --------------------
 * WDTO_15MS 15 msec
 * WDTO_30MS 30 msec
 * WDTO_60MS 60 msec
 * WDTO_120MS 120 msec
 * WDTO_250MS 250 msec
 * WDTO_500MS 500 msec
 * WDTO_1S 1 sec
 * WDTO_2S 2 sec
 * WDTO_4S 4 sec
 * WDTO_8S 8 sec */
#include <avr/wdt.h>

void setup(){
 Serial.begin(9600);

Section 10

390

 Serial.println("I have been reset.");
 wdt_enable(WDTO_1S); // set 1sec watchdog reset timer
}

void loop(){
 delay(2000); // if loop takes >1sec, MCU will reset
 wdt_reset(); // reset timer (make last line of loop)
}

You can use the watchdog timer then to intentionally reset the MCU in
a stand-alone function, to be executed whenever you like:
// Example: Watchdog reset on demand
#include <avr/wdt.h>
void setup(){
 Serial.begin(9600);
 Serial.println("I have been reset.");
}

void loop(){
 for(int i=0;i<1000;i++){
 Serial.println(i);
 delay(100);
 if(i==17)resetMCU(); // reset where I’d like it to
 }
}

void resetMCU(){
 wdt_enable(WDTO_15MS); // enable watchdog timer
 while(1); //intentionally max out timer
}

Hard Wiring a Digital Pin to the RESET Pin

Another way of hard-resetting the microcontroller within in a sketch is to
connect a jumper from any digital pin to the Uno’s RES pin, and set the
digital pin HIGH in OUTPUT mode. When you would like to reset the
MCU, set the digital pin LOW with digitalWrite(). This is
electronically equivalent to pushing the reset button with your finger.

// Example: MCU Hard reset
// Connect Pin 7 to RES pin
#define resetPin 7

void setup() {
 Serial.begin(9600);
 Serial.println("I have been reset.");

Advanced Topics in Programming 391

 //set HIGH first (otherwise will reset MCU)
 digitalWrite(resetPin,HIGH);
 pinMode(resetPin,OUTPUT);
}

void loop() {
 delay(5000); // wait 5 seconds
 digitalWrite(resetPin,LOW); // reset the MCU!
}

Advanced Formating and Variable Type Conversions

Secrets of Serial.print()

Serial.print() and Serial.println() have some interesting
baked-in options you might need or like to take advantage of. For one thing,
they allow the use the C++ escape sequences in the middle of a string. Table
10-20 has some useful escape sequences:

Table 10-20. Some C++ escape sequences you can use in strings and
char variables.

Escape Sequence Description
\' single quote
\" double quote
\\ backslash
\n line feed - new line
\r carriage return
\t horizontal tab
\v vertical tab
\xnn arbitrary hexadecimal value (from UTF-8 table)

\unn universal character name (arbitrary Unicode value); may
result in different characters depending on your platform

For more information: http://en.cppreference.com/w/cpp/language/escape

For example, \t will insert a tab in your output, and \n will insert a new
line:

Serial.print("COL1\tCOL2\tCOL3\n");

Spaces are not needed between the escape characters and other text. To
remove escape characters and spaces from a string, you can use the
.trim() command:

String myString="Test of \tescape characters\n\r";
myString.trim(); // removes escape characters

Section 10

392

Serial.print(myString);

If you would like to send a number to the serial monitor in binary format,
you can use the following explicit command:

byte myPin=B00001101;
Serial.print(myPin,BIN); // prints in binary format

This will result in a “1101” being sent to the serial monitor, instead of the
number 13. The leading zeros are not printed. The following examples
summarize different output formats:

Table 10-21. Custom output formats for Serial.print() and
Serial.println().

Format Syntax Example
Output

Decimal (default #
decimals = 2)

byte myPin=13;
Serial.print(myPin,DEC);
Serial.print(myPin); //(same)

13

Decimal (specify #
decimals)–for float
variables only

float myFloat=13.f;
Serial.print(myFloat,3);

13.000

Binary byte myPin=B00001101;
Serial.print(myPin,BIN);

1101

Hexadecimal byte myPin=0xD;
Serial.print(myPin,HEX);

D

Octal (base 8) byte myPin=015; //leading 0
Serial.print(myPin,OCT);

15

For more information: https://www.arduino.cc/en/Serial/Print

Table 10-22. Additional commands that can help you manipulate
Strings.

Command
Description

Syntax Example
Output

.length()
Find the length of
a string

String myString="Hello ";
int len=myString.length();
Serial.println(len);

7

.trim()
Trim spaces from
a string

String myString="Hello ";
myString.trim();
int len=myString.length();
Serial.println(len);

5

Advanced Topics in Programming 393

.indexOf()
Find the first
instance of a
character in a
string (index
numbering starts at
0)

String myString="Hello ";
int idx=myString.indexOf('l');
Serial.println(idx);

2

.lastIndexOf()
Find the last
instance of a
character in a
string

String myString="Hello ";
int idx=myString.lastIndexOf('l');
Serial.println(idx);

3

.toUpperCase()
Change string to
all upper case
letters

String myString="Hello ";
myString.toUpperCase();
Serial.println(myString);

HELLO

.toLowerCase()
Change string to
all upper case
letters

String myString="Hello ";
myString.toLowerCase();
Serial.println(myString);

hello

.replace()
Replace all
instances of one
substring with
another

String myString="Hello ";
myString.replace("ell","idee h");
Serial.println(myString);

Hidee ho

.remove()
Remove parts of a
string by index
number

//Remove from index# to end:
String myString1="Hello ";
myString1.remove(3);
Serial.println(myString1);
//Remove from index1 to 2, incl:
String myString2="Hello ";
myString2.remove(1,3);
Serial.println(myString2);

Hel
Ho

.substring()
Create a substring
from a string by
index number
(doesn’t change
the original string)

//Substring from index# to end:
String myString="Hello ";
mySubstr1=myString.substring(3);
Serial.println(mySubstr1);
//Substr from index1 to 2, incl:
mySubstr2=myString.substring(1,3);
Serial.println(mySubstr2);

lo
el

For more information:
https://www.arduino.cc/reference/en/language/variables/data-
types/stringobject/

Section 10

394

Additional String Conversion Commands

Table 10-23. Functions to convert other variable types to Strings.

Command
Description

Syntax Example
Output

String(,DEC)
Convert a
decimal
number to
string

byte myByte=170;
String myString=String(myByte,DEC);
//or: String
myString=String(myByte);
Serial.println(myString);

170

String(,BIN)
Convert a
binary number
to string

byte myByte=0b10101010;
String myString=String(myByte,BIN);
Serial.println(myString);

10101010

String(,HEX)
Convert a
binary number
to string

byte myByte=170;
String myString=String(myByte,HEX);
Serial.println(myString);

aa

String(,#)
Convert to a
string, rounded
to a specified #
decimals

float myFloat=3.14159;
String myString=String(myFloat,3);
Serial.println(myString);

3.142

For more information:
https://www.arduino.cc/reference/en/language/variables/data-
types/stringobject/

Comparing Strings

Strings can be compared logically, just like other variable types. If you
would like to test if two strings are equal, you can directly use a logical
operator:

// Example: Comparing two strings
void setup(){
 Serial.begin(9600);
 String myString1="Hello";
 String myString2="Hello";
 if(myString1==myString2){
 Serial.println("Strings are equal.");
 }else{
 Serial.println("Strings are not equal.");
 }
}

Advanced Topics in Programming 395

void loop(){}

The following sketch will read a String from the serial monitor and then
compare it to a list of possible responses using if…then…else if:

// Example: Serial menu with String as input
// Note: Set serial monitor to "No line ending"

void setup(){
 Serial.begin(9600);
 Serial.println("Enter command:");
}

void loop(){
 if(Serial.available()){
 String cmd=Serial.readString();
 if(cmd=="read"){
 Serial.println("Take a reading.");
 //more commands can go here
 } else if(cmd=="write"){
 Serial.println("Write to disk.");
 } else if(cmd=="quit"){
 Serial.println("Quit.");
 while(1); // stop program
 } else {
 Serial.println("Invalid command.");
 } // end if
 Serial.println("Enter command:"); // ask again
 }
}

Arrays of Strings and Arrays of Char Arrays

Whereas a char variable holds a single character (0-255), and a char
array holds a series of characters, you may wish to create an array of
different strings of text. You can create an array of Strings as follows:

// Example: Array of Strings
String myStrings[]={"text 1", "text 2", "text 3"};

void setup(){
 Serial.begin(9600);
}

void loop(){
 for (int i=0;i<3;i++){
 Serial.println(myStrings[i]);
 delay(1000);

Section 10

396

 }
}

Alternately, you can create a series of char arrays, like this:
// Example: Series of char arrays (pointers)
char* myChars[]={"text 1", "text 2", "text 3"};

void setup(){
 Serial.begin(9600);
}

void loop(){
 for (int i=0;i<3;i++){
 Serial.println(myChars[i]);
 delay(1000);
 }
}

The asterisk after char (“char*”) creates an array of pointers, rather than
an array of chars. Pointers are useful in C++ when you want to point to a
location of a variable rather than refer to the variable itself.

Using Special Characters

Frequently, we need to display special characters in scientific
applications, such as a degree sign (e.g. °C), a plus or minus sign (e.g. 5.0
± 3.2), or a special unit (e.g. μM). The Serial.write() command prints
a single character to the serial monitor. The following commands illustrate
how to use Serial.write():

Serial.print("37");
Serial.write(177); // 177 is decimal UTF8 for ±
Serial.print("2.0");
Serial.write(176); // 176 is decimal UTF8 for °
Serial.print("C, 100");
Serial.write(181); // 181 is decimal UTF8 for μ
Serial.print("M"); // will print "37±2°C, 100μM"

The Serial.write() command only prints one character at a time.
However, you can also try copying the extended character directly into a
String for printing:

String myMessage= "37±2°C";
Serial.println(myMessage);

You can use a special character directly in the middle of a char array:
char myMessage[]="37±2°C";
Serial.println(myMessage);

Advanced Topics in Programming 397

You can use the unicode escape sequence \x(hex code) to define a special
character as well:

Serial.print("37");
Serial.print("\xB1"); //B1:HEX for ± (UTF8 table)
Serial.print("2");
Serial.print("\xB0"); //B0:HEX for ° (UTF8 table)
Serial.print("C, 100");
Serial.print("\xB5"); //B5:HEX for μ (UTF8 table)
Serial.print("M"); //will print "37±2°C, 100μM"

Some external devices (e.g. LCD modules) can use character codes other
than UTF-8 (e.g. ASCII extended characters). This can cause confusion
when a character doesn’t display as expected. For instance, the 16x2 I2C
LCD screens we use in class need the following command to print a degree
sign:

lcd.write(223); // prints degree sign on serial LCD

The UTF-8 and ASCII Tables in Table A-2 of the appendix list all of the
control, regular, and extended characters available to print to the serial
monitor or other device, such as an SD card or LCD screen.

Char Arrays: Advanced Functions

Most libraries manipulate strings of text as char arrays rather than
Strings, which can be difficult to manage at first. Here are enough functions
to get you started.

Length of Char Arrays

The function sizeof() returns the number of bytes occupied by a variable
or variable type. If an array is used as an input argument, it returns the
number of bytes occupied by the array. If a char array is used as an input
argument, since a single char variable is one byte, sizeof() will return the
length of text stored in a char array, including the terminal null character
(ASCII 0). For example, the following code:

char myChars[]="example text";
Serial.print(sizeof(myChars));

would print the number 13 (the length of the string of text + the null
character).
For more information:
https://www.arduino.cc/reference/en/language/variables/utilities/sizeof/

The function strlen() returns the length of the text stored in a char
array, not including the null character. So the following code:

Section 10

398

char myChars[]="example text";
Serial.print(strlen(myChars));

would print the number 12 (the length of the text only).
For more information:
http://www.cplusplus.com/reference/cstring/strlen/?kw=strlen

Keep in mind that commands designed for char arrays do not work on
Strings. See Table 10-22 for the appropriate String functions.

Copying, Concatenating, and Comparing Char Arrays

The function strcpy() copies one char array to another (make sure
destination array size is large enough):

char myChars1[]="example text";
char myChars2[sizeof(myChars1)]; //destination array
strcpy(myChars2,myChars1);// copy myChars1->myChars2
Serial.println(myChars1); // prints "example text"
Serial.println(myChars2); // prints "example text"

The function strcat() concatenates two char arrays together:
char myChars1[]="text1";
char myChars2[]="text2";
char bothChars[50];// big enough for both arrays
bothChars[0]=0; //erase bothChars (ASCII 0=null)
strcat(bothChars,myChars1); // myChars1 to bothChars
strcat(bothChars,myChars2); // myChars2 to bothChars
Serial.println(myChars1); // prints "text1"
Serial.println(myChars2); // prints "text2"
Serial.println(bothChars); // prints "text1text2"

The function strcmp() compares two char variables or char arrays. A zero
is returned if the char arrays are equal. The following code provides an
example of comparing char arrays:

char myChars1[]="text1";
char myChars2[]="text1";
if(strcmp(myChars1, myChars2)==0){
 Serial.println("char arrays are equal");
}else{
 Serial.println("char arrays are not equal");
}

For more information: http://www.cplusplus.com/reference/cstring/

Single Char Analysis

The following commands in Table 10-24 test whether the character
stored inside a char variable is a certain type (e.g. upper case, numeric, etc.).

Advanced Topics in Programming 399

These commands are useful when receiving serial data from a device. Each
command returns either a 1 (for true) or a 0 (for false).

Table 10-24. Commands that test the contents of a char variable.

Command
Is a character…

Syntax
(the following examples would all return 1)

isAlpha()
… a letter? (alphabetical)

char myChar='H';
bool result=isAlpha(myChar);

isAlphaNumeric()
… a letter or a number?

char myChar='3';
bool result=isAlphaNumeric(myChar);

isAscii()
… an ASCII character?

char myChar='3';
bool result=isAscii(myChar);

isWhitespace()
… white space?

char myChar=' ';
bool result=isWhitespace(myChar);

isControl()
…a control character?

char myChar=0x8; //0x8 is backspace
bool result=isControl(myChar);

isDigit()…
a numerical digit?

char myChar='3';
bool result=isDigit(myChar);

isPrintable()
…a printable character?

char myChar=' ';
bool result=isPrintable(myChar);

isGraph()…
a printable character with
no whitespace?

char myChar='3';
bool result=isGraph(myChar);

isPunct()…
punctuation?

char myChar=',';
bool result=isPunct(myChar);

isSpace()
…a space?

char myChar=' ';
bool result=isSpace(myChar);

isUpperCase()…
upper case?

char myChar= 'H';
bool result=isUpperCase(myChar);

isLowerCase()
…lower case?

char myChar='H';
bool result=isLowerCase(myChar);

isHexadecimalDigit()
…a hexadecimal digit?
(0-9 or A-F)

char myChar='F';
bool
result=isHexadecimalDigit(myChar);
//bool and boolean are
interchangeable

For more information: https://www.arduino.cc/en/Tutorial/CharacterAnalysis

Structures

A more organized way of bundling data together is to create a structure.
You can group more than one variable type together in a structure, and you

Section 10

400

can think of this grouping as a higher order array. A structure isn’t a variable
in and of itself, it is just a specification of how variables are grouped
together. Once you declare a structure, you can create objects that inherit its
variable types and reserve real memory space. The following example
illustrates how you can define and use a structure:
struct myKids { // declare structure in global space
 String firstname;
 int age; // these variables are members of myKids
 char gender;
}; // Note: this semicolon is required here
myKids child1; // Define object child1 to use myKids
 // struct, and have the same members

// in local space (setup or loop function):
child1.firstname="Aidan";
child1.age=13;
child1.gender='M';
Serial.print(child1.firstname); // prints Aidan

As you can see, different variables are grouped together under the name
“child1” having the structure of myKids. Members of child1 are accessed
with a “.” after it (e.g. child1.firstname). Structures are amazing
because you can create more than one child having the same structure:

struct myKids { // declare struct in global space
 String firstname;
 int age;
 char gender;
};

myKids child1; // declare child1 in global space
myKids child2; // declare child2 in global space

// in local space (setup or loop function):
child1.firstname="Aidan"; // data for child1
child1.age=13;
child1.gender='M';

child2.firstname="Remy"; // data for child2
child2.age=11;
child2.gender='M';

Here, child1 and child2 are separate objects with the same structure
as myKids, each existing as different spaces in memory. In practice, you
may not need to create more than one object for your struct, but the
capability is there. Members of structures can also be arrays of variables,
making structures extremely flexible.

