
Introduction	to
VISUAL	COMPUTING
Core	Concepts	in	Computer	Vision,
Graphics,	and	Image	Processing

Introduction	to
VISUAL	COMPUTING
Core	Concepts	in	Computer	Vision,
Graphics,	and	Image	Processing

Aditi	Majumder
University	of	California,	Irvine,	USA

M.	Gopi
University	of	California,	Irvine,	USA

CRC	Press
Taylor	&	Francis	Group
6000	Broken	Sound	Parkway	NW,	Suite	300
Boca	Raton,	FL	33487-2742

©	2018	by	Taylor	&	Francis	Group,	LLC
CRC	Press	is	an	imprint	of	Taylor	&	Francis	Group,	an	Informa	business

No	claim	to	original	U.S.	Government	works

Printed	on	acid-free	paper
Version	Date:	20180112

International	Standard	Book	Number-13:	978-1-4822-4491-5	(Hardback)

This	book	contains	 information	obtained	 from	authentic	 and	highly	 regarded	 sources.	Reasonable	 efforts
have	 been	 made	 to	 publish	 reliable	 data	 and	 information,	 but	 the	 author	 and	 publisher	 cannot	 assume
responsibility	for	the	validity	of	all	materials	or	the	consequences	of	their	use.	The	authors	and	publishers
have	attempted	to	trace	the	copyright	holders	of	all	material	reproduced	in	this	publication	and	apologize	to
copyright	holders	if	permission	to	publish	in	this	form	has	not	been	obtained.	If	any	copyright	material	has
not	been	acknowledged	please	write	and	let	us	know	so	we	may	rectify	in	any	future	reprint.

Except	 as	 permitted	 under	 U.S.	 Copyright	 Law,	 no	 part	 of	 this	 book	 may	 be	 reprinted,	 reproduced,
transmitted,	or	utilized	in	any	form	by	any	electronic,	mechanical,	or	other	means,	now	known	or	hereafter
invented,	 including	photocopying,	microfilming,	and	recording,	or	 in	any	 information	storage	or	 retrieval
system,	without	written	permission	from	the	publishers.

For	 permission	 to	 photocopy	 or	 use	 material	 electronically	 from	 this	 work,	 please	 access
www.copyright.com	(http://www.copyright.com/)	 or	 contact	 the	Copyright	Clearance	Center,	 Inc.	 (CCC),
222	 Rosewood	 Drive,	 Danvers,	 MA	 01923,	 978-750-8400.	 CCC	 is	 a	 not-for-profit	 organization	 that
provides	 licenses	 and	 registration	 for	 a	 variety	 of	 users.	 For	 organizations	 that	 have	 been	 granted	 a
photocopy	license	by	the	CCC,	a	separate	system	of	payment	has	been	arranged.

Trademark	Notice:	Product	or	corporate	names	may	be	trademarks	or	registered	trademarks,	and	are	used
only	for	identification	and	explanation	without	intent	to	infringe.

Visit	the	Taylor	&	Francis	Web	site	at
http://www.taylorandfrancis.com

and	the	CRC	Press	Web	site	at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

I

1.
1.1
1.2

1.2.1
1.2.2

1.3
1.3.1

1.4
1.5

2.
2.1

2.1.1
2.1.2

2.2
2.3

II

3.
3.1

3.1.1
3.1.2

3.2
3.2.1
3.2.2
3.2.3

Contents
Preface

Fundamentals

Data
Visualization
Discretization

Sampling
Quantization

Representation
Geometric	Data

Noise
Conclusion
Bibliography
Summary
Exercises

Techniques
Interpolation

Linear	Interpolation
Bilinear	interpolation

Geometric	intersections
Conclusion
Bibliography
Summary
Exercises

Image	Based	Visual	Computing

Convolution
Linear	Systems

Response	of	a	Linear	System
Properties	of	Convolution

Linear	Filters
All,	Low,	Band	and	High	Pass	Filters
Designing	New	Filters
2D	Filter	Separability

3.2.4
3.3
3.4

4.
4.1

4.1.1
4.2

4.2.1
4.2.2

4.3
4.4
4.5

4.5.1
4.5.2
4.5.3

4.6
4.7

5.
5.1

5.1.1
5.1.2
5.1.3

5.2
5.3
5.4

III

6.
6.1

Correlation	and	Pattern	Matching
Implementation	Details
Conclusion
Bibliography
Summary
Exercises

Spectral	Analysis
Discrete	Fourier	Transform

Why	Sine	and	Cosine	Waves?
Polar	Notation

Properties
Example	Analysis	of	Signals

Periodicity	of	Frequency	Domain
Aliasing
Extension	for	2D	Interpretation

Effect	of	Periodicity
Notch	Filter
Example	of	Aliasing

Duality
Conclusion
Bibliography
Summary
Exercises

Feature	Detection
Edge	Detection

Edgel	Detectors
Multi-Resolution	Edge	Detection
Aggregating	Edgels

Feature	Detection
Other	Non-Linear	Filters
Conclusion
Bibliography
Summary
Exercises

Geometric	Visual	Computing

Geometric	Transformations
Homogeneous	Coordinates

6.2
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

6.4
6.4.1
6.4.2

6.5
6.5.1

6.6
6.6.1

6.7
6.8
6.9
6.10

7.
7.1

7.1.1
7.1.2
7.1.3

7.2
7.3

8.
8.1
8.2
8.3

8.3.1
8.3.2
8.3.3

Linear	Transformations
Euclidean	and	Affine	Transformations

Translation
Rotation
Scaling
Shear
Some	Observations

Concatenation	of	Transformations
Scaling	About	the	Center
Rotation	About	an	Arbitrary	Axis

Coordinate	Systems
Change	of	Coordinate	Systems

Properties	of	Concatenation
Global	vs	Local	Coordinate	System

Projective	Transformation
Degrees	of	Freedom
Non-Linear	Transformations
Conclusion
Bibliography
Summary
Exercises

The	Pinhole	Camera
The	Model

Camera	Calibration
3D	Depth	Estimation
Homography

Considerations	in	the	Practical	Camera
Conclusion
Bibliography
Summary
Exercises

Epipolar	geometry
Background
Correspondences	in	Multi-View	Geometry
Fundamental	matrix

Properties
Estimating	Fundamental	Matrix
Camera	Setup	Akin	to	Two	Frontal	Eyes

8.4
8.5
8.6

8.6.1
8.6.2

8.7

IV

9.
9.1

9.1.1
9.1.2

9.2
9.2.1
9.2.2
9.2.3

9.3

10.
10.1

10.1.1
10.1.2
10.1.3
10.1.4

10.2
10.2.1
10.2.2

10.3
10.4

10.4.1
10.4.2

10.5

Essential	Matrix
Rectification
Applying	Epipolar	Geometry

Depth	from	Disparity
Depth	from	Optical	Flow

Conclusion
Bibliography
Summary
Exercises

Radiometric	Visual	Computing

Light
Radiometry

Bidirectional	Reflectance	Distribution	Function
Light	Transport	Equation

Photometry	and	Color
CIE	XYZ	Color	Space
Perceptual	Organization	of	CIE	XYZ	Space
Perceptually	Uniform	Color	Spaces