Advanced Topics in Programming 401

An alternate syntax to create a structure is to declare all the object names
right after the structure has been declared. This code will work the same as
the code above:

struct myKids {
 String firstname;
 int age;
 char gender;
} child1, child2; //declare objects before semicolon

child1.firstname="Aidan";
child1.age=13;
child1.gender='M';

child2.firstname="Remy";
child2.age=11;
child2.gender='M';

To turn this structure into an array of objects instead of declaring child1
and child2 with different object names, the structure could be defined like
this:

struct myKids {
 String firstname;
 int age;
 char gender;
} child[2];
// declare an array of objects having the structure
// of myKids (object array size:2)

child[0].firstname="Aidan";
child[0].age=13;
child[0].gender='M';

child[1].firstname="Remy";
child[1].age=11;
child[1].gender='M';

You can pass structured arrays to and from functions, just like other
variable types. This can tremendously simplify your code. Think of it: all of
your function arguments can be passed to your function using one organized
structure, instead of one-by-one as separate arguments:

// For this function to compile, the struct myKids
// should be declared in global space.
void printChild(myKids kidx){ // struct as input arg
 Serial.println(kidx.firstname);
 Serial.println(kidx.age);
 Serial.println(kidx.gender);

Section 10

402

}
// in local space:
printChild(child[0]); // printing info for child1
printChild(child[1]); // printing info for child2

As with other function input arguments, if you would like the function
to be able to change the value stored in the member of an object while inside
the function, use the call-by-reference sign “&”:

void printChild (myKids &kidx){ // call-by-reference
 kidx.firstname="Bob";//set kidx firstname to Bob
 Serial.println(kidx.firstname);
 Serial.println(kidx.age);
 Serial.println(kidx.gender);
}

For more information: http://www.cplusplus.com/doc/tutorial/structures/

Unions

A union in C++ allows you to share the same memory space between two
different variable types, or structures, or a mix of the two. This becomes
important if you are looking for an easy way to convert data between
variable types quickly. The simplest example sketch of a union is one
declared to break up an integer (16 bits, or 2 bytes) into 2 separate bytes of
data, a high byte and a low byte. This is easily solved with bit shifting (see
Table 10-8), but to illustrate the solution using unions, you could write the
following:

 //Example: Union between Integer and Byte Array
union myUnion{ //declare union in global space
 int myInt; // integer to be shared with array
 byte myBytes[2]; //occupies same memory as myInt
}myData; //create a new union instance called myData

void setup(){
 Serial.begin(9600);
 myData.myInt=0b1100000000000111; // example data
 Serial.print("High byte:");
 Serial.println(myData.myBytes[1],BIN);
 Serial.print("Low byte:");
 Serial.println(myData.myBytes[0],BIN);
}
void loop(){}

This sketch will print the high byte 11000000 and then the low byte 111
(without the leading zeros) to the serial monitor. You can also share
structures inside unions, so we can re-write this code to be a bit more snazzy:

Advanced Topics in Programming 403

//Example: Union between Integer and Struct
struct myStruct{ // declare a structure to share
 byte low; // to store low byte
 byte high; // to store high byte
};

union myUnion{ //declare union in global space
 int myInt; // integer to be shared with myBytes
 myStruct myBytes; //occupies same memory as myInt
}myData; //create a new union instance called myData

void setup(){
 Serial.begin(9600);
 myData.myInt=0b1100000000000111;
 Serial.print("High byte:");
 Serial.println(myData.myBytes.high,BIN);
 Serial.print("Low byte:");
 Serial.println(myData.myBytes.low,BIN);
}

void loop(){}

For more information: http://www.cplusplus.com/doc/tutorial/other_data_types/

Increment Operators as Array Index Values

Occasionally in C++, you will see programmers use increment operators
(i++ or ++i) as array index values. This is a clever and quick way of saving
a line of code, or eliminating a for() loop. However, there is a subtle
difference when using these two operators. Used as an array index value,
the command i++ first uses the present value i as the array index and then
increments the value of i by 1:
int i=0;
int myArray[2]={0,0};
myArray[i++]=3; // equivalent to: myArray[0]=3; i=i+1;
myArray[i]=4; // equivalent to: myArray[1]=4;

After this code is run, myArray[0] will have the value 3, and
myArray[1] will have the value 4.

In contrast, the command ++i, used as an array index value, first
increments the value of i by 1 and then uses the result as an array index:
int i=0;
int myArray[2]={0,0};
myArray[++i]=3; // equivalent to: i=i+1; myArray[1]=3;
myArray[i]=4; // equivalent to: myArray[1]=4;

Section 10

404

After this code is run, myArray[0] will have the value 0, and myArray[1]
will have the value 4.

APPENDIX

Troubleshooting Guide

You found the troubleshooting guide. That’s great! Take a deep breath.
Circuits almost never work on your first try. This is normal. Sometimes the
problem is with the hardware, sometimes it is with the system you are
measuring, sometimes there is a bug in the program, sometimes it is your
understanding of the system that is causing the trouble, and sometimes it’s
just rotten luck.

There are three philosophical concepts that help me troubleshoot:
9) Imagination. Being able to imagine what is wrong and devising a

way to test that idea will help you immensely with problem solving.
Even imagining an incorrect cause of your challenges can help you
stumble upon the actual reason.

10) Optimism. Believing that a circuit or system will work is extremely
important to the success of your project. If you don’t believe you can
solve a problem, you will be more prone to give up easily. Picture
your project working. Imagine how good you will feel when that
finally happens. Understand that it usually takes a lot of work to get
a system functioning, and that’s ok. Don’t discourage yourself with
negative thoughts, like you aren’t smart enough, or the system will
never work (see Troubleshooting Flowchart in the appendix).

11) Resilience. Being stubborn is an asset for problem solving. You can’t
solve a problem if you give up. If you find you hit a dead end and
you are frustrated, take a break. I have solved many of my own
electronics problems in unexpected places, when I wasn’t even
working on the problem – on the subway, in the shower, or bumping
into a retired radio engineer in Arches Provincial Park on the
picturesque Newfoundland coastline.

Table A-1, formed while working through my own electronics projects,
will guide you through some basic questions to help you narrow down the
problem. Figures A-1 and A-2 will help you reframe and refocus your
problem.

Appendix

406

Table A-1. Troubleshooting questions and suggested follow-up actions.

Ask yourself: Follow-Up Actions:
Is it plugged in? Check that the power rails on your breadboard have

voltage, and that the power supply is working at the
correct voltage level.

Are your batteries
still good?

If your circuit is battery-powered, measure the battery
voltage. Replace with fresh batteries if low.

Is anything
smoking, melting,
or is there a strong
burning smell?

Disconnect power immediately. Check for accidental
shorts in your circuit, and check that the Vcc and GND
pins for any IC chips were wired correctly.

Feel any chips in
your circuit. Are
they hot?

Disconnect power. Double-check that chips are not
installed upside-down. This is a very common mistake to
make.

Are your
modules/circuits
properly grounded
to your MCU?

 When there is more than one power supply in your
circuit, and you are not using a relay, double-check that
your supplies share a common ground.
 You can’t send a signal to a module or component

without also connecting its ground pin to your MCU.
Otherwise, that’s just a dead end in the circuit.

Is your power
supply current
limited?

It may be your power supply can’t keep up with the
demand of the circuit, and the components are running
lean. Try a larger supply, or perhaps separate supplies if
you think your circuit is current-limited.

Are you supplying
the correct voltage
to a module?

A 3.3V module doesn’t run well for long on 5V. Even the
data pins should be at 3.3V. Use a logic shifter or voltage
divider.

Are all of your
components
correct?

Use the component that the circuit diagram or datasheet
calls for, rather than improvising something “close
enough”. If you can’t find a component, seek it out–don’t
substitute. Easily confused: 100R resistor with 100K
resistor.
 Check/measure all capacitor and resistor values.
 Check codes on DIP chips – these can be faint, tiny, and

easily misread (e.g. LM555 vs. LMC555).
Are polar devices
wired respecting
their correct
polarities?

Check that all polar devices (e.g. LEDs, diodes,
capacitors, microphones, speakers, etc.) are wired the
correct way (usually: longer leg positive). These devices
will not work when wired backwards.

Are your chips
wired correctly?

Check proper pin numbers, directly from the component
datasheet (not your notes).

Electronics and Microprocessing for Research, 2nd Edition

407

Don’t ever assume you can remember how to wire
transistors/MOSFETS or op-amps from memory. Switch
terminals are very easy to confuse.
Microcontroller female header holes are very close
together. Check for offsets in your connections.

Is your chip,
module, or cable a
dud, or is a chip in
thermal overload?

 Improperly wiring a component can fry it. Or, it may
just be a dud.
 Try swapping out your chip/module/cable with another

identical chip/module/cable. However, if you have just
shorted out a chip, swapping it out with a new one in the
same circuit without adjustments will likely just result in
one more blown chip.
 Many chips and voltage regulators have built-in thermal

overload protection, meaning that if they are run too hot,
they will automatically shut down until they cool off
again. Before you throw a part away, let it cool off first,
and test it again.

Are there any
visible shorts in
the system?

e.g. bare resistor or capacitor leads touching other bare
leads. Check for and remove shorts.
If there is a short in the system, your microcontroller’s
built-in LED might go dim. Cut power to microcontroller
immediately–shorts can damage the board. Check the
microcontroller integrity by uploading a blank sketch. If it
uploads, the board is likely still ok.

Are your jumpers
and breadboard in
good shape?

Breadboard wires are very thin, and wear out. It could be
that all your components appear to be wired correctly, but
one faulty wire connection can throw your whole design.
Breadboard connections are also notoriously finicky. Test
connections with an ohmmeter or continuity tester. When
rebuilding a circuit, try using different jumpers, on a
different area of a breadboard. Throw away jumpers that
are detected as faulty.

Can you narrow
down/locate the
problem?

With a voltmeter and/or oscilloscope, test different output
voltages of your circuit starting upstream (from the power
supply) and checking component by component. This will
help you isolate where the issue is. You can easily
measure your power rails, bias voltages, negative
voltages, chip outputs, etc. to quickly confirm which wires
and components are working and which of them are
failing.

Is there a bug in
your sketch?

Even a perfectly wired system might not work because of
the program. Common errors that will lead to circuits not
working:

Appendix

408

 Forgetting to declare pinMode(#,HIGH);
 Forgetting to connect AREF pin to a voltage if using an

external analog reference.
 Low memory warnings can lead to microprocessor

instability (see Tips to Optimize Sketch Memory).
 Are you having trouble uploading your program? Check

that your port number is correct, and that your serial
monitor is closed. Try resetting the Arduino (push reset
button, or unplug/replug into a different USB port).
Restart the Arduino IDE or reboot your computer if your
COM ports are giving you trouble, or if your program
won’t compile even when there aren’t any program errors.
Sometimes COM port connections crash, and won’t reset
without a restart or reboot. Problems uploading might also
mean a short circuit, or a dead microcontroller.
 Even a successfully compiled program can have math

errors (e.g. check formulas, units, brackets in the wrong
places, etc.). Hand-check your code with test values at
each step to make sure your math is correct.
 Do array values seem to mysteriously change

throughout your program, even though your sketch
doesn’t ask them to change? Double check the array
dimensions in the declaration statement, and the index
values you are using to access the array. A common
mistake is referring to element arr[n] when the size of
arr is n (the last element of arr here is n-1).

By this point, you hopefully have isolated the problem. If not…
 Try rebuilding the system from scratch. It’s easier to start over and build your

circuit carefully, than to find a tiny error in a nest of jumper wires.
 Ask for help from your instructor, another classmate, or a newsgroup.
 Check your understanding and assumptions of the circuit and the system. The

system may be more complicated than you realize, and what you have built is
actually working the way you built it, just not in the way you imagined it should.
Often when troubleshooting, we are correcting our understanding of the system
as much as we are correcting the system.
 Try a different design, strategy, or angle of attack. Sometimes other people’s

circuits just don’t work well. Consider buying a more suitable or user-friendly
component or module. Money can be a fantastic problem solver.
 Try taking a break. Sometimes going back to a problem later with a clear head

can work wonders. Try waiting an hour, a day, a week, or even a month. This
will also allow for time to collect replies from your desperate newsgroup posts.

Electronics and Microprocessing for Research, 2nd Edition

409

Troubleshooting Flowchart

Figure A-1. Troubleshooting flowchart: developing resilience.

Troubleshooting Zones

Figure A-2. Potential areas to consider troubleshooting. Many problems are
multifaceted, involving more than one area.

The Program
(syntactic, semantic,

math, logic,
communications

errors)

The Equipment
(power, logic,

connections, shorts,
broken or ill-suited

components, sensor)

your understanding of…

The System
you control or

measure, including
its surroundings, noise Troubleshooting begins

here. If you smell smoke,
it’s not the program.

Appendix

410

UTF-8 and ASCII Tables

Table A-2. UTF-8 character table, with decimal, hexadecimal, and
binary codes. The ASCII column is the corresponding ASCII character
resulting from the same code.

UTF8 Dec Hex Binary

ASCII UTF8 Dec Hex Binary

ASCII

NUL 0 0x0 0b0 NUL space 32 0x20 0b100000 space
SOH 1 0x1 0b1 SOH ! 33 0x21 0b100001 !
STX 2 0x2 0b10 STX , 34 0x22 0b100010 ,
ETX 3 0x3 0b11 ETX # 35 0x23 0b100011 #
EOT 4 0x4 0b100 EOT $ 36 0x24 0b100100 $
ENQ 5 0x5 0b101 ENQ % 37 0x25 0b100101 %
ACK 6 0x6 0b110 ACK & 38 0x26 0b100110 &
BEL 7 0x7 0b111 BEL ' 39 0x27 0b100111 '
BS 8 0x8 0b1000 BS (40 0x28 0b101000 (
HT 9 0x9 0b1001 HT) 41 0x29 0b101001)
LF 10 0xA 0b1010 LF * 42 0x2A 0b101010 *
VT 11 0xB 0b1011 VT + 43 0x2B 0b101011 +
FF 12 0xC 0b1100 FF , 44 0x2C 0b101100 ,
CR 13 0xD 0b1101 CR - 45 0x2D 0b101101 -
SO 14 0xE 0b1110 SO . 46 0x2E 0b101110 .
SI 15 0xF 0b1111 SI / 47 0x2F 0b101111 /

DLE 16 0x10 0b10000 DLE 0 48 0x30 0b110000 0
DC1 17 0x11 0b10001 DC1 1 49 0x31 0b110001 1
DC2 18 0x12 0b10010 DC2 2 50 0x32 0b110010 2
DC3 19 0x13 0b10011 DC3 3 51 0x33 0b110011 3
DC4 20 0x14 0b10100 DC4 4 52 0x34 0b110100 4
NAK 21 0x15 0b10101 NAK 5 53 0x35 0b110101 5
SYN 22 0x16 0b10110 SYN 6 54 0x36 0b110110 6
ETB 23 0x17 0b10111 ETB 7 55 0x37 0b110111 7
CAN 24 0x18 0b11000 CAN 8 56 0x38 0b111000 8
EM 25 0x19 0b11001 EM 9 57 0x39 0b111001 9
SUB 26 0x1A 0b11010 SUB : 58 0x3A 0b111010 :
ESC 27 0x1B 0b11011 ESC ; 59 0x3B 0b111011 ;
FS 28 0x1C 0b11100 FS < 60 0x3C 0b111100 <
GS 29 0x1D 0b11101 GS = 61 0x3D 0b111101 =
RS 30 0x1E 0b11110 RS > 62 0x3E 0b111110 >
US 31 0x1F 0b11111 US ? 63 0x3F 0b111111 ?

Characters in Table A-2 that are shaded dark grey are non-printable control
characters. These characters (and others) may not render properly on the

Electronics and Microprocessing for Research, 2nd Edition

411

Arduino IDE serial monitor, and may vary between programs, devices, and
operating systems.

Table A-2. UTF-8 and ASCII character table (continued).

UTF8 Dec Hex Binary

ASCII UTF8 Dec Hex Binary

ASCII

@ 64 0x40 0b1000000 @ ` 96 0x60 0b1100000 `
A 65 0x41 0b1000001 A a 97 0x61 0b1100001 a
B 66 0x42 0b1000010 B b 98 0x62 0b1100010 b
C 67 0x43 0b1000011 C c 99 0x63 0b1100011 c
D 68 0x44 0b1000100 D d 100 0x64 0b1100100 d
E 69 0x45 0b1000101 E e 101 0x65 0b1100101 e
F 70 0x46 0b1000110 F f 102 0x66 0b1100110 f
G 71 0x47 0b1000111 G g 103 0x67 0b1100111 g
H 72 0x48 0b1001000 H h 104 0x68 0b1101000 h
I 73 0x49 0b1001001 I i 105 0x69 0b1101001 i
J 74 0x4A 0b1001010 J j 106 0x6A 0b1101010 j
K 75 0x4B 0b1001011 K k 107 0x6B 0b1101011 k
L 76 0x4C 0b1001100 L l 108 0x6C 0b1101100 l
M 77 0x4D 0b1001101 M m 109 0x6D 0b1101101 m
N 78 0x4E 0b1001110 N n 110 0x6E 0b1101110 n
O 79 0x4F 0b1001111 O o 111 0x6F 0b1101111 o
P 80 0x50 0b1010000 P p 112 0x70 0b1110000 p
Q 81 0x51 0b1010001 Q q 113 0x71 0b1110001 q
R 82 0x52 0b1010010 R r 114 0x72 0b1110010 r
S 83 0x53 0b1010011 S s 115 0x73 0b1110011 s
T 84 0x54 0b1010100 T t 116 0x74 0b1110100 t
U 85 0x55 0b1010101 U u 117 0x75 0b1110101 u
V 86 0x56 0b1010110 V v 118 0x76 0b1110110 v
W 87 0x57 0b1010111 W w 119 0x77 0b1110111 w
X 88 0x58 0b1011000 X x 120 0x78 0b1111000 x
Y 89 0x59 0b1011001 Y y 121 0x79 0b1111001 y
Z 90 0x5A 0b1011010 Z z 122 0x7A 0b1111010 z
[91 0x5B 0b1011011 [{ 123 0x7B 0b1111011 {
\ 92 0x5C 0b1011100 \ | 124 0x7C 0b1111100 |
] 93 0x5D 0b1011101] } 125 0x7D 0b1111101 }
^ 94 0x5E 0b1011110 ^ ~ 126 0x7E 0b1111110 ~
_ 95 0x5F 0b1011111 _ DEL 127 0x7F 0b1111111 DEL

Appendix

412

Table A-2. UTF-8 and ASCII character table (continued) – extended
character set.

UTF8 Dec Hex Binary

ASCII UTF8 Dec Hex Binary

ASCII

€ 128 0x80 0b10000000 Ç á 160 0xA0 0b10100000 á
 ü 129 0x81 0b10000001 ü ¡ 161 0xA1 0b10100001 í
‚ 130 0x82 0b10000010 é ¢ 162 0xA2 0b10100010 ó
ƒ 131 0x83 0b10000011 â £ 163 0xA3 0b10100011 ú
„ 132 0x84 0b10000100 ä ¤ 164 0xA4 0b10100100 ñ
… 133 0x85 0b10000101 à ¥ 165 0xA5 0b10100101 Ñ
† 134 0x86 0b10000110 å ¦ 166 0xA6 0b10100110 ª
‡ 135 0x87 0b10000111 ç § 167 0xA7 0b10100111 º
ˆ 136 0x88 0b10001000 ê ¨ 168 0xA8 0b10101000 ¿

‰ 137 0x89 0b10001001 ë © 169 0xA9 0b10101001 ®
Š 138 0x8A 0b10001010 è ª 170 0xAA 0b10101010 ¬
‹ 139 0x8B 0b10001011 ï « 171 0xAB 0b10101011 ½

Œ 140 0x8C 0b10001100 î ¬ 172 0xAC 0b10101100 ¼
ì 141 0x8D 0b10001101 ì 173 0xAD 0b10101101 ¡
Ž 142 0x8E 0b10001110 Ä ® 174 0xAE 0b10101110 «
Å 143 0x8F 0b10001111 Å ¯ 175 0xAF 0b10101111 »
É 144 0x90 0b10010000 É ° 176 0xB0 0b10110000 ░
‘ 145 0x91 0b10010001 æ ± 177 0xB1 0b10110001 ▒
’ 146 0x92 0b10010010 Æ ² 178 0xB2 0b10110010 ▓
“ 147 0x93 0b10010011 ô ³ 179 0xB3 0b10110011 │
” 148 0x94 0b10010100 ö ´ 180 0xB4 0b10110100 ┤
• 149 0x95 0b10010101 ò μ 181 0xB5 0b10110101 Á
– 150 0x96 0b10010110 û ¶ 182 0xB6 0b10110110 Â
— 151 0x97 0b10010111 ù · 183 0xB7 0b10110111 À
˜ 152 0x98 0b10011000 ÿ ¸ 184 0xB8 0b10111000 ©
™ 153 0x99 0b10011001 Ö ¹ 185 0xB9 0b10111001 ╣
š 154 0x9A 0b10011010 Ü º 186 0xBA 0b10111010 ║
› 155 0x9B 0b10011011 ø » 187 0xBB 0b10111011 ╗

œ 156 0x9C 0b10011100 £ ¼ 188 0xBC 0b10111100 ╝
Ø 157 0x9D 0b10011101 Ø ½ 189 0xBD 0b10111101 ¢
ž 158 0x9E 0b10011110 × ¾ 190 0xBE 0b10111110 ¥
Ÿ 159 0x9F 0b10011111 ƒ ¿ 191 0xBF 0b10111111 ┐

Electronics and Microprocessing for Research, 2nd Edition

413

Table A-2. UTF-8 and ASCII character table (continued) – extended
character set.

UTF8 Dec Hex Binary

ASCII UTF8 Dec Hex Binary

ASCII

À 192 0xC0 0b11000000 └ à 224 0xE0 0b11100000 Ó
Á 193 0xC1 0b11000001 ┴ á 225 0xE1 0b11100001 ß
Â 194 0xC2 0b11000010 ┬ â 226 0xE2 0b11100010 Ô
Ã 195 0xC3 0b11000011 ├ ã 227 0xE3 0b11100011 Ò
Ä 196 0xC4 0b11000100 ─ ä 228 0xE4 0b11100100 õ
Å 197 0xC5 0b11000101 ┼ å 229 0xE5 0b11100101 Õ
Æ 198 0xC6 0b11000110 ã æ 230 0xE6 0b11100110 μ
Ç 199 0xC7 0b11000111 Ã ç 231 0xE7 0b11100111 þ
È 200 0xC8 0b11001000 ╚ è 232 0xE8 0b11101000 Þ
É 201 0xC9 0b11001001 ╔ é 233 0xE9 0b11101001 Ú
Ê 202 0xCA 0b11001010 ╩ ê 234 0xEA 0b11101010 Û
Ë 203 0xCB 0b11001011 ╦ ë 235 0xEB 0b11101011 Ù
Ì 204 0xCC 0b11001100 ╠ ì 236 0xEC 0b11101100 ý
Í 205 0xCD 0b11001101 ═ í 237 0xED 0b11101101 Ý
Î 206 0xCE 0b11001110 ╬ î 238 0xEE 0b11101110 ¯
Ï 207 0xCF 0b11001111 ¤ ï 239 0xEF 0b11101111 ´
Ð 208 0xD0 0b11010000 ð ð 240 0xF0 0b11110000 ¬
Ñ 209 0xD1 0b11010001 Ð ñ 241 0xF1 0b11110001 ±
Ò 210 0xD2 0b11010010 Ê ò 242 0xF2 0b11110010 ‗
Ó 211 0xD3 0b11010011 Ë ó 243 0xF3 0b11110011 ¾
Ô 212 0xD4 0b11010100 È ô 244 0xF4 0b11110100 ¶
Õ 213 0xD5 0b11010101 ı õ 245 0xF5 0b11110101 §
Ö 214 0xD6 0b11010110 Í ö 246 0xF6 0b11110110 ÷
× 215 0xD7 0b11010111 Î ÷ 247 0xF7 0b11110111 ¸
Ø 216 0xD8 0b11011000 Ï ø 248 0xF8 0b11111000 °
Ù 217 0xD9 0b11011001 ┘ ù 249 0xF9 0b11111001 ¨
Ú 218 0xDA 0b11011010 ┌ ú 250 0xFA 0b11111010 •
Û 219 0xDB 0b11011011 █ û 251 0xFB 0b11111011 ¹
Ü 220 0xDC 0b11011100 ▄ ü 252 0xFC 0b11111100 ³
Ý 221 0xDD 0b11011101 ¦ ý 253 0xFD 0b11111101 ²
Þ 222 0xDE 0b11011110 Ì þ 254 0xFE 0b11111110 ■
ß 223 0xDF 0b11011111 ▀ ÿ 255 0xFF 0b11111111 nb

The UTF-8 codes of Table A-2 were generated using the following sketch:
// Generate UTF-8 table
void setup(){
 Serial.begin(9600);
 for(byte i=0;i<256;i++){

Appendix

414

 Serial.write(i);
 Serial.print(", "+(String)i+", 0x");
 Serial.print(i,HEX);
 Serial.print(", 0b");
 Serial.print(i,BIN);
 Serial.println(""); // new line
 }
}

void loop(){}

ASCII codes were obtained from: https://theasciicode.com.ar/ascii-codes.txt
(PlaneTa MarTes 2008)
For more information: https://playground.arduino.cc/Code/UTF-8

Tips to Optimize Sketch Memory

On a desktop PC, there is less incentive to code efficiently. Processing
speed is blazing fast, and memory is ample. On a small MCU, this is not the
case. A poorly written sketch will result in noticeably sluggish performance.
When they compile, most sketch commands are saved to flash memory, and
variables you declare are saved to SRAM, both of which have relatively low
limits. The ATmega328 chip has 32K of flash memory for sketch space, and
2K of SRAM for your variables. When you compile a sketch, the compiler
messages at the bottom of the Arduino IDE will let you know how much
memory you have used up:

Sketch uses 4294 bytes (13%) of program storage
space. Maximum is 32256 bytes.
Global variables use 1852 bytes (90%) of dynamic
memory, leaving 196 bytes for local variables.
Maximum is 2048 bytes.
Low memory available, stability problems may occur.

The compiler will give you a warning like the one above if you get too
close to memory limits. Long sketches can compile down to surprisingly
small sizes; however, if you start to combine libraries (e.g. an LCD serial
library with a network card library) you may approach the 32K flash/2K
SRAM limits very quickly. You might be staring at the compiler window,
wondering how to make all your code fit onto the chip. It becomes important
then to optimize your code, to reduce the memory requirements of your
sketch. Here are some quick strategies to help you trim down your memory
requirements.

Electronics and Microprocessing for Research, 2nd Edition

415

1) Be frugal with declaring variable types.

Use the following chart to help you decide what type of variable to
declare. If you don’t need the range of a larger variable, then don’t use it.
Some programmers stay away from float variables at all costs.

Table A-3. ATmega328 variable sizes, and the ranges of values they can
store.

Variable type declaration Bits Number range
bool myVar=0; 1 0 or 1, FALSE or TRUE, LOW or HIGH
char myVar=0; 8 -128 to 127
unsigned char myVar=0; 8 0 to +255 (same as byte)
byte myVar=0; 8 0 to +255
int myVar=0; 16 -32768 to +32767
unsigned int myVar=0U; 16 0 to +65535
long myVar=0L; 32 -2,147,483,648 to +2,147,483,647
unsigned long myVar=0UL; 32 0 to +4,294,967,295
float myVar=0.f; 32 -3.4028235×1038 to 3.4028235×1038

For more information: https://learn.sparkfun.com/tutorials/data-types-in-arduino

String vs. char[]: The programming community favours arrays of
char variables over Strings because of their efficiency in memory. For
example,
 char myMessage[6]="hello";//char array, txt length+1
 char myMessage[]="hello"; //let compiler decide length

is preferred to:
 String myMessage="hello";
Once you have declared the above variables, you could use the command:
 Serial.print(myMesssage);
for either variable type. Recall that char arrays need to be one element
larger than the text length, to save room for the null character (ASCII code
0). This signals the end of the string to the compiler, and is added
automatically. That’s why we declared an array length of [6] for our five-
character “hello” example.

As mentioned in Section 3, to make matters slightly confusing, many
programmers use the term “string” (with a lower case “s”) and “character
array” interchangeably, both referring to char arrays (despite the existence
of String variables). This is something to be aware of when you are
reviewing other people’s sketches.

Appendix

416

For more information:
https://hackingmajenkoblog.wordpress.com/2016/02/04/the-evils-of-arduino-
strings/

2) Reduce the number of variables – especially global ones.

Global variables take up space immediately. Functions can use memory
slightly more efficiently, because the variable is declared at the start of the
function and then destroyed after the function finishes, so this will not
appear as part of the overall memory tally when you compile. If you have
declared a global variable that only needs to be local, then move its
declaration inside the function that uses it. Save global space for the
variables that really need to be global.

While you are at it, reducing the number of variables can also make a
difference in your code. Consider the following code:

int divs=analogRead(A1); // take analog reading
float volts=divs*3.3/1023.0; // div->volt
float weight=scaleInt+scaleCal*volts; // volt->mg

Do three different variables really need to be declared here? The following
code would still work:

float weight=analogRead(A1); // take analog reading
weight=weight*3.3/1023.0; // div->volt
weight=scaleInt+weight*scaleCal; // volt->mg

3) Use #define statements instead of constants.

The Arduino community seems to have a love/hate relationship with
#define statements. As mentioned in Section 4, #define statements are a
way of replacing a variable with a value. Of the following two statements:

byte ledPin=13;
#define ledPin 13

the first command uses one byte of SRAM, whereas the second command
uses the more-ample flash memory instead.
For more information: https://www.arduino.cc/en/Tutorial/Memory

4) Optimize Serial.print() commands.

Serial.print() commands are wonderful. They are a brilliant and
convenient way of debugging your program. However, they are memory
hogs, and slow your code down.

Electronics and Microprocessing for Research, 2nd Edition

417

If you do need serial commands, the text that is uploaded in a command
like this:

Serial.print("Pharmacy Rocks!");

takes up a lot of space in SRAM. One way of saving memory is by sending
the string inside the brackets to flash memory by using the following
function:

Serial.print(F("Pharmacy Rocks!"));

This only works for strings, and not variables. The following code would
not compile because the second line tries to load a variable into flash
memory:

Serial.print(F("Temperature: "));
Serial.print(F(myTemp));

Shortening the text to be printed inside Serial.print() commands will also
help free up memory. Once you have finished your sketch and confirmed
that it works, comment out all unnecessary serial commands, abbreviate the
remainder, and send any strings to flash memory using the F() function.
This will recover much needed memory and speed up your sketch.

5) Use PROGMEM to store arrays of constant values to flash memory.

If you aren’t planning on changing the contents of an array, then you can
store the array in flash memory rather than SRAM, using the PROGMEM
command. This is great for example when you are displaying graphics to an
LCD, and using an array to store the individual bytes for pixels.
PROGMEM works for all data types, but is really only worth using for
arrays. Here are two arrays of bytes defined without and with PROGMEM:

// saves array to SRAM (wasteful):
const byte myBitmap[] = {
0x1F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0x00, 0x1F, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x3F,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF
};

// saves array to FLASH (better):
const byte myBitmap[] PROGMEM = {
0x1F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0x00, 0x1F, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x3F,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF

Appendix

418

};

6) Use External Memory.