Conclusion
Bibliography
Summary
Exercises

Color	Reproduction
Modeling	Additive	Color	Mixtures

Color	Gamut	of	a	Device
Tone	Mapping	Operator
Intensity	Resolution
Example	Displays

Color	Management
Gamut	Transformation
Gamut	Matching

Modeling	Subtractive	Color	Mixture
Limitations

High	Dynamic	Range	Imaging
Multi-Spectral	Imaging

Conclusion
Bibliography

11.
11.1

11.1.1
11.2

11.2.1
11.2.2

11.3
11.3.1
11.3.2
11.3.3

11.4

V

12.
12.1
12.2
12.3
12.4
12.5

13.
13.1

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6

13.3
13.4

Summary
Exercises

Photometric	Processing
Histogram	processing

Handling	color	images
Image	Composition

Image	Blending
Image	Cuts

Photometric	Stereo
Handling	shadows
Computing	illumination	directions
Handling	Color

Conclusion
Bibliography
Summary
Exercises

Visual	Content	Synthesis

The	Diverse	Domain
Modeling
Processing
Rendering
Application
Conclusion
Bibliography

Interactive	Graphics	Pipeline
Geometric	Transformation	of	Vertices

Geometric	Transformation	of	Vertices
View	Transformation
Perspective	Projection	Transformation
Occlusion	Resolution
Window	Coordinate	Transformation
The	Final	Transformation

Rasterization	and	Pixel	Interpolation	of	Attributes
Conclusion
Bibliography
Summary
Exercises

14.
14.1
14.2
14.3
14.4

14.4.1
14.4.2
14.4.3

14.5
14.6
14.7
14.8
14.9
14.10

14.10.1
14.10.2
14.10.3

14.11

15.
15.1
15.2
15.3

15.3.1
15.3.2
15.3.3

15.4

Realism	and	Performance
Illumination
Shading
Shadows
Texture	Mapping

Texture	to	Object	Space	Mapping
Object	to	Screen	Space	Mapping
Mipmapping

Bump	Mapping
Environment	Mapping
Transparency
Accumulation	Buffer
Back	Face	Culling
Visibility	Culling

Bounding	Volumes
Spatial	Subdivision
Other	Uses

Conclusion
Bibliography
Summary
Exercises

Graphics	Programming
Development	of	Graphics	Processing	Unit
Development	of	Graphics	APIs	and	Libraries
The	Modern	GPU	and	CUDA

GPU	Architecture
CUDA	Programming	Model
CUDA	Memory	Model

Conclusion
Bibliography
Summary

Index

Preface
This	book	is	the	culmination	of	over	a	decade	of	teaching	of	a	newly	designed
umbrella	 course	 on	 visual	 computing	 that	 would	 provide	 students	 with
fundamentals	 in	 the	different	 areas	of	 computer	graphics,	 computer	vision	 and
image	 processing.	 Looking	 back,	 this	 was	 a	 very	 forward	 looking	 curriculum
which	became	the	launching	pad	for	all	computer	graphics,	computer	vision	and
image	 processing	 students	 at	 UCI	 and	 helped	 future	 new	 faculty	 hires	 in	 this
direction	 to	 count	 on	 this	 course	 to	 provide	 exposure	 to	 fundamentals	 that	 are
common	 to	 all	 these	 domains.	 This	 course	 is	 a	 core	 entry-level	 course	 in	 the
graduate	 curriculum	 providing	 students	 the	 opportunity	 to	 explore	 a	 larger
breadth	 before	 moving	 on	 to	 more	 focused	 channels	 of	 computer	 graphics,
computer	vision	and/or	image	processing.	It	is	also	being	adopted	as	one	of	the
core	 courses	 for	 our	professional	masters	 degree	program	which	began	 in	Fall
2017.	 Interestingly,	 the	 research	 community	 has	 also	 followed	 this	 trend	 since
2006	when	we	started	 to	see	researchers	from	one	of	 the	domains	of	computer
graphics,	computer	vision	and	image	processing	having	strong	presence	in	others
leading	to	a	young	and	dynamic	research	sub-community	that	traverses	all	these
domains	with	equal	dexterity.	Therefore,	having	a	breadth	of	knowledge	 in	 the
general	 area	 of	 visual	 computing	 is	 perceived	 today	 as	 a	 strength	 that	 helps
students	 delve	 easily	 into	 inter-disciplinary	 domains	 both	within	CS	 and	 other
domains	where	it	is	being	extensively	used.
The	 inspiration	 for	 writing	 this	 book	 came	 from	 many	 instructors	 and

educators	who	 inquired	 about	 our	visual	 computing	 course	 at	UCI,	 designed	 a
similar	course	at	 their	home	institutions,	and	were	requesting	a	standard	single
textbook	 to	 cover	 all	 the	 topics.	The	 key	 exercises	 that	we	 undertook	 prior	 to
writing	 this	 book	were	 (a)	 to	 carefully	 choose	 a	 lean	 set	 of	 topics	 that	would
provide	 adequate	 breadth	 for	 an	 introductory	 course	 in	 visual	 computing
enabling	the	students	to	take	one	course	instead	of	three	different	courses	in	CG,
CV	 and	 IP	 before	 deciding	 on	 the	 direction	 they	would	 like	 to	 pursue;	 (b)	 to
carefully	design	 the	depth	of	material	 in	 each	of	 these	 topics	 so	 that	 it	 can	be
dealt	 with	 nicely	 during	 the	 offering	 of	 a	 single	 course	 without	 being
overwhelming;	 (c)	 to	 categorize	 the	 topics	 from	 the	 perspective	 of	 visual
computing	 in	 such	 a	manner	 that	 students	 are	 able	 to	 see	 the	 common	 threads
that	run	through	these	different	domains.	This	exercise	led	to	the	organization	of
the	book	into	five	different	parts.

1.	 Part	 1:	 Fundamentals	 provide	 an	 exposure	 to	 all	 kinds	 of	 different
visual	data	(e.g.	2D	images	and	videos	and	3D	geometry)	and	the	core
mathematical	techniques	that	are	required	for	their	processing	in	any	of
the	CG,	CV	or	IP	domains	(e.g.	interpolation	and	linear	regression).

2.	 Part	2:	Image	Based	Visual	Computing	deals	with	several	fundamental
techniques	 to	 process	 2D	 images	 (e.g.	 convolution,	 spectral	 analysis
and	 feature	 detection)	 and	 corresponds	 to	 the	 low	 level	 retinal	 image
processing	that	happens	in	the	eye	in	the	human	visual	system	pathway.