There are inexpensive DIP chips available that can provide additional
memory for your project. Two such chips are the 23LC1024 (SPI serial
SRAM with SDI and SQI interface), and 25LC1024 (SPI bus serial
EEPROM). The 23LC1024 chip has 1024 Mbits of memory (or 128K). This
means a single chip could hold 64,000 integers, or 32,000 float values,
freeing up your microprocessor for more sketch room. (Microchip
Technology Inc 2015) The biggest difference between these two types of
memory is that data stored in SRAM will be erased when the chip is
powered down, whereas EEPROM will still hold the data. However,
EEPROM has a limit to the number of times you can write to the chip before
becoming unreliable (1 million erase/write cycles). (Microchip Technology
Inc 2008) This may sound like a large number, but if you are taking readings
every few milliseconds, the number of erase/write cycles can add up
quickly.

You can find libraries to support both these chips. A library SRAMsimple
for the 23LC1024 is available at
https://github.com/dndubins/SRAMsimple. (Dubins 2018)

7) Use a microprocessor with more memory, or use more than one
microprocessor.

Your project might be too ambitious for the Arduino Uno, even after
optimizing space. You can then consider perhaps using two microprocessors
and giving them different jobs, or alternately, you can use a microprocessor
with more memory. Table A-4 summarizes the memory limits of a few
different microprocessor development boards and MCUs. For a more
current list of microprocessor boards in the Arduino line, see
https://store.arduino.cc/usa/arduino/boards-modules.

Electronics and Microprocessing for Research, 2nd Edition

419

Table A-4. Some microprocessors and their memory limits. (Arduino.cc
2018; Stör et al. 2017; Paul Stoffregen 2019)

Microprocessor
Board

Processor Chip
(MCU)

Flash
Memory

SRAM
Memory

EEPROM
Memory

Lily Tiny, Gemma ATtiny85 8 kb 512 b 512 b
Arduino Uno,
Nano, Mini

ATmega328 32 kb 2 kb 1 kb

Arduino Leonardo,
Arduino Yun,
Arduino Micro,
LilyPad, Teensy
2.0

ATmega32u4 32 kb 2.5 kb 1 kb

Arduino Mega,
Teensyduino (v1)

ATmega2560 256 kb 8 kb 4 kb

ESP-01,
NodeMCU,
LinkNode D1

ESP8266 1 MB 32 kb 4 kb

Arduino MKR
Zero, MKR 1000,
MKR Wifi 1010

SAMD21 Cortex-
M0+ (3.3V)

256 kb 32 kb Up to 16
kb
(emulated)

Arduino Due SAM3X8E ARM
Cortex-M3 CPU
(3.3V)

512 kb 100 kb -

Teensy ++ 2.0 AT90USB1286
8 bit AVR
16 MHz (5V)

128 kb 8 kb 4 kb

Teensy 3.0 MK20DX128
32 bit ARM
Cortex-M4
48 MHz (3.3V)

128 kb 16 kb 2 kb

Teensy 3.1, Teensy
3.2

MK20DX256
32 bit ARM
Cortex-M4
72 MHz (3.3V, 5V
tolerant)

256 kb 64 kb 2 kb

Teensy 3.5 MK64FX512
32 bit, 120 MHz
Cortex-M4F
(3.3V, 5V tolerant)

1 Mb 256 kb Emulated

Appendix

420

Teensy 3.6 MK66FX1M0
32 bit, 180 MHz
Cortex-M4F
(3.3V)

2 Mb 256 kb Emulated

Teensy LC 48 MHz Cortex-
M0+ (3.3V)

62 kb 8 kb Emulated

It may seem daunting to learn how to use a new microprocessor board, but

it isn’t as difficult as you might imagine. Platforms like the ESP8266 and the
Teensy series have their own add-on software and libraries which can allow
you to program them through the Arduino IDE, using the same or similar
commands and libraries. For setting up the Arduino IDE to program ESP8266
boards like the NodeMCU and LinkNode D1, visit
https://github.com/esp8266/Arduino. For setting up the Arduino IDE to
program Teensy devices, visit https://www.pjrc.com/teensy/tutorial.html. For
setting up the Arduino IDE to program the ATtiny45 or ATtiny85 MCU, visit
https://github.com/damellis/attiny. Sometimes, the biggest transition to
another board is figuring out where the digital and analog pins are located,
and which are PWM-enabled. However, compatibility issues can arise with
using Arduino libraries with non-supported microprocessors.

8) Streamline your strategy.

Review your sketch. Are there routines that can be shortened or
simplified? Have a look at the scope of your project, and what you are trying
to do. Is it too complicated? Is every component of your project essential?
Your project may be too ambitious for the Arduino Uno. For instance,
artificial intelligence routines are painfully slow for the Uno, and take up
lots of memory.

Using a 555 Timer as an External Clock

In Customized Frequencies for PWM of Section 10, we focused on how
to set the internal timers of the ATmega328 to generate a desired frequency
or duty cycle. Occasionally, if you run out of pins, or perhaps want an
external clock, it is helpful to know how to generate your own signal. The
NE555 or LM555 chips can generate square waves up to about 400 kHz,
and the CMOS version (LMC555) can generate frequencies as high as 3-4
MHz.

The following circuit diagram configures the 555 timer as a 50% duty
cycle oscillator in its astable mode, with a square wave output on pin 3. This

Electronics and Microprocessing for Research, 2nd Edition

421

output can serve as a stable clock signal. If a 10K trim potentiometer is used
for R2, commonly available capacitors can be used to span a wide frequency
range from ~120 Hz to 3 MHz. (Texas Instruments Inc 2016b)

Figure A-3. A 50% duty cycle square wave generator configuration for the 555 timer
(LMC555 CMOS version required above ~400 kHz). Ranges for fout were obtained
experimentally using a LMC555 timer and monolithic capacitors.

C2, R2 fout Range
100 pF, 10K pot: 340 kHz - 3MHz
1 nF, 10K pot: 50 kHz - 500 kHz
10 nF, 10K pot: 6.1 kHz - 100 kHz
100 nF, 10K pot: 700 Hz- 10 kHz
1 μF, 10K pot: 120 Hz - 1 kHz

Appendix

422

Common Fixed Resistor and Capacitor Values

It’s easier to build if you plan on using resistor values that are not
difficult to source. The following tables, generated from the laboratory
inventory, list some common fixed resistor and capacitor values.

Table A-5. Common fixed resistor values.

0 Ω 10 Ω 100 Ω 1 kΩ 10 kΩ 100kΩ 1 MΩ
1 Ω 15 Ω 110 Ω 1.5 kΩ 15 kΩ 150 kΩ 1.5 MΩ

2.2 Ω 22 Ω 120 Ω 2k Ω 18 kΩ 180 kΩ 2 MΩ
4. 7 Ω 27 Ω 150 Ω 2.4 kΩ 22 kΩ 200 kΩ 3.3 MΩ
5.6 Ω 33 Ω 180 Ω 2.7 kΩ 33 kΩ 220 kΩ 4.7 MΩ
7.5 Ω 39 Ω 200 Ω 3 kΩ 39 kΩ 330 kΩ 5 MΩ
8.2 Ω 47 Ω 220 Ω 3.3 kΩ 47 kΩ 470 kΩ 5.1 MΩ

 56 Ω 240 Ω 3.9 kΩ 56 kΩ 560 kΩ 5.6 MΩ
 68 Ω 270 Ω 4.7 kΩ 68 kΩ 680 kΩ 10 MΩ
 75 Ω 300 Ω 5k Ω 75 kΩ 820 kΩ 12 MΩ
 82 Ω 330 Ω 5.6 kΩ 82 kΩ
 390 Ω 6.8 kΩ
 400 Ω 7.4 kΩ
 470 Ω 8.2 kΩ
 500 Ω
 680 Ω
 820 Ω

Table A-6. Common fixed capacitor values.

1 pF 10 pF 100 pF 1 nF 10 nF 1 μF 100 μF
2 pF 15 pF 120 pF 1.5 nF 15 nF 2.2 μF 150 μF
3 pF 18 pF 140 pF 2 nF 20 nF 4.7 μF 220 μF
4 pF 20 pF 150 pF 2.2 nF 22 nF 10 μF 470 μF
5 pF 22 pF 180 pF 3.3 nF 33 nF 22 μF 1000 μF
6 pF 27 pF 220 pF 4.7 nF 37.7 nF 47 μF
7 pF 30 pF 270 pF 5 nF 47 nF
8 pF 33 pF 300 pF 6.8 nF 68 nF
9 pF 40 pF 330 pF 100 nF

 47 pF 470 pF 220 nF
 50 pF 560 pF
 56 pF 680 pF
 68 pF 820 pF
 82 pF

Electronics and Microprocessing for Research, 2nd Edition

423

.ino Files

triacDimmer.ino (Section 5)

// Example of forward-phase dimming (Figure 5-24, 5-25)
// Set up a 10K pot as a voltage divider on pin A0
byte crossPin=2; // Uno Pin 2 -- H11AA1 Pin 5
byte triacPin=3; // Uno Pin 3 -- 400R -- MOC3010 Pin 1
int dur=0; // duration for dimming

void setup(){
 pinMode(crossPin,INPUT_PULLUP);
 pinMode(triacPin,OUTPUT);
 Serial.begin(9600);
}

void loop(){
 triacON(analogRead(A0)); // use 10K pot on A0
 Serial.println(dur);
}

void triacISR(){
 delayMicroseconds(dur);
 digitalWrite(triacPin,HIGH); // turn on TRIAC
 delayMicroseconds(10);
 digitalWrite(triacPin,LOW); // turn off TRIAC
}

void triacON(int drive){ // drive range: 0 to 1023
 int tMIN=1300; //min delay for triac (exptl, ~350)
 int tMAX=7660; //max delay for triac (exptl, ~8100)
 dur=map(drive,0,1023,tMIN,tMAX); // scale dur
 attachInterrupt(0,triacISR,RISING); // ISR to pin 2
}

void triacOFF(){ // use this to shut triac off
 detachInterrupt(0);
 digitalWrite(triacPin,LOW);
}

Thermostat.ino (Section 5)
/* Thermostat.ino: Simple thermostat program (no sensor data
 * averaging)
 * Connections:
 * +3.3V--10K resistor--pin A1--10K thermistor--GND

Appendix

424

 * 3.3V to AREF pin
 * Pin 6 to relay module
 * (or Pin 6 to LED--220R resistor--GND to test)
*/

byte tempPin=A1; // Declaring the Analog input to be A1
 // of Arduino board.
byte relayPin=6; // For an LED (or relay)
float tempC=0.0; // For holding Celcius temp (floating
 // for decimal points precision)
float R = 0.0; // Variable for reading the measured
 // resistance of the thermistor
float R0 = 11930; // Resistance (Ohms) of thermistor at
 // room temperature
float T0 = 273.15 + 22.5; //Room temperature in Kelvin
float R1 = 10000.0; // Resistance (Ohms) of sense resistor
 // in voltage divider (should be ~10000
 // Ohms, measure for better accuracy)
float volts = 0.0; // Variable to read in voltage (to be
 // converted to resistance)
float B = 3672.433; // B Coefficient of Thermistor. Enter B
 // coefficient here.
float setTemp = 37.0; // Setpoint temperature for thermostat

void setup(){
 analogReference(EXTERNAL); // Use external (3.3V) AREF.
 // Make sure 3.3V connected to AREF pin
 // or or analogRead won't work!
 Serial.begin(9600); // Open serial port, set to 9600 bps
 Serial.println("Volts(V), Resistance(Ohm), Temperature(C)");
 // Set up column titles
 pinMode(relayPin, OUTPUT); // Set up relayPin as output to
 // send a digital signal to the relay
 // module.
}

void loop(){
 readTemp(); // Read the temperature (void fn below)
 // Now ouput the results to the serial monitor:
 Serial.print(volts); // Print Volts
 Serial.print(","); // Print a comma for CSV file
 Serial.print(R); // Print Resistance
 Serial.print(","); // Print a comma for CSV file
 Serial.println(tempC,2); // Print Temperature and new line
 if(tempC < setTemp){ // if measured temp less than set temp
 digitalWrite(relayPin, HIGH); // then turn on relay
 } else {
 digitalWrite(relayPin, LOW); // otherwise turn off relay
 }
 delay(1000); // Wait 1sec before taking next measure
}

void readTemp(){

Electronics and Microprocessing for Research, 2nd Edition

425

 volts = analogRead(tempPin) * 3.3 / 1023.0; // Take sensor
 // reading from tempPin in divs (Scale
 // 0-1023), and convert to volts
 R = volts*R1/(3.3-volts); // Convert voltage to resistance
 tempC = (1/T0)+((1/B)*log(R/R0)); // Use the two-term
 // exponential thermistor equation to
 // calculate temperature
 tempC = 1.0/tempC; // invert the answer
 tempC = tempC - 273.15; // Convert from Kelvin to Celsius
}

4WStepper.ino: 4-Wire Stepper Control (Section 6)
// Generic 4-Wire Stepper Motor Control
#include <Stepper.h> // Arduino IDE built-in library
const byte stepsPerRev = 200; // change as needed for motor
// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRev, 8, 9, 10, 11);

void setup(){
 myStepper.setSpeed(60); // set speed to 60 rpm
 Serial.begin(9600);
}

void loop(){
 myStepper.step(200); // clockwise one rotation
 delay(1000);
 myStepper.step(-200); // counter-clockwise one rotation
 delay(1000);
}

4WStepper_noLib: 4-Wire Stepper Control (no library required)
/* 4-Wire Generic Stepper (capable of full and half-steps)
 * see: http://www.hurst-motors.com/Technical_Help.html
 * for full and half-step sequences, and more info
 *
 * Motor Driver to MCU:
 * IN1 to D8
 * IN2 to D9
 * IN3 to D10
 * IN4 to D11
 * +5V to MCU +5V (or external supply Vcc)
 * GND to MCU GND (and external supply GND if used)
*/

const int stepsPerRev=20; // change as needed for motor
const byte IN[4]={8,9,10,11}; // define motor pins as array

void setup(){
 Serial.begin(9600);

Appendix

426

 for(int i=0;i<4;i++){
 pinMode(IN[i],OUTPUT);
 }
}

void loop(){
 Serial.println("Stepping clockwise in full steps.");
 motorStep(200,10); // clockwise 200 steps @10rpm
 delay(1000);
 Serial.println("Stepping counter-clockwise in full steps.");
 motorStep(-200,10); // counter-clockwise 200 steps @10rpm
 delay(1000);
 Serial.println("Stepping clockwise in half steps.");
 motorStepHalf(200,10); // CW 200 half steps @10rpm
 delay(1000);
 Serial.println("Stepping counter-clockwise in half steps.");
 motorStepHalf(-200,10); // CCW 200 half steps @10rpm
 delay(1000);
}

void motorStep(int mSteps, float rpm){
 //convert rpm to time delay:
 float t=60000.0/(rpm*stepsPerRev);
 const bool mSequence[4][4]={
 {1, 0, 0, 1}, // step 0
 {1, 0, 1, 0}, // step 1
 {0, 1, 1, 0}, // step 2
 {0, 1, 0, 1} // step 3
 };
 static int mStep; // remember last val of mStep
 for(int i=0;i<abs(mSteps);i++){ // STEP pulses
 if(mSteps>0){ // clockwise
 mStep++;
 if(mStep>3)mStep=0;
 }else{ // counter-clockwise
 mStep--;
 if(mStep<0)mStep=3;
 }
 for(int j=0;j<4;j++){
 digitalWrite(IN[j],mSequence[mStep][j]);
 }
 delay_(t);
 }
}

void motorStepHalf(int mSteps, float rpm){
 float t=60000.0/(rpm*stepsPerRev*2.0);
 const bool mSequence[8][4]={ // for motor sequence
 {0, 1, 0, 1}, // step 0
 {0, 0, 0, 1}, // step 1
 {1, 0, 0, 1}, // step 2
 {1, 0, 0, 0}, // step 3
 {1, 0, 1, 0}, // step 4