3.	 Part	 3:	 Geometric	 Visual	 Computing	 deals	 with	 the	 fundamental
techniques	 used	 to	 combine	 the	 geometric	 information	 from	multiple
eyes	 creating	 a	 3D	 interpretation	 of	 the	 object	 and	 world	 around	 us
(e.g.	 transformations,	 projective	 and	 epipolar	 geometry).	 This	 deals
with	the	higher	level	processing	that	happens	in	the	brain	that	combines
information	from	both	the	eyes	helping	us	to	navigate	through	the	3D
world	around	us.

4.	 Part	 4:	 Radiometric	 Visual	 Computing	 deals	 with	 the	 fundamental
techniques	 for	 processing	 information	 arising	 from	 the	 interaction	 of
light	 with	 the	 objects	 around	 us.	 This	 topic	 covers	 both	 lower	 and
higher	 level	 processing	 in	 the	 human	 visual	 system	 that	 deals	 with
intensity	 of	 light	 (e.g.	 interpretation	 of	 shadows,	 reflectance,
illumination	and	color	properties).

5.	 Part	 5:	 Visual	 Content	 Synthesis	 presents	 fundamentals	 of	 creating
virtual	 computer	 generated	 worlds	 that	 mimic	 all	 the	 processing
presented	in	the	prior	sections.

The	book	is	written	for	a	16	week	long	semester	course	and	can	be	used	for
both	UG	and	graduate	teaching.	The	recommended	timeline	for	teaching	would
be	to	dedicate	two	weeks	for	Part	1,	three	weeks	each	for	Parts	2	and	4,	and	three
and	half	weeks	each	for	Parts	3	and	5.	The	exercises	following	each	chapter	can
be	 used	 to	 provide	weekly	 or	 biweekly	written	 assignments.	The	 ideal	way	 to
provide	 hands-on	 implementation	 experience	 would	 be	 to	 have	 one
programming	assignment	accompany	each	part	of	the	course	picking	a	subset	of
topics	 taught	 in	 each	 part	 based	 on	 the	 expertise	 level	 of	 the	 students.	 The
decision	 of	 making	 this	 book	 independent	 of	 any	 programming	 language	 or
platform	 is	 to	 enable	 each	 instructor	 to	 choose	 the	 most	 convenient	 topics,
platforms,	 and	 programming	 language	 for	 their	 assignments	 based	 on	 the
resources	at	hand	and	the	skill	set	of	the	audience.	Evaluation	via	two	midterms
at	the	end	of	the	6th	and	12th	week	and	a	comprehensive	final	is	probably	most
conducive.

Teaching	 the	 material	 in	 this	 book	 in	 a	 10	 week	 quarter	 usually	 poses	 a
challenge.	 There	 can	 be	 multiple	 ways	 to	 handle	 this.	 The	 easiest	 way	 is	 to
increase	 the	number	of	credits	 for	 this	course	 leading	 to	more	contact	hours	 to
compensate	for	the	reduced	number	of	weeks.	The	second	way	is	to	pare	down
or	 divide	 the	 content	 presented	 in	 a	 standard	 semester	 long	 offering	 of	 the
course.	 For	 example,	 Visual	 Computing-I	 can	 focus	 on	 low	 level	 visual
computing	focusing	on	Chapters	1-5	and	9-	and	the	first	two	sections	of	Chapter
11	while	Visual	Computing-II	 can	 focus	on	higher	 level	 visual	 processing	 and
representation	 focusing	 on	 Chapters	 6-8,	 the	 last	 section	 of	 Chapter	 11	 and
Chapters	 12-15.	 Alternatively,	 parts	 of	 a	 chapter	 or	 complete	 chapters	 can	 be
skipped	to	created	a	pared	down	version	of	the	course	that	avoids	reducing	the
rigor	of	the	concepts	taught	in	the	class.	Such	an	approach	has	been	explored	in
the	 past	 in	UCI	 by	 removing	Chapters	 8,,15,	 and	most	 of	 Chapter	 14	 beyond
texture	mapping.	The	decision	of	what	 to	present,	what	 to	shorten	and	what	 to
completely	remove	resides	best	with	the	instructors.	The	book	has	been	written
carefully	 to	minimize	dependencies	between	chapters	and	sections	so	 that	 they
can	 be	 chosen	 independently	 by	 instructors	 without	 worrying	 overtly	 about
dependencies	on	other	parts	of	the	book.
We	 hope	 that	 the	 material	 presented	 in	 this	 book	 and	 its	 non-traditional

organization	 inspires	 instructors	 to	 design	 a	 visual	 computing	 course	 in	 their
institutions,	 use	 this	 book	 as	 a	 textbook	 for	 its	 offering,	 and	 hopefully	 see	 an
increased	interest	amongst	the	students	towards	the	study	of	the	general	domain
of	 visual	 computing.	We	would	 like	 to	 get	 feedback	 from	 instructors	who	 are
using	this	book	as	a	textbook.	Please	feel	free	to	write	to	us	about	anything	you
faced	while	using	this	book	—	desired	additions,	details,	or	organization.	Such
feedback	will	be	instrumental	towards	more	refined	and	better	suited	subsequent
editions	of	this	book.
We	acknowledge	our	colleagues	at	 the	University	of	California	at	 Irvine	 for

their	 support	 in	 designing	 non-traditional	 courses	 leading	 to	 experimentation
which	 provided	 the	 building	 blocks	 for	 this	 book.	We	would	 like	 to	 thank	 the
numerous	 students	 who	 took	 the	 Visual	 Computing	 course	 at	 UCI	 and	 the
teaching	 assistants	 who	 helped	 us	 execute	 and	 experiment	 during	 different
offerings	 of	 this	 course	which	 led	 to	 the	 development	 and	 organization	 of	 the
material	presented	in	this	book.	We	also	acknowledge	the	help	rendered	by	our
students,	 Nitin	 Agrawal	 and	 Zahra	 Montazeri,	 in	 designing	 and	 rendering	 to
perfection	the	various	figures	used	in	this	book.	We	deeply	appreciate	the	special
efforts	of	Prof.	Shuang	Zhao	of	the	University	of	California,	Irvine,	Prof.	Amy
and	 Bruce	 Gooch	 of	 the	 University	 of	 British	 Columbia,	 Dr.	 David	 Kirk	 of
nVidia,	Prof.	Chee	Yap	of	New	York	University,	and	Prof.	Jan	Verschelde	of	the

University	of	Illinois,	Chicago,	in	providing	some	of	the	images	in	this	book	on
physically	based	modeling,	non-photorealistic	rendering,	geometric	compression
and	GPU	architecture	respectively.