Electronics and Microprocessing for Research, 2nd Edition

427

 {0, 0, 1, 0}, // step 5
 {0, 1, 1, 0}, // step 6
 {0, 1, 0, 0} // step 7
 };
 static int mStep; // remember last val of mStep
 for(int i=0;i<abs(mSteps);i++){ // STEP pulses
 if(mSteps>0){ // clockwise
 mStep++;
 if(mStep>7)mStep=0;
 }else{ // counter-clockwise
 mStep--;
 if(mStep<0)mStep=7;
 }
 for(int j=0;j<4;j++){
 digitalWrite(IN[j],mSequence[mStep][j]);
 }
 delay_(t);
 }
}

void delay_(float x){ // allows for delays <1ms
 if(x>1.0){
 delay(x);
 }else{
 delayMicroseconds(x*1000.0); //convert to usec
 }
}

PID.ino (Section 6)
/*
PID.ino: Control a drive element using a PID strategy
Connections:
+5V to LM35 Pin 1
MCU Pin A0 to LM35 Pin 2
GND to LM35 Pin 3
MCU Pin 11 to the base of an NPN transistor
DC fan red wire to ATX +12V (yellow wire)
DC fan black wire to the collector of an NPN transistor
*/

byte DRIVEPin = 11; // Digital pin for PWM fan control
byte MESPin = A0; // Analog pin A0 for temperature
 // measurement
float SETPOINT = 21.0; // Setpoint temperature: what you would
 // like temperature to be
float MEASURED = 0.0; // Variable to store measured
 // temperature
void setup(){
 Serial.begin(9600); // Open serial port, set to 9600 bps
 pinMode(DRIVEPin, OUTPUT); // Generally not needed for PWM
}

Appendix

428

void loop(){
 myPID(1.0, 0.0, 0.0); // call PID control here, entering
 // values for kP, kI, and kD (other
 // options available in PID subroutine)
 delay(300); // optional delay statement
}

void myPID(float kP, float kI, float kD){
 /*
 PID Algorithm:
 MEASURED: Measured value for feedback
 MESpin: pin to measure
 SETPOINT: value you would like the system to converge to
 DRIVEpin: pin to send drive signal
 TOLERANCE: Acceptable range from SETPOINT (adjust the system
until Error is within TOLERANCE).
 kP: Proportional gain; kI: Integrator gain; kD: Derivative
Gain
 IntThresh: Only run integrator if Error < IntThresh (if
control is almost done). Make this smallish, but greater than
TOLERANCE (otherwise it will never engage).
 ScaleFactor: factor to scale P+I+D to a response (then
after, impose 0-255 limits). A negative scale factor here will
deactivate DRIVE if MEASURED > SETPOINT.
 */
 float TOLERANCE = 1.0; // tolerance of control (in this
 // case, 1 means that PID won't do
 // anything if measured temperature
 // is within 1 degC of the setpoint)
 float IntThresh=5.0; // narrow region of integral term
 // (proximity to SET)
 float ScaleFactor=-1.0; // Use this to change direction and
 // rescale DRIVE if necessary
 float Error = 0.0;
 float Integral = 0.0; // make this a global variable if not
 // using the do-while loop
 float P = 0.0;
 float I = 0.0;
 float D = 0.0;
 float LAST = 0.0; // Make this a global variable if you
 // plan on using this routine to
 // continuously check (keep track of
 // last globally)
 long DRIVE = 0.0; // Nothing quite like a long drive.
 do { // You can get rid of the do..while
 // loop if you want the PID routine to
 // adjust the drive ONCE each function
 // call, i.e. not keep going until you
 // reach the SETPOINT.
 // This might be important if your
 // sketch needs to do other things!
 MEASURED = analogRead(MESPin) * 500.0/1023.0; // convert

Electronics and Microprocessing for Research, 2nd Edition

429

 // from divs to degC
 Error = SETPOINT - MEASURED;
 if (Error < IntThresh){ // prevent integral wind-up by
 // only engaging it close to SETPOINT.
 Integral = Integral + Error; // add to Error Integral
 } else {
 Integral=0.0; // zero Integral if out of bounds
 }
 P = Error*kP; // calculate proportional term
 I = Integral*kI; // integral term
 D = (LAST-MEASURED)*kD; // derivative term
 DRIVE = P + I + D; // Total DRIVE = P+I+D
 DRIVE = (long)(DRIVE*ScaleFactor); // scale DRIVE to be in
 // the range 0-255
 DRIVE = constrain(DRIVE,0,255); // make sure DRIVE is an
 // integer between 0 and 255. An offset
 // can be used to get the DRIVE moving,
 // e.g. constrain(68+DRIVE,0,255).
 Serial.print("SETPOINT: "); // info to serial monitor
 Serial.print(SETPOINT);
 Serial.print(", MEASURED: ");
 Serial.print(MEASURED);
 Serial.print(", P: ");
 Serial.print(P);
 Serial.print(", I: ");
 Serial.print(I);
 Serial.print(", D: ");
 Serial.print(D);
 Serial.print(", DRIVE: ");
 Serial.println(DRIVE);
 // replace all Serial.print commands
 // with the following command to
 // observe the response on the serial
 // plotter:
 //Serial.println((String)MEASURED+", "+(String)SETPOINT);
 LAST = MEASURED; // save current value for next time
 analogWrite(DRIVEPin, DRIVE); // send DRIVE as PWM signal
 } while (abs(SETPOINT-MEASURED)>TOLERANCE); // End of DO
 // loop condition. do..while will
 // always run at least once (while is
 // tested at the end of the loop).
 // Comment out if removing do loop.
 Serial.println("SETPOINT within TOLERANCE.");
}

QuickStats.h (Section 8)
// QuickStats.h Library for Data Smoothing
// For a standalone version of this library, visit:
// https://github.com/dndubins/QuickStats

#include <math.h>

Appendix

430

//#define DEBUG // uncomment for debugging messages

float average(float samples[],int m){
 float total1=0.0;
 for(int i=0;i<m;i++){
 total1=total1+samples[i];
 }
 return total1/(float)m;
}

float g_average(float samples[],int m){
 float total1=0.0;
 for(int i=0;i<m;i++){
 total1=total1+log(samples[i]);
 }
 return exp(total1/(float)m);
}

float stdev(float samples[],int m){
 float avg=0.0;
 float total2=0.0;
 avg=average(samples,m);
 for(int i=0;i<m;i++){
 total2 = total2 + pow(samples[i] - avg,2);
 }
 return sqrt(total2/((float)(m-1)));
}

float CV(float samples[],int m){ //Coefficient of variation
 float avg=0.0;
 float sd=0.0;
 avg=average(samples,m);
 sd=stdev(samples,m);
 return 100.0*sd/avg;
}

void bubbleSort(float A[],int len){
 unsigned long newn;
 unsigned long n=len;
 float temp=0.0;
 do {
 newn=1;
 for(int p=1;p<len;p++){
 if(A[p-1]>A[p]){
 temp=A[p]; //swap places in array
 A[p]=A[p-1];
 A[p-1]=temp;
 newn=p;
 } //end if
 } //end for
 n=newn;
 } while(n>1);
}

Electronics and Microprocessing for Research, 2nd Edition

431

float median(float samples[],int m){ //calculate the median
 //First bubble sort the values:
 //(algorithm from https://en.wikipedia.org/wiki/Bubble_sort)
 float sorted[m]; //Define and initialize sorted array.
 float temp=0.0; //Temporary float for swapping elements
 #ifdef DEBUG
 Serial.println("Before:");
 for(int j=0;j<m;j++){
 Serial.println(samples[j]);
 }
 #endif
 for(int i=0;i<m;i++){
 sorted[i]=samples[i];
 }
 bubbleSort(sorted,m); // Sort the values
 #ifdef DEBUG
 Serial.println("After:");
 for(int i=0;i<m;i++){
 Serial.println(sorted[i]);
 }
 #endif
 if (bitRead(m,0)){ //If the last bit of a number is 1,
//it's odd. This is equivalent to "TRUE". Also use if m%2!=0.
 return sorted[m/2]; //If the number of data points is odd,

//return middle number.
 } else {
 return (sorted[(m/2)-1]+sorted[m/2])/2.0; //If the number
//of data points is even, return avg of the middle two
//numbers.
 }
}
float mode(float samples[],int m){ //calculate the mode.
 //First bubble sort the values:
 float sorted[m]; //Temporary array to sort values.
 float temp=0; //Temporary float for swapping elements
 float unique[m]; //Temporary array to store unique values
 int uniquect[m]; //Temporary array to store unique counts
 #ifdef DEBUG
 Serial.println("Before:");
 for(int i=0;i<m;i++){
 Serial.println(samples[i]);
 }
 #endif
 for(int i=0;i<m;i++){
 sorted[i]=samples[i];
 }
 bubbleSort(sorted,m); // Sort the values
 #ifdef DEBUG
 Serial.println("Sorted:");
 for(int i=0;i<m;i++){
 Serial.println(sorted[i]);
 }

Appendix

432

 #endif
 // Now count # times each unique number appears in sorted
 // array.
 unique[0]=sorted[0];
 uniquect[0]=1;
 int p=0; // counter for # unique numbers
 int maxp=0;
 int maxidx=0;
 for(int i=1;i<m;i++){
 if(abs(sorted[i]-sorted[i-1])<0.0001){ // tolerance for
//two readings being the same. Set as needed.
 uniquect[p]++; //if same number again, add to count
 if(uniquect[p]>maxp){
 maxp=uniquect[p];
 maxidx=p;
 }
 } else {
 p++;
 unique[p]=sorted[i];
 uniquect[p]=1;
 }
 }
 #ifdef DEBUG
 for(int i=0;i<p+1;i++){
 Serial.println("Num: " + (String)unique[i] +" Count: "
+ (String)uniquect[i]);
 }
 #endif
 if (maxp>1){
 return unique[maxidx]; //If there is more than one mode,
 //return the lowest one.
 } else {
 return 0.0; //If there is no mode, return a zero.
 }
}

TimedISR_N.ino (Section 10)
// Timed ISR to run a routine every n seconds (using Timer 1)
// variables changed in ISRs should be volatile:
unsigned long n=60; // run routine once every minute (60sec)
volatile unsigned long cycles=0; // to hold #cycles
volatile int reading=0; // to store analog reading

void setup(){
 Serial.begin(9600);
 //To set Timer 1 interrupt at 1Hz:
 cli(); //stop interrupts
 TCCR1A=0; // clear timer control register A
 TCCR1B=0; // clear timer control register B
 TCNT1=0; // clear timer counter 1
 TCCR1B=_BV(WGM12); // CTC mode

Electronics and Microprocessing for Research, 2nd Edition

433

 TCCR1B|=_BV(CS12); // prescaler=256
 TIMSK1|=_BV(OCIE1A); // enable timer compare interrupt
 OCR1A=62499; // OCR1A=(fclk/(N*frequency))-1
 sei(); //enable interrupts
}

void loop(){
}

ISR(TIMER1_COMPA_vect){ // Timer 1 interrupt routine
 cycles++; // increment counter
 if(cycles>(n-1)){
 // Your short routine can go here
 reading=analogRead(A0); // only read every n seconds
 Serial.println(reading); //comment out for final sketch
 cycles=0; // reset cycles
 }
}

Derivation for Vin(+) (Section 7)

Figure 7-26 showed a resistor network at the non-inverting input of an
op-amp. This derivation is provided to show how Vin(+) is calculated.

Figure A-4. Voltage divider network at an op-amp input: solving for the input
voltage.

The input voltage at the op-amp terminal, in this case, Vin(+), can be

solved the same way as we solved the voltage divider equation. First,
assume that virtually no current flows into the op-amp (ideal op-amp
assumption). Now, the current flowing from Vin to Vb will be: = ∆ = −+

The voltage difference across resistor R2 will be:

Appendix

434

= = −+ = = + − +

The voltage Vin(+) is then equal to Vb + V2: (KVL)

() = + = + + − +

() = + + − +

() = + − + − 1

() = + − + − ++

() = + + +
This is the second term in the non-inverting summing amplifier: = Gain × () = 1 + + + +

Electronics and Microprocessing for Research, 2nd Edition

435

Table A-7. Pin-out of 20-pin and 24-pin versions of the ATX main
power connector. (Fisher 2019)

Pin Colour Description Pin Colour Description
1 Orange +3.3V 1 Orange +3.3V
2 Orange +3.3V 2 Orange +3.3V
3 Black GND 3 Black GND
4 Red +5V 4 Red +5V
5 Black GND 5 Black GND
6 Red +5V 6 Red +5V
7 Black GND 7 Black GND
8 Grey +5V when power

good (diagnostic)
 8 Grey +5V when power

good (diagnostic)
9 Purple +5V standby 9 Purple +5V standby
10 Yellow +12V 10 Yellow +12V

 11 Yellow +12V
 12 Orange +3.3V

11 Orange +3.3V 13 Orange +3.3V
12 Blue -12V 14 Blue -12V
13 Black GND 15 Black GND
14 Green Connect to GND

to turn on
 16 Green Connect to GND

to turn on
15 Black GND 17 Black GND
16 Black GND 18 Black GND
17 Black GND 19 Black GND
18 White -5V 20 White -5V (optional)
19 Red +5V 21 Red +5V
20 Red +5V 22 Red +5V
 23 Red +5V
 24 Black GND

20-Pin Numbering:
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

24-Pin Numbering:

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

clip

Appendix

436

Arduino Uno Pin-out Diagram

Figure A-5. Pin-out diagram for a generic Arduino Uno r3. Pin numbers (2 to 28)
correspond to the pin numbers on the ATmega328 chip. (Atmel Corporation 2016)

Electronics and Microprocessing for Research, 2nd Edition

437

ATmega328 Pin-out Diagram

Figure A-6. Pin-out diagram for the ATmega328 28-pin (DIP). Pin labels for the
Arduino IDE are indicated in blue (~ indicates PWM-capable). (Atmel Corporation
2016)

ATtiny85 Pin-out Diagram

Figure A-7. Pin-out diagram for the ATtiny85 8-pin (DIP version). Pin labels for the
Arduino IDE are indicated in blue (~ indicates PWM-capable). (Atmel Corporation
2013)

Ohm’s Law Equation Table

Table A-8. Ohm’s Law equations, re-arranged for each term.

Voltage = = √ =

Resistance = = =

Current = = =

Power = = =

Appendix

438

List of Circuit Diagram Symbols

Figure A-8. List of circuit diagram symbols used in this text. Note that many variants
of these symbols are common. LDRs, LEDs, photodiodes, transistors, and
MOSFETs often appear in circuit diagrams without circles.