(Aditi	Majumder
Gopi	Meenakshisundaram)

Author	Biographies
Aditi	 Majumder	 is	 Professor	 in	 the	 Department	 of	 Computer	 Science	 at	 the
University	of	California,	 Irvine.	She	received	her	PhD	from	the	Department	of
Computer	Science,	University	of	North	Carolina	at	Chapel	Hill	in	2003.	She	is
originally	from	Kolkata,	India	and	came	to	the	US	in	1996	after	completing	her
bachelors	of	 engineering	 in	Computer	Science	 and	Engineering	 from	 Jadavpur
University,	Kolkata.
Her	research	resides	at	the	junction	of	computer	graphics,	vision,	visualization

and	 human-computer	 interaction.	 Her	 research	 focuses	 on	 novel	 displays	 and
cameras	exploring	new	degrees	of	freedom	and	quality	while	keeping	them	truly
a	 commodity,	 easily	 accessible	 to	 the	 common	 man.	 She	 has	 more	 than	 50
publications	 in	 top	 venues	 like	 ACM	 Siggraph,	 Eurographics,	 IEEE	Visweek,
IEEE	 Virtual	 Reality	 (VR),	 IEEE	 Computer	 Vision	 and	 Pattern	 Recognition
(CVPR)	 including	 best	 paper	 awards	 in	 IEEE	 Visweek,	 IEEE	 VR	 and	 IEEE
PROCAMS.	She	is	the	co-author	of	the	book	Practical	Multi-Projector	Display
Design.	She	has	served	as	the	program	or	general	chair	and	program	committee
in	several	top	venues	including	IEEE	Virtual	Reality	(VR),	ACM	Virtual	Reality
Software	 and	 Technology	 (VRST),	 Eurographics	 and	 IEEE	 Workshop	 on
Projector	Systems.	She	has	served	as	Associate	Editor	in	Computer	and	Graphics
and	 IEEE	Computer	Graphics	 and	Applications.	 She	 has	 played	 a	 key	 role	 in
developing	 the	 first	 curved	 screen	 multi-projector	 display	 being	 marketed	 by
NEC/Alien-	 ware	 currently	 and	 was	 an	 advisor	 at	 Disney	 Imagineering	 for
advances	 in	 their	 projection	 based	 theme	 park	 rides.	 She	 received	 the	 Faculty
Research	 Incentive	Award	 in	 2009	 and	 Faculty	 Research	Midcareer	Award	 in
2011	 in	 the	 School	 of	 Information	 and	 Computer	 Science	 in	 UCI.	 She	 is	 the
recipient	 of	 the	 NSF	 CAREER	 award	 in	 2009	 for	 Ubiquitous	 Displays	 Via	 a
Distributed	Framework.	She	was	a	Givens	Associate	and	was	a	student	fellow	at
Argonne	National	Labs	from	2001-2003,	a	Link	Foundation	Fellow	from	2002-
2003,	and	is	currently	a	Senior	Member	of	IEEE.
Gopi	 Meenakshisundaram	 is	 a	 Professor	 of	 Computer	 Science	 in	 the

Department	 of	 Computer	 Science,	 and	 Associate	 Dean	 at	 the	 Bren	 School	 of
Information	and	Computer	Sciences	at	 the	University	of	California,	 Irvine.	He
received	his	BE	 from	Thiagara	 jar	College	of	Engineering,	Madurai,	MS	 from
Indian	 Institute	 of	 Science,	 Bangalore,	 and	 PhD	 from	 University	 of	 North
Carolina	at	Chapel	Hill.	His	research	interests	include	geometry	and	topology	in

computer	 graphics,	 massive	 geometry	 data	 management	 for	 interactive
rendering,	and	biomedical	sensors,	data	processing,	and	visualization.	His	work
on	 representation	 of	 manifolds	 using	 single	 triangle	 strip,	 hierarchyless
simplification	of	triangulated	manifolds,	use	of	redundant	representation	for	big
data	 for	 interactive	 rendering,	 and	 biomedical	 image	 processing	 have	 received
critical	 acclaim	 including	 best	 paper	 awards	 in	 two	 Eurographics	 conferences
and	 in	 ICVGIP.	He	 is	 a	 gold	medalist	 for	 academic	 excellence	 at	 Thiagarajar
College	of	Engineering,	a	recipient	of	the	Excellence	in	Teaching	Award	at	UCI
and	a	Link	Foundation	Fellow.	He	served	as	the	program	co-chair	and	papers	co-
chair	 of	 ACM	 Interactive	 3D	 Graphics	 conference	 in	 2012	 and	 2013
respectively,	area	chair	for	ICVGIP	in	2010	and	2012,	program	co-chair	for	the
International	Symposium	on	Visual	Computing	2006,	an	associate	editor	of	the
Journal	 of	 Graphical	 Models,	 a	 guest	 editor	 of	 IEEE	 Transactions	 on
Visualization	 and	Computer	Graphics	 and	 serves	 in	 the	 steering	 committee	 of
ACM	Interactive	3D	Graphics.

Part	I

Fundamentals

1.1

1

Data
In	 the	 context	 of	 visual	 computing,	 data	 can	 be	 thought	 of	 as	 a	 function	 that
depends	 on	 one	 or	 more	 independent	 variables.	 For	 example,	 audio	 can	 be
thought	of	as	one	dimensional	(1D)	data	that	is	dependent	on	the	variable	time.
Thus,	it	can	be	represented	as	A(t)	where	t	denotes	time.	An	image	is	data	that	is
two	dimensional	(2D)	data	dependent	on	two	spatial	coordinates	x	and	y	and	can
be	denoted	as	I	(x	,	y)	.	A	video	is	three	dimensional	(3D)	data	that	is	dependent
on	three	variables	–	two	spatial	coordinates	(x	,	y)	and	one	temporal	coordinate
t.	It	can	therefore	be	denoted	by	V	(x	,	y	,	t)	.

Visualization
The	simplest	visualization	of	a	multi‐dimensional	data	is	a	traditional	plot	of	the
dependent	variable	with	respect	to	the	independent	ones,	as	illustrated	in	Figure
1.1.	For	example,	such	a	visualization	in	2D	 is	called	height	field.	However,	as
data	 becomes	 more	 complex,	 such	 visualization	 do	 not	 suffice	 due	 to	 the
inherent	 inability	 of	 humans	 to	 visualize	 geometrical	 structures	 beyond	 three
dimensions.	Alternative	perceptual	modalities	 (e.g.	 color)	are	 therefore	used	 to
encode	data.	For	example,	color	image	comprises	of	information	of	three	color
channels,	usually	red,	green	and	blue,	each	dependent	on	two	spatial	coordinates
(x	,	y)	-	R	(x	,	y)	,	G	(x	,	y)	and	B	(x	,	y)	.	However,	often	visualizing	these
three	functions	together	is	much	more	informative	that	visualizing	them	as	three
different	 height	 fields.	 Thus,	 the	 ideal	 visualization	 is	 an	 image	 where	 each
spatial	coordinate	is	visualized	as	a	color	which	is	also	a	3D	quantity.	Similarly,
a	3D	volume	data	T	(x	,	y	,	z)	,	providing	scalar	data	at	each	3D	grid	point,	is
visualized	in	3D	by	assigning	color	or	transparency	to	each	grid	point	computed
using	a	user	defined	transfer	function	f	(T	(x	,	y	 ,	z))	 that	 is	common	to	 the
entire	data	set	(See	Figure	1.2).

1.2

Figure	1.1	Most	common	visualization	of	1D	(left)	and	2D	(right)	data.	The	1D	data	shows	the	population
of	US	(Y‐axis)	during	the	20th	century	(specified	by	time	in	the	X‐axis)	while	the	2D	data	shows	the	surface
elevation	(Z‐axis)	of	a	geographical	region	(specified	by	X	and	Y‐axes).	This	is	often	called	height	field.

Figure	1.2	Conducive	Visualizations:	An	image	is	represented	as	three	2D	functions,	R	(x	,	y)	,	G	(x	,	y)
and	B	(x	,	y)	.	But	instead	of	three	height	fields,	a	more	conducive	visualization	is	where	every	pixel	(x	,	y
)	is	shown	in	RGB	color	(left).	Similarly,	volume	data	T	(x	,	y	,	z)	is	visualized	by	depicting	the	data	at
every	3D	point	by	its	transparency	(right).

Discretization
Data	exists	in	nature	as	a	continuous	function.	For	example,	the	sound	we	hear
changes	continuously	over	time;	the	dynamic	scenes	that	we	see	around	us	also
change	 continuously	 with	 time	 and	 space.	 However,	 if	 we	 have	 to	 digitally
represent	this	data,	we	need	to	change	the	continuous	function	to	a	discrete	one,
i.e.	a	function	that	is	only	defined	at	certain	values	of	the	independent	variable.
This	process	is	called	discretization.	For	example,	when	we	discretize	an	image
defined	 in	 continuous	 spatial	 coordinates	 (x	 ,	 y)	 ,	 the	 values	 of	 the
corresponding	discrete	function	are	only	defined	at	integer	locations	of	(x	,	y)	,
i.e.	pixels.

1.2.1

Figure	1.3	This	 figure	 illustrates	 the	process	of	 sampling.	On	 top	 left,	 the	 function	 f(t)	 (curve	 in	 blue)	 is
sampled	 uniformly.	 The	 samples	 are	 shown	 with	 red	 dots	 and	 the	 values	 of	 t	 at	 which	 the	 function	 is
sampled	is	shown	by	the	vertical	blue	dotted	lines.	On	top	right,	the	same	function	is	sampled	at	double	the
density.	The	 corresponding	 discrete	 function	 is	 shown	 in	 the	 bottom	 left.	On	 the	 bottom	 right,	 the	 same
function	is	now	sampled	non‐uniformly	i.e.	the	interval	between	different	values	of	t	at	which	it	is	sampled
varies.

Sampling
A	sample	is	a	value	(or	a	set	of	values)	of	a	continuous	function	f(t)	at	a	specified
value	of	the	independent	variable	t.	Sampling	is	a	process	by	which	one	or	more
samples	 are	 extracted	 from	 a	 continuous	 signal	 f(t)	 thereby	 reducing	 it	 to	 a
discrete	function	f	^	(t)	.	The	samples	can	be	extracted	at	equal	intervals	of	the
independent	variable.	This	is	termed	as	uniform	sampling.	Note	that	the	density
of	 sampling	 can	 be	 changed	 by	 changing	 the	 interval	 at	which	 the	 function	 is
sampled.	 If	 the	 samples	 are	 extracted	at	 unequal	 intervals,	 then	 it	 is	 termed	as
non‐uniform	sampling.	These	are	illustrated	in	Figure	1.3.
The	 process	 of	 getting	 the	 continuous	 function	 f(t)	 back	 from	 the	 discrete

function	 f	 ^	 (t)	 is	 called	 reconstruction.	 In	 order	 to	 get	 an	 accurate
reconstruction,	it	is	important	to	sample	f(t)	adequately	during	discretization.	For
example,	in	Figure	1.4,	a	high	frequency	sine	wave	(in	blue)	is	sampled	in	two
different	ways,	both	uniformly,	shown	by	the	red	and	blue	samples.	But	in	both
cases	 the	 sampling	 frequency	 or	 rate	 is	 not	 adequate.	 Hence,	 a	 different
frequency	sine	wave	is	reconstructed	—	for	blue	samples	a	zero	frequency	sine
wave	and	for	 red	samples	a	much	 lower	frequency	sine	wave	 than	 the	original
wave.	These	incorrectly	reconstructed	functions	are	called	aliases	(for	imposters)
and	the	phenomenon	is	called	aliasing.

Figure	 1.4	 This	 figure	 illustrates	 the	 effect	 of	 sampling	 frequency	 on	 reconstruction.	 Consider	 the	 high
frequency	sine	wave	shown	 in	blue.	Consider	 two	 types	of	 sampling	shown	by	 the	blue	and	 red	samples
respectively.	 Note	 that	 none	 of	 these	 sample	 the	 high	 frequency	 sine	 wave	 adequately	 and	 hence	 the
samples	represent	sine	waves	of	different	frequencies.

This	brings	us	to	the	question	of	what	is	adequate	sampling	frequency?	As	it
turns	out,	for	sine	or	cosine	waves	of	frequency	 f,	one	has	 to	sample	 them	at	a
minimum	of	double	the	frequency,	i.e.	2	f,	to	assure	correct	reconstruction.	This
rate	is	called	the	Nyquist	sampling	rate.	However,	note	that	the	reconstruction	is
not	 a	 process	 of	merely	 connecting	 the	 samples.	The	 reconstruction	process	 is
discussed	in	details	in	later	chapters.
We	just	discussed	adequate	sampling	for	sine	and	cosine	waves.	But,	what	is

adequate	 sampling	 for	 a	 general	 signal—	 not	 a	 sine	 or	 a	 cosine	 wave?	 To
answer	 this	 question,	 we	 have	 to	 turn	 to	 the	 operation	 complementary	 to
reconstruction,	 called	 decomposition.	 Legendary	 19th	 century	 mathematician,
Fourier,	showed	that	any	periodic	function	f(t)	can	be	decomposed	into	a	number
of	sine	and	cosine	waves	which	when	added	together	give	the	function	back.	We
will	 revisit	Fourier	decomposition	 in	greater	detail	at	Chapter	4.	For	now,	 it	 is
sufficient	to	understand	that	 there	 is	a	way	by	which	any	general	signal	can	be
decomposed	 into	a	number	of	sine	and	cosine	waves.	An	example	 is	shown	in
Figure	1.5	where	different	frequency	sine	waves	are	added	to	create	new	signals.
Hence,	 the	adequate	 sampling	 rate	of	a	general	 signal	 is	guided	by	 the	highest
frequency	sine	or	cosine	wave	present	in	it.	If	the	signal	is	sampled	at	a	rate	that
is	 greater	 than	 twice	 the	 highest	 frequency	 sine	 or	 cosine	wave	 present	 in	 the
signal,	sampling	will	be	adequate	and	the	signal	can	be	reconstructed.	Therefore,
the	 signal	 in	 Figure	1.5	 has	 to	 be	 sampled	 at	 least	 at	 a	 rate	 of	 6	 f	 to	 assure	 a
correct	reconstruction.