Electronics and Microprocessing for Research, 2nd Edition

439

Variable Type Conversion Chart

Figure A-9. Summary conversion chart for common variable types. Grey lines:
casting (see Table 3-5). Black lines: see Table 3-6 for examples. See Table 10-23
for advanced formatting with Strings.

int

float

byte

long

String

char[]

char

bool

.to
In

t()
ca

st

atof()

Appendix

440

List of Abbreviations

%RSD percent relative standard deviation
AC alternating current
ADC analog to digital converter
AREF analog reference pin
ASCII American standard code for information interchange
AWG American wire gauge
BJT bipolar junction transistor
bps bits per second
CLK clock
CR filter high-pass capacitor-resistor filter
CSV comma separated values
CMOS complementary metal-oxide semiconductor
dB decibel
DC direct current
DIP dual inline package
divs divisions
DPDT double pole double throw
EEPROM electrically erasable programmable read-only memory
e.g. exempli gratia
FTDI Future Technology Devices International Ltd.
GND ground
HPF high-pass filter
HV high voltage
IC integrated circuit
ICSP in-circuit serial programming
IDE integrated development environment
i.e. id est
IR infrared
ISR interrupt service routine
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
LED light emitting diode
LPF low-pass filter
LSB least significant bit (to the far right)
LV low voltage
mAh milliamp hours
MCU microcontroller unit
MISO master in slave out
MOSFET metal oxide semiconductor field effect transistor

Electronics and Microprocessing for Research, 2nd Edition

441

MOSI master out slave in
MSB most significant bit (to the far right)
NC normally closed
NCHO normally closed held open
NiMH nickel metal hydride
NO normally open
NOHC normally open held closed
NTC negative temperature coefficient
op-amp operational amplifier
PDIP plastic dual inline package
PID controller proportional integral derivative controller
PLCC plastic lead-chip carrier
PRV peak reverse voltage
PTC positive temperature coefficient
PWM pulse width modulation
Q-factor quality factor
RC filter low-pass resistor-capacitor filter
RTC real time clock
RTD resistive temperature detector
SCK clock pin
SNR signal-to-noise ratio
SOIC small outline integrated circuit
SPDT single pole double throw
SPST single pole single throw
SRAM static random-access memory
SW switch
TRIAC triode for attenuating current
USB universal serial bus
USP United States Pharmacopeia
UTF-8 unicode transformation format – 8 bit
VGS(th) threshold gate-source voltage (MOSFET)
Vcc voltage (common cathode)

BIBLIOGRAPHY

Adriaensen, Jan. "Change Unipolar 28BYJ-48 to Bipolar Stepper Motor.",

last modified October 27, 2013, accessed April 17, 2019,
http://www.jangeox.be/2013/10/change-unipolar-28byj-48-to-
bipolar.html.

Alves, João. "Multiple Inputs - Parallel to Series.", last modified September
8, 2015, accessed March 1, 2019,
https://jpralves.net/post/2015/09/08/multiple-inputs-parallel-to-
series.html#.XHm8lIhKiM8.

Analog Devices Inc. 2016. "AD623 Single and Dual-Supply, Rail-to-Rail,
Low Cost Instrumentation Amplifier." AD623 Datasheet Rev. F.
(January 11). https://www.analog.com/media/en/technical-documentation/
data-sheets/ad623.pdf.

Analog Devices Inc. "MT-033 Tutorial: Voltage Feedback Op Amp Gain
and Bandwidth. Rev.0, 10/08, WK.", 2009, accessed February 21, 2019,
https://www.analog.com/media/en/training-seminars/tutorials/MT-
033.pdf.

Andy Collinson. "Measuring Input and Output Impedance.", last modified
March 20, 2018, accessed May 17, 2018,
http://www.zen22142.zen.co.uk/Theory/inzoz.htm.

Arduino.cc. "Arduino - Compare.", 2018, accessed May 26, 2018,
https://www.arduino.cc/en/Products/Compare.

Atmel Corporation. 2016. "8-Bit AVR Microcontrollers ATMega328/P
Datasheet Complete."
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016
(November). https://cdn.sparkfun.com/assets/c/a/8/e/4/Atmel-42735-8-
bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf.

Atmel Corporation. 2013. "Atmel 8-Bit AVR Microcontroller with 2/4/8K
Bytes in-System Programmable Flash." Rev. 2586Q–AVR–08/2013
(ATtiny25/45/85 [DATASHEET]) (August).
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2586-
AVR-8-bit-Microcontroller-ATtiny25-ATtiny45-
ATtiny85_Datasheet.pdf.

Balachandran, Rama and Porter-Davis, Karen. "Using CDs and DVDs
as Diffraction Gratings.", 2009, accessed January 6, 2019,

Electronics and Microprocessing for Research, 2nd Edition

443

http://www.nnin.org/sites/default/files/files/Karen_Rama_USING_CD
s_AND_DVDs_AS_DIFFRACTION_GRATINGS_0.pdf.

Bard, Allen J. and Larry R. Faulkner. 2001. Electrochemical Methods. 2.
ed. ed. New York [u.a.]: Wiley.

Bellman, Richard. 1964. "Control Theory." Scientific American 211 (3)
(September): 186-200.

Besenhard, Jürgen O. 1999. Handbook of Battery Materials. Weinheim ;
New York: Wiley-VCH.
http://www.loc.gov/catdir/description/wiley032/99186348.html;
http://www.loc.gov/catdir/toc/wiley022/99186348.html.

Boellmann, Werner e. a. "AVR Libc Home Page.", last modified February
9, 2016, accessed April 28, 2019, http://www.nongnu.org/avr-libc/.

Burkett, Jaret. "Breadboard Arduino.", last modified February 6, 2016,
accessed April 25, 2019,
https://github.com/oshlab/Breadboard-Arduino.

Camenzind, Hans R. 1997. "Redesigning the Old 555 [Timer Circuit]."
IEEE Spectrum 34 (9): 80-85.

Carolyn Mathas. "Light Sensors: An Overview.", last modified September
11, 2012, accessed December 18, 2018,
https://www.digikey.ca/en/articles/techzone/2012/sep/light-sensors-an-
overview.

Carter, Bruce. 2006. "High-Speed Notch Filters." Analog Applications
Journal: 19-26. http://www.ti.com/lit/an/slyt235/slyt235.pdf.

Carter, Bruce and Thomas R. Brown. 2016. "Handbook of Operational
Amplifier Applications." Texas Instruments Inc. Application Report
SBOA092B. October 2001 [Revised September 2016] (Sep): 1-94.
http://www.ti.com/lit/an/sboa092b/sboa092b.pdf.

Chen, Chiachung. 2009. "Evaluation of Resistance-Temperature
Calibration Equations for NTC Thermistors." Measurement 42 (7):
1103-1111. doi:10.1016/j.measurement.2009.04.004.
http://resolver.scholarsportal.info.myaccess.library.utoronto.ca/resolve/
02632241/v42i0007/1103_eorcefnt.

Coleman, T. "Shining the Light on Dimming.", last modified -01-
22T11:50:00-05:00, 2015, accessed Mar 8, 2018,
http://www.ecmweb.com/lighting-control/shining-light-dimming.

Couto, Robson. "Arduino Reference - pulseIn().", last modified February 5,
2019, accessed February 22, 2019,
https://www.arduino.cc/reference/en/language/functions/advanced-
io/pulsein/.

Bibliography

444

de Brabander, Frank. "Library for the LiquidCrystal LCD Display
Connected to an Arduino Board.", last modified March 8, 2017,
accessed March 5, 2018,
https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library.

Dubins, David. "SRAMsimple: Library to Run 23LC1024 Chip for the
Arduino Uno, using the Arduino IDE.", last modified November 14,
2018, accessed April 28, 2019,
https://github.com/dndubins/SRAMsimple.

Dummer, G. W. A. 2013. Electronic Inventions and Discoveries:
Electronics from its Earliest Beginnings to the Present Day. Pergamon
International Library. Kent: Elsevier Science & Technology.

ELECFREAKS wiki. "Relay Module (Arduino Compatible).", last
modified May 19, 2015, accessed Feb 22, 2018,
http://www.elecfreaks.com/wiki/index.php?title=Relay_Module_(Ardu
ino_Compatible).

Everlight Electronics Co. Ltd. 2016. "5mm Phototransistor
PT334-6C." PT334-6C Datasheet DPT-0000185 Rev.4. (December 19).
http://www.everlight.com/file/productfile/pt334-6c.pdf.

Fairchild Semiconductor Inc. 2014. "MOC3010M, MOC3011M,
MOC3012M, MOC3020M, MOC3021M, MOC3022M, MOC3023M 6-
PIN DIP Random-Phase Optoisolators Triac Driver Output (250/400
Volt Peak)." MOC301XM, MOC302XM Rev. 1.0.3 (March).
http://www.farnell.com/datasheets/1806097.pdf.

Farzan, Azadeh. "Chapter 4: Set Theory (Course Notes, PMU199).", last
modified December 24, 2018,
http://www.cs.toronto.edu/~azadeh/page11/page12/material/set-
theory.pdf.

Fisher, Tim. "ATX 24 Pin 12V Power Supply Pinout.", last modified
January 7, 2019, accessed January 10, 2019,
https://www.lifewire.com/atx-24-pin-12v-power-supply-pinout-
2624578.

Gammon, Nick. "Gammon Forum: Interrupts.", last modified January 8,
2012, accessed April 14, 2019, http://gammon.com.au/interrupts.

Gibilisco, Stan. 2013. Beginner's Guide to Reading Schematics, 3E
McGraw-Hill/TAB Electronics. http://lib.myilibrary.com?ID=525390.

gratefulfrog. "Arduino Playground - Keypad Tutorial.", last modified
September 4, 2013, accessed February 28, 2019,
https://playground.arduino.cc/Main/KeypadTutorial.

Haffner, Sr D. "Using an Arduino R3 to Power the TCD1304AP CCD
Chip.", last modified August 2, 2017, accessed December 18, 2018,

Electronics and Microprocessing for Research, 2nd Edition

445

https://hackaday.io/project/18126-dav5-v301-raman-
spectrometer/log/53099-using-an-arduino-r3-to-power-the-tcd1304ap-
ccd-chip.

Hellma. 2008. Calibration Standards for Spectrophotometers. Müllheim,
Germany: Hellma GmbH & Co. KG.

Hobby CNC Australia. "Mounting Stepper Motors.", last modified February
15, 2015, accessed December 9, 2018,
http://www.hobbycncaustralia.com.au/Instructions/iI8mountstepper.htm.

Hoffmann, Heiko. "A.3 Iterative Mean.", last modified March 22, 2005,
accessed January 23, 2019,
http://www.heikohoffmann.de/htmlthesis/node134.html.

Intersil Corporation. 2013. "CL7660S, ICL7660A Super Voltage
Converters." ICL7660S, ICL7660A Datasheet FN3179 Rev 7.00.
(January 23).
https://www.renesas.com/us/en/www/doc/datasheet/icl7660.pdf.

Kanakaraja, Pamarthi. "RGB Color Detector using TCS3200 Sensor
Module.", last modified April 11, 2017, accessed February 22, 2019,
https://electronicsforu.com/electronics-projects/rgb-color-detector-
tcs3200-sensor-module.

Karki, Jim. 2002. "Active Low-Pass Filter Design." Texas Instruments Inc.
Application Report SLOA049B. (Sep): 24.
http://www.ti.com/lit/an/sloa049b/sloa049b.pdf.

King, Terry. "Arduino Playground - ArduinoPinCurrentLimitations.", last
modified July 15, 2017, accessed Feb 21, 2018,
https://playground.arduino.cc/Main/ArduinoPinCurrentLimitations.

Leger, George. "Unipolar Stepper Motor Vs Bipolar Stepper Motors.", last
modified January 11, 2012, accessed December 18, 2018,
https://www.circuitspecialists.com/blog/unipolar-stepper-motor-vs-
bipolar-stepper-motors/.

Loflin, Lewis. "Zero-Crossing Detectors Circuits and Applications.", last
modified January, 2018, accessed April 14, 2019,
http://www.bristolwatch.com/ele2/zero_crossing.htm.

Macsimski, Simon. "Arduino Playground - ArduinoSleepCode.", last
modified December 29, 2006, accessed March 16, 2019,
http://playground.arduino.cc/Learning/ArduinoSleepCode.

Maloberti, Franco and Anthony Davies. 2016. A Short History of Circuits
and Systems. Aalborg: River Publishers.
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=
4530489.

Mancini, Ronald C. 2002. "Op Amps for Everyone: Design Reference."
Advanced Analog Products SLOD006B. (Aug).

Bibliography

446

http://web.mit.edu/6.101/www/reference/op_amps_everyone.pdf.
Mansfield, Anson. "TriacDimmer: A Library for Controlling a Triac

Dimmer.", last modified February 24, 2017, accessed April 16, 2019,
https://www.arduinolibraries.info/libraries/triac-dimmer.

Margolis, Michael. "Time and TimeAlarms Libraries for Arduino.", last
modified October 1, 2014, accessed April 25, 2019,
https://github.com/michaelmargolis/arduino_time.

Maw, Carlyn and Igoe, Tom. "Serial to Parallel Shifting-Out with a
74HC595.", last modified November, 2006, accessed March 2, 2019,
https://www.arduino.cc/en/Tutorial/ShiftOut.

Maxim Integrated. "Application Note 1880. Charlieplexing - Reduced Pin-
Count LED Display Multiplexing.", last modified February 10, 2003,
accessed March 3, 2019,
https://www.maximintegrated.com/en/app-notes/index.mvp/id/1880.

Mellai, Stefania. "Arduino - EEPROM.", last modified May 17, 2018,
accessed May 26, 2018,
https://www.arduino.cc/en/Reference/EEPROM.

—. "Arduino - Introduction.", last modified Oct 20, 2017a, accessed March
5, 2018, https://www.arduino.cc/en/Guide/Introduction.

—. "Arduino Reference - analogWrite().", last modified November 15,
2017b, accessed May 26, 2018,
https://www.arduino.cc/reference/en/language/functions/analog-
io/analogwrite/.

—. "Arduino Reference: analogReference().", last modified Last Update:
Nov. 24, 2017c, accessed Feb 20, 2018,
https://www.arduino.cc/reference/en/language/functions/analog-
io/analogreference/.

Microchip Technology Inc. 2015. "23A1024/23LC1024: 1Mbit SPI Serial
SRAM with SDI and SQI Interface." 23A1024/23LC1024 Datasheet
Rev. C DS20005142C (January).
http://ww1.microchip.com/downloads/en/DeviceDoc/20005142C.pdf.

—. 2008. "25LC1024: 1 Mbit SPI Bus Serial EEPROM." 25LC1024
Datasheet Rev. B DS22064B (May).
http://ww1.microchip.com/downloads/en/DeviceDoc/22064B.pdf.

Nagel, Sandra, Grant, Lyle, Mintzler, Janice, Mah, Dean, Bedecki, Bob,
Hayduck, Penny and Gilbert, Trevor. "Tutorial 25: The Human Ear.",
last modified October, 2016, accessed April 22, 2019,
https://psych.athabascau.ca/html/Psych402/Biotutorials/25/part1.html.

Navarro, Jamie. "Standalone Arduino / ATMega Chip on Breadboard.", last
modified February 14, 2010,

Electronics and Microprocessing for Research, 2nd Edition

447

https://www.instructables.com/id/Standalone-Arduino-ATMega-chip-
on-breadboard/.

Nexperia. 2015a. "74HC04; 74HCT04 Hex Inverter." 74HC_HCT04 V.5
Datasheet. November 27, 2015 - Rev. 5. (November).
https://assets.nexperia.com/documents/data-sheet/74HC_HCT04.pdf.

—. 2015b. "74HC32; 74HCT32 Quad 2-Input OR Gate, Rev. 5."
74HC_HCT32 V.6 Datasheet. December 3, 2015 - Rev. 6..
https://assets.nexperia.com/documents/data-sheet/74HC_HCT32.pdf.

NXP Semiconductors. 2013. "BT139-600E 4Q Triac." BT139-600E
Datasheet September 27, 2013 (September 27,).
http://biakom.com/pdf/BT139-600E_NXP.pdf.

Omega Engineering. "pH Measurement Electrode Basics.", last modified
August 28, 2018, accessed February 21, 2019,
https://www.omega.com/Green/pdf/pHbasics_REF.pdf.

ON Semiconductor Corp. 2018. "1N4001, 1N4002, 1N4003, 1N4004,
1N4005, 1N4006, 1N4007, Axial Lead Standard Recovery Rectifiers."
1N4001/D Datasheet. June, 2018 − Rev. 14 (June).
http://www.onsemi.com/pub/Collateral/1N4001-D.PDF.

—. 2011. "2N7000G Small Signal MOSFET 200 mAmps, 60 Volts
N−Channel TO−92." 2N7000G Datasheet 2N7000/D April 2011, Rev.
8. (April).
https://www.onsemi.com/pub/Collateral/2N7000-D.PDF.

—. 2013. "P2N2222A Amplifier Transitors NPN Silicon." January, 2013 −
Rev. 7. https://www.onsemi.com/pub/Collateral/P2N2222A-D.PDF.