1.2.2

Figure	1.5	This	 figure	 illustrates	how	addition	of	different	 frequency	sine	waves	 results	 in	 the	process	of
generation	of	general	periodic	signals.

Quantization
A	analog	or	continuous	signal	can	have	any	value	of	infinite	precision.	However,
whenever	it	is	converted	to	digital	signal,	it	can	only	have	a	limited	set	of	value.
So	a	range	of	analog	signal	values	is	assigned	to	one	digital	value.	This	process
is	called	quantization.	The	difference	between	the	original	value	of	a	signal	and
its	digital	value	is	called	the	quantization	error.
The	discrete	values	can	be	placed	at	equal	intervals	resulting	in	uniform	step

size	in	the	range	of	continuous	values.	Each	continuous	value	is	usually	assigned
the	nearest	discrete	value.	Hence,	the	maximum	error	is	half	the	step	size.	This	is
illustrated	in	Figure	1.6.

Put	a	Face	to	the	Name

Harry	 Theodore	 Nyquist	 is	 considered	 to	 be	 one	 of	 the	 founders	 of
communication	 theory.	He	was	born	 to	Swedish	parents	 in	February	1886

1.3

and	immigrated	to	the	United	States	at	the	age	of	18.	He	received	his	B.S.
and	M.S.	in	electrical	engineering	from	the	University	of	North	Dakota	in
1914	and	1915	respectively.	He	received	his	PhD	in	physics	in	1917	from
Yale	 University.	 He	 worked	 in	 the	 Department	 of	 Development	 and
Research	at	AT&T	from	1917	to	1934,	and	continued	there	when	it	became
Bell	Telephone	Laboratories	until	his	retirement	in	1954.	He	died	in	April
1976.

However,	 human	 perception	 is	 usually	 not	 linear.	 For	 example,	 human
perception	of	brightness	of	light	is	non‐linear,	 i.e.	 if	 the	brightness	is	 increased
by	a	factor	of	2,	 its	perception	increases	by	less	than	a	factor	of	2.	In	fact,	any
modality	of	human	perception	(e.g.	vision,	audio,	nervous)	is	known	to	be	non‐
linear.	It	has	been	shown	that	most	human	perception	modalities	follow	Steven’s
power	law	which	says	that	for	input	I,	the	perception	P	is	related	by	the	equation
P	 	 I	 γ	 .	 If	γ	<	1,	 as	 is	 the	 case	of	human	 response	 to	brightness	of	 light,	 the
response	is	said	 to	be	sub‐linear.	 If	γ	>	1,	as	 is	 the	case	for	human	response	to
electric	shock,	the	response	is	said	to	be	super‐linear.
Due	 to	 such	 non‐linear	 response	 of	 the	 human	 system,	 in	 many	 cases,	 a

nonuniform	step	size	 is	desired	when	converting	a	continuous	signal	 to	digital.
For	 example,	 in	displays,	 the	 relationship	of	 the	 input	voltage	 to	 the	produced
brightness	needs	to	be	super‐linear	to	compensate	for	the	sub‐linear	response	of
the	human	eye.	This	function	in	displays	(e.g.	projectors,	monitors)	is	commonly
termed	as	the	gamma	function.	When	such	non‐uniform	step	size	is	used	during
the	 conversion	 of	 the	 continuous	 signal	 to	 digital,	 the	 maximum	 quantization
error	is	half	the	maximum	step	size,	as	illustrated	in	Figure	1.6.

Representation
In	 this	 section	 we	 will	 discuss	 data	 representation	 in	 the	 context	 of	 visual
computing—	 namely	 audio,	 images,	 videos	 and	 meshes.	 An	 analytical
representation	of	data	 is	 in	 the	 form	of	a	 function	of	one	or	more	 independent
variables.	Audio	data	A(t),	where	t	denotes	time,	can	be	represented	as	A	(t)	=	s
i	n	 (t)	+	1	2	s	 i	n	 (2	 t)	 .	However,	 for	 digital	 representation	of	 an	 arbitrary
audio	signal,	we	usually	use	a	1D	array	 to	 represent	 the	audio	data.	From	now
on,	we	will	distinguish	 the	digital	 representation	from	the	analog	by	using	A[t]
instead	of	A(t)	.	Note	that	representation	using	an	1D	array	follows	an	underlying
assumption	 that	 the	 data	 is	 structured,	 which	 in	 this	 case	 means	 uniformly
sampled.

Figure	1.6	This	figure	illustrates	the	effect	of	step	size	on	quantization	error.	The	blue	dotted	lines	show	the
eight	 discrete	 values.	Note	 that	 these	 can	 be	 distributed	 at	 equal	 intervals	 resulting	 in	 uniform	 step	 size
throughout	the	range	of	continuous	values.	The	intervals	can	also	change	to	create	non‐uniform	step	size.
The	 range	 of	 continuous	 signal	 values	 that	 are	 assigned	 a	 particular	 discrete	 value	 is	 shown	 on	 the
independent	axis	leading	to	maximum	quantization	error	of	half	the	maximum	step	size.	Hence,	for	uniform
step	size,	the	maximum	error	is	half	the	uniform	step	size.

Figure	1.7	This	figure	illustrates	the	gray	scale	image	(left)	being	represented	as	a	height	field	(right).

Similarly,	a	2D	digital	grayscale	image	I	is	denoted	by	the	2D	array	I	[x	,	y]
where	x,		y	stands	for	spatial	coordinates.	This	also	assumes	structured	data.	This
can	be	visualized	as	an	image	with	a	grayscale	color	assigned	to	every	(x	,	y)
coordinates.	 It	 can	 also	 be	 visualized	 as	 a	 height	 field	 in	which	 the	 height	 (Z
value)	 is	 the	 grayscale	 value	 at	 every	 (x	 ,	 y)	 coordinate	 forming	 a	 surface
(Figure	1.7).
Color	 images	 also	 have	 multiple	 channels,	 typically	 red,	 green	 and	 blue.