—. 2014. "TIP120, TIP121, TIP122 (NPN); TIP125, TIP126, TIP127 (PNP)
- Plastic Medium-Power Complementary Silicon Transistors."
TIP120/D Datasheet November, 2014 − Rev. 9.
https://www.onsemi.com/pub/Collateral/TIP120-D.PDF.

Op de Coul, Misja. "Epoch Converter - Unix Timestamp Converter.", last
modified January 20, 2019, accessed January 23, 2019,
https://www.epochconverter.com/.

Paul Stoffregen. "Teensy USB Development Board.", last modified
February 8, 2019, accessed February 23, 2019,
https://www.pjrc.com/teensy/.

PeterEmbedded. "BH1750 / BH1750FVI Digital Light Sensor.", last
modified November 2, 2018, accessed April 25, 2019,
https://github.com/PeterEmbedded/BH1750FVI.

PlaneTa MarTes. "ASCII Table, ASCII Codes: American Standard Code
for Information Interchange. the Complete Table of ASCII Characters,
Letters, Codes, Symbols and Signs.", last modified November 22, 2008,
accessed April 28, 2019, https://theasciicode.com.ar/.

Bibliography

448

Pololu Corporation. "Pololu - 9. Dealing with Motor Noise.", 2015,
accessed Mar 8, 2018, https://www.pololu.com/docs/0J15/9.

Poole, Ian. "Op Amp Input Impedance.", 2009, accessed December 15,
2018,
https://www.radioelectronics.com/info/circuits/opamp_basics/operatio
nal-amplifier-input-impedance.php.

Portaluri, Bruno. "Fast Sampling from Analog Input - Yet another Arduino
Blog.", last modified February 1, 2015, accessed March 12, 2019,
http://yaab-arduino.blogspot.com/2015/02/fast-sampling-from-analog-
input.html.

Rabault, Jean. "Github - jerabaul29/ArduinoUseWatchdog: Examples of
how to use the Arduino UNO Watchdog.", last modified January 9,
2016, accessed March 9, 2019,
https://github.com/jerabaul29/ArduinoUseWatchdog.

Roberts, S. "PID Control: A Brief Introduction and Guide, using Arduino.",
last modified September 26, 2011, accessed March 23, 2018,
http://www.academia.edu/11086701/PID_Control_A_brief_introductio
n_and_guide_using_Arduino.

RobotFreak. "Arduino 101: Timers and Interrupts.", last modified August,
2011, accessed March 21, 2019,
https://www.robotshop.com/community/forum/t/arduino-101-timers-
and-interrupts/13072.

Ross, Kevin. "The Basics - Bypass Capacitors.", last modified June, 1997,
accessed May 17, 2018,
http://www.seattlerobotics.org/encoder/jun97/basics.html.

Save, Alok. "C++ - when to use Const Char * and when to use Const Char[]
- Stack Overflow.", last modified October 26, 2011, accessed January
22, 2019, https://stackoverflow.com/questions/7903551/when-to-use-
const-char-and-when-to-use-const-char.

Scherz, Paul and Simon Monk. 2016. Practical Electronics for Inventors.
Fourth Edition ed. New York: McGraw-Hill Education.
http://www.loc.gov/catdir/enhancements/fy1605/2016932853-b.html;
http://www.loc.gov/catdir/enhancements/fy1605/2016932853-d.html.

Schwager, Mike. "GitHub - GreyGnome/EnableInterrupt: New Arduino
Interrupt Library, Designed for Arduino Uno/Mega 2560/Leonardo/
Due.", last modified June 22, 2018, accessed March 9, 2019,
https://github.com/GreyGnome/EnableInterrupt.

Smith, J. "How to use the Conditional (Ternary) Operator.", last modified
September 30, 2009, accessed January 25, 2019,
http://www.cplusplus.com/forum/articles/14631/.

Electronics and Microprocessing for Research, 2nd Edition

449

Steve Hobley. "Light Theremin.", last modified December 18, 2012,
accessed March 24, 2019,
https://makezine.com/projects/light-theremin/.

Stoffregen, Paul. "FreqMeasure Library.", last modified March 26, 2015,
accessed April 25, 2019,
https://github.com/PaulStoffregen/FreqMeasure.

Stör, Marcel, Watson, Jim, Grokhotkov, Ivan, Diogosalazar and Christian,
Alexander. "Libraries - ESP8266 Arduino Core 2.4.0 Documentation.",
2017, accessed May 26, 2018,
http://arduino-esp8266.readthedocs.io/en/latest/libraries.html.

Taranovich, Steve. "RTDs, PTCs, and NTCs: How to Effectively Decipher
this Alphabet Soup of Temperature Sensors.", last modified September
14, 2011, accessed February 20, 2018,
https://www.digikey.ca/en/articles/techzone/2011/sep/rtds-ptcs-and-
ntcs-how-to-effectively-decipher-this-alphabet-soup-of-temperature-
sensors.

Texas Instruments Inc. 2013. "Application Report: AN-20 an Applications
Guide for Op Amps." Texas Instruments Inc. (May): 1-26.
http://www.ti.com/lit/an/snoa621c/snoa621c.pdf.

—. 2016a. "LM317 3-Terminal Adjustable Regulator." LM317 Datasheet
SLVS044X. September 1997 [Revised September 2016] (September).
http://www.ti.com/lit/ds/symlink/lm317.pdf.

—. 2016b. "LMC555 CMOS Timer." LMC555 Datasheet SNAS558M.
February 2000 [Revised July 2016] (Jan).
http://www.ti.com/lit/ds/symlink/lmc555.pdf.

—. 2015a. "LMx24-N, LM2902-N Low-Power, Quad-Operational
Amplifiers." LM124-N, LM224-N LM2902-N, LM324-N Datasheet
SNOSC16D. March 2000 [Revised January 2015].
http://www.ti.com/lit/ds/symlink/lm124-n.pdf.

—. 2014a. "LMx58-N Low-Power, Dual-Operational Amplifiers." LM158-
N, LM258-N, LM2904-N, LM358-N Datasheet SNOSBT3I. January
2000 [Revised December 2014].
http://www.ti.com/lit/ds/symlink/lm158-n.pdf.

—. 2016c. "OPA541 High Power Monolithic Operational Amplifier."
OPA541 Datasheet SBOS153B. September 2000 [Revised January
2016]. http://www.ti.com/lit/ds/symlink/opa541.pdf.

—. 2016d. "SNx4HC08 Quadruple 2-Input Positive-AND Gates."
SN54HC08, SN74HC08 Datasheet SCLS081G. December 1982
[Revised June 2016]. http://www.ti.com/lit/ds/symlink/sn74hc08.pdf.

Bibliography

450

—. 2015b. "SNx4HC165 8-Bit Parallel-Load Shift Registers." December
1982 (Revised - December 2015) (SN54HC165, SN74HC165 datasheet
SCLS116H).
http://www.ti.com/lit/ds/symlink/sn74hc165.pdf.

—. 2017. "TL07xx Low-Noise JFET-Input Operational Amplifiers."
TL071, TL071A, TL071B TL072, TL072A, TL072B, TL074, TL074A,
TL074B, TL072M, TL074M Datasheet SLOS080N. September 1978
[Revised July 2017].
http://www.ti.com/lit/ds/symlink/tl072b.pdf.

—. 2014b. "xx555 Precision Timers." NA555, NE555, SA555, SE555
Datasheet SLFS022I. September 1973 [Revised September 2014].
http://www.ti.com/lit/ds/symlink/ne555.pdf.

—. 2015. "SNx4HC595 8-Bit Shift Registers with 3-State Output
Registers." SN54HC595, SN74HC595 Datasheet SCLS041I December
1982 (Revised September 2015).
http://www.ti.com/lit/ds/symlink/sn74hc595.pdf.

Thal, Melissa and Michael Samide. 2001. "Applied Electronics:
Construction of a Simple Spectrophotometer." Journal of Chemical
Education 78 (11) (November): 1510-12.

Tillaart, Rob. "Arduino Playground - TSL235R Light to Frequency
Sensor.", last modified May 16, 2011, accessed February 22, 2019,
https://playground.arduino.cc/Main/TSL235R.

Tim Wescott. 2000. "PID without a PhD." Embedded Systems
Programming, Oct 1, 86.

Toshiba Corporation. 2001. "Toshiba CCD Linear Image Sensor
TCD1304AP." TCD1304AP Datasheet. (October 15).
https://oceanoptics.com/wp-content/uploads/Toshiba-TCD1304AP-
CCD-array.pdf.

Tower Pro Datasheet. 2017. "SG90 9g Micro Servo." SG90 Datasheet.
(April 12). http://akizukidenshi.com/download/ds/towerpro/SG90.pdf.

Tsai, Jane and Ltd Everlight Electronics Co. 2005. "PD638C Photodiode."
PD638C Datasheet. (July 20). http:\\www.everlight.com.

Vishay Siliconix. 2004. "TP0610L/T, VP0610L/T, BS250 P-Channel 60-V
(D-S) MOSFET." Revision: July 18, 2008 (Document Number: 70209)
(July 5). https://www.vishay.com/docs/70209/70209.pdf.

Wenzel, Charles. "Battery Capacity.", 2017, accessed January 22, 2018,
http://www.techlib.com/reference/batteries.html.

Willistein, Jonathan. "Update to USBmicroISP: 6pin and 10pin Headers.",
last modified September 13, 2015, accessed March 10, 2019,
http://jwillylinux.blogspot.com/2015/09/update-to-usbmicroisp-6pin-
and-10pin.html.

INDEX

#define, 87, 145
#ifdef, 147
#include, 87
10% Rule, 28, 51
3.3V logic, 305
AC coupling, 283
ADC, 2, 238, 294, 326, 327
alternating current, 9, 11, 177
ammeter, 14
analogRead(), 382
AND gate, 70
anode, 7, 8, 35, 163, 164
Arduino IDE, 84, 85, 86, 87, 88, 90,

100, 120, 137, 147, 182, 184,
187, 190, 205, 224, 225, 226,
228, 230, 301, 304, 309, 323,
330, 334, 425

AREF, 134, 135, 151, 152, 254, 266,
269, 294, 408

array, 107, 108, 111, 114, 120, 142,
145, 308, 352, 395, 396, 397,
400, 401, 403, 415, 417

ATtiny85, 68, 419
band reject filter, 286
band-pass filter, 284
bandwidth, 284
battery, 7
bias, 246
bias voltage, 246
binary, 91
Bipolar Junction Transistors, 165
bipolar stepper motor, 197
bit depth, 92
bit masking, 354
bit shifting, 357
bitwise AND, 353
bitwise NOT, 355
bitwise operations, 353
bitwise OR, 354
bitwise XOR, 356
Bode Magnitude Plot, 277, 281

boolean operators, 102
boolean variables, 101
boost converter, 53
breadboard, 37, 67

ravine, 37
terminal strips, 37

break, 115, 143
buck converter, 53
byte variable, 103
C++ shorthand, 112
call-by-reference, 141
call-by-value, 141
capacitance, 44
capacitor, 44, 45, 46, 47, 48, 49, 50,

78, 82, 182, 275, 279, 293, 307,
406, 422
bypass capacitor, 293
coupling capacitor, 283
decoupling capacitor, 161, 293

casting, 105, 106, 107, 111, 439
cathode, 7, 8, 34, 35, 163, 164
centre frequency, 284
char, 110
char variable, 103
char[], 415
charge, 6
charge coupling, 283
charge emitter, 35
charlieplexing, 341
chip programmer, 349, 350
closed loop control, 206
common return, 10
conditional operator, 100
constrain(), 186
control algorithm, 207, 208
conventional current, 7
current, 7

load current, 51
current capacity, 15, 22
current divider equation, 30, 31, 32
current gated, 173

 452

current regulator, 55
current source, 55
cutoff frequency, 275, 276, 280, 281

decade, 277
octave, 277

daisy chaining, 173
data logging, 300
data smoothing, 295
datasheet, 53
delay(), 302
delayMicroseconds(), 303
digital pin, 124

INPUT mode, 124
OUTPUT mode, 124

diode, 3, 13, 33, 55, 162, 163, 164,
166, 180, 181, 189
brick wall, 164
forward biased, 163
Peak Reverse Voltage, 164

DIP, 67
direct current, 9
divs, 131
do...while, 112, 114, 115
drift velocity, 8
DRIVE, 208
dropout voltage, 54
duty cycle, 126
earth return, 21
EEPROM memory, 320
else if, 116
engineering control theory, 206
epoch time, 300
feed forward, 206, 209, 223
feedback, 206, 211, 223

critically damped, 217
integral threshold, 218
over-damped response, 215
undamped, 216
undamped response, 214
under-damped, 216
winding up, 218

feed-forward gain constant, 210
flash memory, 414
Fleming’s Left Hand Rule, 192
float, 98
float function, 152

flyback diode, 181
for loop, 111, 113
frequency range of human hearing,

278, 283
function

input argument, 107
loop() function, 87, 96, 114, 121,

138, 144
setup() function, 96, 114, 121,

125, 134, 137, 138, 144, 152
gain, 170, 237, 256, 267

gain in dB, 239
graded control, 213
ground, 9, 10, 17, 18, 19, 20, 21, 39,

69, 71, 80, 122, 124, 129, 156,
158, 159, 160, 161, 165, 176,
177, 181, 184, 185, 189, 196,
231, 235, 241, 243, 244, 250,
251, 253, 260, 264, 276, 292,
293
chassis ground, 19
chassis return, 20
earth ground, 18
floating return, 20

ground bus, 21
ground looping, 21
H-bridge, 193
headroom, 54, 241
heat sink, 53, 56, 176, 178
high side switching, 160
if…then…else, 98, 116
impedance, 238

high impedance signal, 238
low impedance signal, 238

impedance matching, 288
in parallel, 22, 29
in series, 22
inductive load, 180
input arguments, 141
input impedance, 283
integer, 93
Interrupt Service Routine, 325, 331,

369
interrupts, 369

cli(), 373
external interrupts, 336, 369

Electronics and Microprocessing for Research, 2nd Edition

453

pin change interrupts, 370
sei(), 373

inverter, 73
isnan(), 299
iterative mean, 296
LCD module, 85
lcd.print(), 89
LED matrix display, 338
LEDs, 33
LM35, 132, 148, 230, 231, 234, 427
load, 8, 59
load side, 159
logic level, 69, 71
logic shifter, 305
logic side, 159
logic table, 70, 71, 73, 74, 75, 76,

77, 102
long integer, 95
low side switching, 160
low-pass filter, 275
mains electricity, 178, 180
map(), 134
matrix keypad, 338, 339, 340
maximum power rating, 33
maximum power theorem, 289
mean filter, 295
median filter, 296
Mesh Current Method, 61
micros(), 303
millis(), 302
mode filter, 297
MOSFET, 174
motor driver, 194
multimeter, 14, 39, 41, 42, 43, 58,

61, 148
NaN, 299
negative voltage, 242, 244, 250,

251, 256, 260, 261, 262, 264,
267, 276, 282

negative voltage generator, 261
NOR gate, 74
Norton Equivalent Circuit, 61
NOT gate, 73
notch filter, 286
N-type silicon, 163
null character, 108, 415

Ohm’s Law, 12
ohmic device, 12
ohmmeter, 14
on-off controller, 212, 216, 217,

230, 236
open-loop control, 206
operational amplifiers, 235

buffer, 237
comparator, 236
compensating resistor, 288
differential amplifier, 250
gain-bandwidth product, 243
headroom, 239
ideal op-amp, 236, 237, 238,

244, 287, 433
inverter, 245
inverting AC amplifier, 281
inverting amplifier, 243
inverting input, 236, 243
maximum peak output voltage,

240
non-inverting input, 236, 248
output short-circuit current, 239
slew rate, 242
transimpedance amplifier, 326,

327
unity gain bandwidth, 243
voltage follower, 237

OR gate, 72
P-Controller, 217
persistence of vision, 126, 340
photoresistor, 325
pinout diagram, 81
PLCC, 69
P-N junction, 163, 164
pointers, 109, 396
port manipulation, 352, 360, 361,

367
potentiometer, 56, 80, 132, 133,

138, 172, 187, 191, 225, 226,
228, 229, 264, 278

proportional feedback controller,
213

proportional gain constant, 213
protection diode, 181
P-type silicon, 163

 454

pull-down resistor, 129
pull-up resistor, 129
pulseIn(), 331
PWM, 122, 126, 127, 128, 132, 134,

136, 138, 153, 155, 165, 173,
177, 178, 186, 194, 195, 196,
205, 229, 274, 360, 373, 420,
427, 429
fast PWM mode, 374

Q-factor, 284
relational operator, 100
relay, 157, 159

normally closed, 159
normally open, 159
poles, 157
throw count, 157

resistance, 5, 10, 11, 12, 13, 14, 15,
21, 24, 25, 26, 27, 32, 33, 34, 39,
41, 42, 48, 50, 51, 57, 58, 60, 66,
80, 148, 149, 150, 151, 152, 167,
168, 202, 210, 238, 245, 263,
264, 279, 286, 287, 289, 290,
424, 425

resistor, 5, 13, 14, 24, 25, 26, 27,
29, 31, 32, 33, 34, 39, 40, 41, 42,
43, 48, 49, 50, 51, 52, 56, 57, 58,
61, 63, 70, 82, 123, 125, 129,
130, 133, 150, 151, 153, 155,
166, 167, 168, 169, 171, 172,
173, 178, 187, 254, 256, 257,
263, 264, 271, 276, 278, 279,
288,289, 290, 291, 366, 369,
406, 407, 422, 423, 424, 433
fixed-value resistor, 13
potentiometer, 13, 56

resonant frequency, 284
return, 19, 143
reverse biased, 164
ripple, 55
RTC module, 301
second-order passive HPF, 286
sense resistor, 150, 151
sensitivity, 242
sensor, 209
serial monitor, 122, 137, 138, 144,

148, 152, 153, 155, 156, 186,

187, 225, 226, 228, 229, 231,
266, 269, 270, 301, 302, 304,
305, 309, 354, 392, 397, 408,
411, 424, 429

serial plotter, 138
Serial.parseFloat(), 187
Serial.parseInt(), 187
Serial.print(), 137, 391, 416
Serial.println(), 137, 391
Serial.read(), 187
Serial.readString(), 187
Serial.write(), 396
setpoint, 207
settling time, 216
setup(), 114
shift-in register, 345
shiftIn(), 347
shift-out register, 343
shiftOut(), 345
short circuit, 19, 21, 29, 36, 160,

178, 181, 194, 239
signal, 243
signal attenuation, 263
signal-to-noise ratio, 294
sizeof(), 397
sketch, 87
sleep mode, 386, 387
SOIC, 69
solid-state relays, 160
SPDT, 157
split supply, 10, 53
static variable, 139
stepper motor, 191, 194, 197, 198,

200, 201, 202, 203, 204, 205,
206, 225, 226, 227, 231, 325,
333

stop-band filter, 285
strcat(), 398
strcpy(), 109, 398
String, 103, 110, 415
Strings

Array of Strings, 395
strlen(), 397, 398
switch, 35

high side switch, 36
high-side switch, 161, 167

Electronics and Microprocessing for Research, 2nd Edition

455

low-side switch, 160, 161, 167,
175

momentary switch, 5, 36, 40, 43,
128, 129, 130, 266, 369

switch…case, 116, 117
thermistor, 148
thermocouple, 148, 235, 259, 270,

298
Thévenin Equivalent Circuit, 60
Thévenin’s Theorem, 44, 57, 58, 59,

61, 62, 64, 82, 290
Timers

CTC mode, 382
output compare registers, 374
Timer 0, 373, 384, 385
Timer 1, 373, 377, 382
Timer 2, 373, 379, 383
Timer Counter/Control

Registers, 374
watchdog timer, 386, 387, 389,

390
toggle switch, 36
tolerance, 33, 34
tone(), 379
transistor

10% Current Rule, 168
active mode, 166
active region, 170
biased, 170

cutoff mode, 166, 170
Darlington pair, 172
hFE, 169
quiescent current, 171
saturation mode, 166, 170

TRIAC, 177
truth table, 70
two-term exponential thermistor

equation, 149
union, 402
unipolar stepper motor, 197
unsigned long, 95, 96, 121, 301,

302, 303, 304, 415, 430
virtual ground, 10, 260
void function, 139, 140, 141
volatile, 330, 369, 370, 371, 372,

382, 383, 384
voltage, 7, 9
voltage divider equation, 5, 26, 27,

29, 41, 50, 67, 151, 152, 264,
433

voltage gated, 173
voltage regulator, 53
voltage source, 7
voltmeter, 14
Wheatstone bridge, 263
while loop, 114, 115
working range, 186
XOR gate, 75

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Preface
	Section 0
	Introduction
	Why Microprocessing?
	Course Objectives

	Section 1
	What is Electricity?
	Charge
	Voltage
	Power
	The Generalized Power Law

	Resistance
	Ohm’s Law
	Resistors

	Measuring Voltage, Resistance, and Current
	Using a Multimeter to Analyze Your Complicated Circuit
	Measuring Overall Circuit Power Consumption and Overall Circuit Resistance

	Electrical Ground
	DC Ground
	AC Ground
	Different Ground Symbols
	Types of Returns

	Voltage Sources: Series vs. Parallel
	Batteries in Series
	Batteries in Parallel

	Circuit Configurations
	Kirchhoff’s Voltage Law (KVL)
	The Voltage Divider Equation

	Kirchhoff’s Current Law (KCL)
	The Current Divider Equation
	Calculating Current-Limiting Resistor Values for LEDs

	Anode vs. Cathode: Devices with Polarity
	Introduction to Switches
	Breadboarding
	Circuit Diagram Etiquette Example: Light Theremin

	Activity 1-1: 9V Battery + LED + 10K Resistor
	Activity 1-2: 9V Battery + 10K Resistor + 100K Resistor
	Demo: Light Theremin
	Learning Objectives for Section 1
	Section 1 - Station Content List

	Section 2
	Capacitors
	Capacitor Circuit Diagram Symbols
	Capacitor Ratings
	Capacitors in Series and Parallel
	Capacitors: Typical Uses
	Capacitor Equations
	Charging a Capacitor through a Resistor
	Discharging a Capacitor Through a Resistor

	Voltage Divider Design: 10% Rule
	Other Options for Delivering Lower Voltage
	Datasheet Example: LM317 (Variable Linear Voltage Regulator)
	How Hot Will My Chip Get? Heat Dissipation Calculations

	Thévenin’s Theorem
	Thévenin’s Theorem by Measurement (Using a Multimeter)
	Mesh Current Method
	Thévenin’s Theorem Method (Theoretical)

	Integrated Circuits (ICs)
	PDIP/DIP
	Surface Mount Technology

	Logic Circuits
	AND Gate: (e.g. 74HC08)
	OR Gate: (e.g. 74HC32)
	NOT Gate: (e.g. 74HC04)
	Combining Logic Circuits

	Activity 2-1: Capacitor Charging and Discharging
	Activity 2-2: LM317 Voltage Regulator
	Activity 2-3: Logic Gates
	Learning Objectives for Section 2
	Section 2 - Station Content List

	Section 3
	Introduction to the Arduino Uno Microcontroller Board
	Connecting a Serial LCD Module to the Arduino Uno
	Your First Sketch

	Basic Programming Concepts
	Commenting Your Code
	Storing and Accessing Data in Variables

	Declaring and Using Variables
	Integers
	Long Integers
	Global Space, Setup Function, and Loop Function
	Float Variables
	If…Then…Else Statements (and Logical Expressions)
	Bool Variables
	Boolean Operators
	Byte Variables
	String and Char Variables
	Casting Variable Types

	Arrays of Variables
	Char Array
	Data Types: More Complicated Conversions

	Defining Programming Loops in Arduino
	For Loops

	C++ Shorthand Increment Expressions
	Do…While Loops
	While Loops
	For, Do...While, or While?
	Ommitting Curly Brackets
	The Break Command
	Switch Case

	General Programming Tips
	Activity 3-1: Programming Challenge
	Learning Objectives for Section 3
	Section 3 - Station Content List

	Section 4
	Byte Variables and Digital Pins
	What is a Digital Pin?
	Digital OUTPUT Mode Example
	Pulse Width Modulation (PWM) Example
	Digital Input Mode Example

	Analog Pins
	Using Analog Pins as Digital Output Pins
	Analog Read Example
	External Analog Reference: AREF Pin

	Arduino Pin Conflicts
	Arduino Digital and Analog Pins: Summary Tables
	The Serial Monitor
	The Serial Plotter
	Subroutines and Functions
	Properties of Functions
	Void Functions
	Call-by-Value vs. Call-by-Reference
	Float Functions
	Integer (and other) Functions
	Function DOs and DON’Ts

	#define and #ifdef Statements
	General Programming Etiquette

	Activity 4-1: NTC Thermistor Circuit
	Calibrating a Thermistor
	Two-Term Exponential Thermistor Equation

	Learning Objectives for Section 4
	Section 4 - Station Content List

	Section 5
	Voltage and Current Limitations of the Arduino Uno
	Relays
	High Side Switching vs. Low Side Switching
	Powering a Relay with a Separate Supply
	Vin Pin: Arduino Uno

	Diodes (P-N Junction, or Rectifier Diodes)
	Transistors
	Bipolar Junction Transistors (BJTs)
	NPN Transistors: Selecting a Base Resistor Value
	NPN Transistors in the Active Region
	Darlington Pairs
	Current Gated vs. Voltage Gated
	MOSFETs

	TRIACs
	BT139-600E (TRIAC)

	Protecting your Circuit from DC Motors
	Protection Diode
	Reducing DC Motor Noise with Capacitors

	Activity 5-1: Hot Plate Thermostat
	Activity 5-2: Transistor as a Switch for a DC Motor
	Parsing Serial Data

	Activity 5-3: MOSFET as a Switch for a DC Motor
	Learning Objectives for Section 5
	Section 5 - Station Content List

	Section 6
	When “Close Enough” Isn’t Close Enough
	How a DC Motor Works
	Using an H-Bridge to Control Motor Speed and Direction
	L298N H-Bridge Motor Driver Module

	Stepper Motors
	28BYJ-48 Stepper Motor with ULN2003 Motor Driver
	Nema-17 Stepper Motor with A4988 Motor Driver

	Servo Motors
	System Control Strategies
	Open-Loop Control
	Feed Forward Control
	Feedback Control
	On-Off Controller
	Proportional (P) Controller
	Proportional-Integral (PI) Controller
	Proportional-Integral-Derivative (PID) Controller
	Combining Feedback Strategies

	Activity 6-1: L298N Motor Driver Controlling a DC Motor
	Activity 6-2(a): 28BYJ-48 Stepper Motor
	Activity 6-2(b): Nema-17 Stepper Motor
	Activity 6-3: SG90 Servo Control
	Activity 6-4: PID Control of a 12V CPU Fan
	Learning Objectives for Section 6

	Section 7
	Introduction
	Open Loop Configuration (Comparator)
	Closed Loop Configuration
	Buffer

	Op-Amp Characteristics
	Output Short-Circuit Current
	Gain in dB (decibels)
	Headroom
	Slew Rate
	Unity Gain Bandwidth

	Inverting Amplifier
	Biasing the Output of an Inverting Amplifier

	Non-Inverting Amplifier
	Biasing the Output of a Non-Inverting Amplifier

	Differential Amplifier
	Summing Amplifier (Inverting)
	Summing Amplifier (Non-Inverting)
	Summing Amplifier (Non-Inverting) Equations Solved

	Negative Voltage?
	Solution 1: Using a Virtual Ground
	Solution 2: Negative Voltage Generator
	Solution 3: Negative Supply Line from an ATX Power Supply

	Op-Amps Can Do Calculus
	Signal Attenuation
	Activity 7-1: Load Cell Scale
	Activity 7-2: pH Meter
	Learning Objectives for Section 7
	Section 7 - Station Content List, Activity 7-1
	Section 7 - Station Content List, Activity 7-2

	Section 8
	Data Filtering
	Low-Pass Filters (LPFs)
	High-Pass Filters (HPFs)

	Inverting AC Amplifier
	Blocking the DC in your Signal: Charge Coupling
	Higher Order Filters
	Band-Pass Filters
	Second Order Low-Pass and High-Pass Filters

	Operational Amplifiers: Practical Considerations
	Impedance Considerations: Op-Amp Inputs
	Impedance Considerations: Op-Amp Output
	Measuring Output Impedance
	Measuring Input Impedance

	Practical Strategies to Reduce Signal Noise
	Measuring Noise
	Data Smoothing
	Mean Filter
	Median Filter
	Mode Filter
	Mean Filter with Threshold Rejection

	Data Logging
	Arduino TimeLib.h Library
	Using millis() Instead of delay()

	Logging through the Serial Port
	Logging to an External microSD Card
	Logic Shifters

	Activity 8-1: Noise Reduction
	Activity 8-2: Data Smoothing
	Activity 8-3: Data Logging to an SD Card
	Learning Objectives for Section 8
	Section 8 - Station Content List

	Section 9
	Introduction
	Design Project Selection
	Design Project Assessment
	What if my design project doesn’t work?

	Code Snippets and Examples
	Serial Monitor Menu
	Using EEPROM: Memory that Doesn’t Forget!
	Generating Beeps to Alert your User: Arduino Tone Library
	Programming One Button with Multiple Functions

	Measuring Light Intensity
	Photoresistors
	Photodiodes
	Phototransistors
	Integrated Packages

	Measuring Time Duration with Interrupts
	Op-Amp Comparator with Bias Voltage
	Matrix Keypads and LED Matrix Displays
	Charlieplexing LEDs

	Need More Digital Pins?
	Shift-Out Registers
	Shift-In Registers

	Bareduino – Running the ATmega328 Alone
	Learning Objectives for Section 9

	Section 10
	Controlling MCU Registers, Interrupts and Timers
	Bitwise Operations
	Bitwise AND (&)
	Bitwise OR (|)
	Bitwise NOT (~)
	Bitwise XOR (^)
	Shifting Bits with “<<” and “>>”
	Bitwise Operators: Short Forms

	Introduction to Port Manipulation
	Worked Example: Fast Analog Read
	Fast Digital Read and Write

	Interrupts
	Internal (Pin Change) Interrupts
	Never Miss a Button Push Again
	Rules for Writing an Interrupt Service Routine

	Customized Frequencies for PWM
	Timer 0
	Timer 1
	Timer 2

	Timing your Interrupt Service Routines with CTC Mode
	Sleep Mode
	Wake on Pin Change
	Wake on Timeout of Watchdog Timer

	Resetting the MCU
	Reset with a Watchdog Timer
	Hard Wiring a Digital Pin to the RESET Pin

	Advanced Formating and Variable Type Conversions
	Secrets of Serial.print()
	Additional String Conversion Commands
	Comparing Strings
	Arrays of Strings and Arrays of Char Arrays
	Using Special Characters
	Char Arrays: Advanced Functions

	Structures
	Unions
	Increment Operators as Array Index Values

	Appendix
	Troubleshooting Guide
	Troubleshooting Flowchart
	Troubleshooting Zones
	UTF-8 and ASCII Tables

	Tips to Optimize Sketch Memory
	Using a 555 Timer as an External Clock
	Common Fixed Resistor and Capacitor Values
	.ino Files
	triacDimmer.ino (Section 5)
	Thermostat.ino (Section 5)
	4WStepper.ino: 4-Wire Stepper Control (Section 6)
	PID.ino (Section 6)
	QuickStats.h (Section 8)
	TimedISR_N.ino (Section 10)

	Derivation for Vin(+) (Section 7)
	Arduino Uno Pin-out Diagram
	ATmega328 Pin-out Diagram
	ATtiny85 Pin-out Diagram
	Ohm’s Law Equation Table
	List of Circuit Diagram Symbols
	Variable Type Conversion Chart
	List of Abbreviations

	Bibliography
	Index