Hence,	they	are	represented	by	a	three	dimensional	array	I	[c	,	x	 ,	y]	where	c
denotes	the	channel,	c	 	{	R	,	G	,	B	}	.	Video	involves	the	additional	dimension
of	time	and	hence	is	represented	by	a	four	dimensional	array	V	[t	,	c	,	x	,	y]	 .
Note	that	all	of	these	data	are	structured,	which	assumes	a	uniform	sampling	in
each	dimension.	All	these	aforementioned	representations	are	called	the	time	or
spatial	domain	representation.
An	 alternate	 representation,	 called	 the	 frequency	 domain	 representation,

considers	 the	 signal	 as	 a	 composition(e.g.	 linear	 combination)	 of	 a	 number	 of
more	 fundamental	 signals	 (e.g.	 sine	 or	 cosine	waves).	 Then	 the	 signal	 can	 be

represented	by	the	coefficients	of	 these	fundamental	signals	 in	the	composition
that	 would	 result	 in	 the	 original	 signal.	 For	 example,	 the	 Fourier	 transform
provides	 us	with	 a	way	 to	 find	 the	weights	 of	 the	 sine	 and	 cosine	waves	 that
form	 the	 signal.	 Since	 the	 frequencies	 of	 these	 fundamental	 signals	 are
predefined	based	on	their	sampling	rate,	the	signal	can	then	be	represented	by	a
set	 of	 coefficients	 for	 these	waves.	 In	 this	 chapter	we	will	 briefly	 discuss	 the
Fourier	transformation,	and	will	revisit	this	topic	in	greater	detail	in	Chapter	4.

Figure	1.8	Informal	representation	of	the	frequency	domain	response	of	a	1D	signal

Let	us	consider	a	1D	signal	c(t)	(e.g.	audio).	This	can	be	represented	as
c	(t)	=	∑	i	=	1	∞	a	i	C	o	s	(f	i	+	p	i)

where	 a	 i	 and	 p	 i	 denote	 respectively	 the	 amplitude	 and	 the	 phase	 of	 the
constituting	 cosine	 waves.	 Therefore,	 the	 frequency	 domain	 representation	 of
c(t)	is	two	plots	-amplitude	plot	that	shows	a	i	plotted	with	respect	to	f	i	and	phase
plot	that	shows	p	i	plotted	with	respect	to	f	i	.	Together	they	show	the	amplitude
and	phase	of	each	wave	of	frequency	f	i	.	A	typical	1D	frequency	response	plot	is
shown	 in	 Figure	 1.8.	 Since	 higher	 frequency	 waves	 only	 create	 the	 sharp
features,	 they	 are	 usually	 present	 in	 very	 small	 amplitudes.	 Hence,	 most
amplitude	plots,	especially	for	natural	signals,	 taper	away	at	higher	frequencies
as	shown	in	1.8.

Figure	1.9	Left:	 Informal	 representation	of	 the	amplitude	part	of	 the	 frequency	domain	 response	of	a	2D
signal.	Right:	A	grayscale	representation	of	the	same	plot	on	the	left.

Let	us	now	try	to	extend	this	concept	intuitively	to	2D	signals	(e.g.	grayscale
image).	Note	 that	when	considering	these	waves	 in	2D,	 they	can	now	not	only
differ	 in	 frequency	 f	 but	 also	 in	 orientation	 o.	 A	 horizontal	 cosine	 wave	 is

1.3.1

entirely	 different	 than	 a	 vertical	 one	 even	 if	 they	 have	 the	 same	 frequency.
Therefore,	 the	 frequency	 response	of	2D	 signals	 results	 in	 2D	 plots	where	 the
amplitude/phase	 are	 functions	 of	 both	 frequency	 and	 orientation.	 However,
understanding	 a	 2D	 plot	 whose	 one	 axis	 is	 frequency	 and	 other	 orientation	 is
very	 hard	 for	 us	 to	 comprehend.	 An	 easier	 way	 to	 plot	 these	 is	 to	 use	 polar
coordinates	g	and	h	such	that	frequency	f	at	coordinate	(g	,	h)	 is	given	by	 the
length	g	2	+	h	2	and	the	orientation	is	given	by	the	angle	tan	-	1	h	g	.	This	means
that	a	circle	in	(g	,	h)	would	provide	cosine	waves	of	the	same	frequency	and
different	orientation	and	a	ray	from	the	origin	will	provide	cosine	waves	of	the
same	 orientation	 and	 different	 frequencies.	 Figure	 1.9	 shows	 an	 example	 2D
amplitude	 plot.	 Note	 that	 here	 also	 the	 higher	 frequencies	 have	 much	 less
amplitude	than	the	lower	frequencies	given	by	the	radially	decreasing	values	of
the	 plot.	 Alternatively,	 the	 same	 plot	 can	 be	 visualized	 as	 a	 grayscale	 image
where	the	amplitude	is	normalized	and	plotted	as	a	gray	value	between	black	and
white	(Figure	1.9).

Geometric	Data
A	geometric	entity	(e.g.	lines,	planes	or	surfaces)	can	be	represented	analytically.
Alternatively,	 a	 discrete	 representation	 can	 also	 be	 used.	 Continuous
representations	can	be	implicit,	explicit	or	parametric.
An	explicit	representation	is	one	where	one	dependent	variable	is	expressed	as

a	function	of	all	 the	independent	variables	and	constants.	The	explicit	equation
of	a	2D	line	is
y	=	m	x	+	c

where	m	 and	c	 are	 the	 slope	 and	y‐intercept	 of	 the	 line.	 Similarly,	 the	 explicit
representation	of	a	2D	quadratic	curve	can	be
y	=	a	x	2	+	b	x	+	c

where	a,	 	b	and	c	are	the	coefficients	of	the	quadratic	function	representing	the
curve.	 Another	 popular	 explicit	 function	 occuring	 in	 physics	 and	 signal
processing	is
y	=	A	s	i	n	(ω	t	+	ϕ)	.
This	represents	a	sine	wave	of	amplitude	A,	frequency	ω	and	phase	φ.	Note	that
an	 explicit	 representation	 allows	 easy	 evaluation	 of	 the	 function	 at	 different
values	of	the	independent	variables.
However,	more	complex	functions	are	sometimes	not	easy	to	represent	using

explicit	 form.	 Implicit	 representations	 consider	 a	 point	p	 to	 be	 of	 interest	 if	 it
satisfies	an	equation	F(p)	=	c,	where	c	 is	a	constant.	The	implicit	equation	of	a
2D	line	is
a	x	+	b	y	+	c	=	0	,

while	that	of	a	3D	plane	is
a	x	+	b	y	+	c	z	+	d	=	0	.

Figure	1.10	This	figure	shows	the	representation	of	a	3D	mesh	of	a	cube.	It	comprises	of	a	list	of	vertices
followed	by	a	list	of	triangles.	Each	triangle	is	described	by	the	indices	of	the	vertices	it	comprises.

Similarly,	the	implicit	equation	of	a	2D	circle	is
(x	-	a)	2	+	(y	-	b)	2	=	r	2

where	(a	,	b)	is	the	center	and	r	is	the	radius	of	the	circle.	The	implicit	equation
of	a	3D	sphere	is
(x	-	a)	2	+	(y	-	b)	2	+	(z	-	c)	2	=	r	2

where	 (a	 ,	 b	 ,	 c)	 is	 the	 center	 and	 r	 is	 the	 radius	 of	 the	 sphere.	 In	 explicit
function,	sometimes	dependent	and	independent	variables	have	to	be	swapped	to
represent	special	cases.	For	example,	it	is	not	possible	to	represent	a	vertical	line
using	explicit	equation	y	=	mx	+	c	since	m	=	∞.	So	we	need	to	change	x	to	be	a
dependent	variable	to	represent	this	horizontal	line	x	=	m	’	y	+	c	’	where	m	’	=	0.
On	the	other	hand,	there	are	no	special	cases	in	implicit	function	representation.
The	advantage	of	an	 implicit	 representation	 is	an	easy	 inside	or	outside	 test.	 If
F(p)	<	0,	the	point	is	‘above’	or	‘outside’	the	surface	and	if	F(p)	<	0,	the	point	is
‘below’	or	‘inside’	the	surface.

Finally,	the	parametric	equation	allows	the	representation	of	the	function	using
one	or	more	parameters.	For	example,	a	point	p	=	L(t)	on	a	line	segment	between
two	points	and	P	and	Q	can	be	represented	in	the	parametric	form	as
L	(t)	=	P	+	t	(Q	-	P)	,

where	 the	parameter	 is	 t	and	0	≤	 t	≤	1.	Similarly,	 the	parametric	equation	of	a
point	 inside	 the	 triangle	 formed	by	P,	 	Q	and	R	 is	given	by	 the	 two	parameter
equation	given	by
p	=	P	+	u	(Q	-	P)	+	v	(R	-	P)	.

Figure	1.11	This	figure	illustrates	manifold	(closed	objects),	manifolds	with	boundaries	(objects	with	holes)
and	non‐manifolds	(objects	with	folds	and	creases.

where	 the	parameters	 are	u	 and	v	 such	 that	 0	≤	u,	 	v	 ≤	 1	 and	u	 +	v	 ≤	 1.	 The
parametric	equation	allows	easy	sampling	of	the	parametric	space	and	evaluating
any	function	at	these	different	sampled	values.
In	a	discrete	representation,	a	geometric	entity	is	represented	as	a	collection	of

other	geometric	entities	as	opposed	to	an	analytical	equation.	For	example,	a	2D
square	can	be	defined	by	a	set	of	lines	embedded	in	the	2D	space;	a	3D	cube	can
be	defined	by	a	set	of	quadrilaterals	or	triangles	embedded	in	the	3D	space.	Such
a	representation	is	called	a	mesh.	For	example,	when	using	triangles	to	define	a
3D	object,	we	call	it	a	triangular	mesh.	The	entities	that	make	up	the	mesh	(e.g.
lines,	triangles	or	quadrilaterals)	are	called	the	primitives.
Though	 there	 are	 many	 different	 ways	 to	 represent	 3D	 geometry,	 the	 most

common	 is	 a	 triangular	mesh.	So,	we	discuss	 some	key	 elements	of	 triangular
mesh	 representation	 here.	More	 details	 of	 other	 geometric	 representations	 and
their	use	are	presented	in	later	chapters.	A	triangular	mesh	is	defined	by	a	set	of
vertices	 and	 a	 set	 of	 triangles	 formed	 by	 connecting	 those	 vertices.	 The
representation	therefore	consists	of	two	parts:	(a)	a	list	of	vertices	represented	by
their	3D	 coordinates;	 and	 (b)	 a	 list	 of	 triangles	 each	defined	by	 indices	 of	 the

three	 vertices	 of	 its	 corners.	 Figure	 1.10	 shows	 an	 example	 of	 the	 mesh
representation	 of	 a	 simple	 3D	 object,	 a	 cube.	 The	 coordinates	 of	 the	 vertices
define	 the	 geometry	 of	 the	 mesh.	 In	 other	 words,	 changing	 these	 coordinates
changes	 the	geometry	of	 the	object.	For	 example,	 if	we	want	 change	 the	 cube
into	 a	 rectangular	 parallelepiped	 or	 a	 bigger	 cube,	 the	 3D	 coordinates	 of	 the
vertices	will	be	changed.	However,	note	that	this	will	not	change	the	triangle	list
since	 the	 connectivity	 of	 the	 vertices	 forming	 the	 triangles	 does	 not	 change.
Hence,	 the	 latter	 is	 termed	 as	 the	 topological	 property	 of	 the	mesh.	 Topology
refers	 to	connectivity	 that	 remains	 invariant	 to	changes	 in	geometric	properties
of	the	data.

Figure	1.12	Left:	This	 shows	how	a	genus	1	donut	 is	 transformed	 to	a	genus	1	cup	by	 just	changing	 the
geometry.	Right:	This	shows	the	diagram	of	a	mobius	strip.

Next,	we	will	define	certain	geometric	and	topological	properties	of	meshes,
but	 not	 in	 a	 rigorous	 fashion.	 We	 will	 give	 you	 intuitions	 and	 informal
definitions.	Closed	meshes	 (informally	 defined	 to	 have	 no	 holes)	 have	 several
nice	 properties	 in	 the	 context	 of	 computer	 graphics	 operations	 like	morphing,
mesh	 simplification	and	editing.	Such	meshes	are	manifolds	where	every	edge
has	 exactly	 two	 incident	 triangles.	 A	mesh	 where	 every	 edge	 has	 one	 or	 two
incident	 triangles	 is	 called	manifold	with	 boundaries.	 For	 example,	 a	 piece	 of
paper	 denoted	 by	 two	 triangles	where	 the	 four	 edges	 forming	 the	 sides	 of	 the
paper	have	only	one	incident	triangle,	 is	a	manifold	with	boundaries.	Note	that
manifold	with	boundaries	are	less	restrictive	than	manifolds	and	hence	a	superset
of	manifolds.	Meshes	where	edges	can	have	more	than	two	incident	triangles	are
called	non‐manifolds.	Note	that	non‐manifolds	are	a	superset	of	manifolds	with
boundaries.	Figure	1.11	illustrate	this.
Meshes	can	be	defined	with	geometric	properties	or	attributes.	In	Figure	1.10

each	 vertex	 has	 3D	 spatial	 coordinates.	 In	 addition	 to	 this	 basic	 information,
each	vertex	can	have	RGB	color,	normal	vectors,	or	2D	coordinates	of	an	image
to	be	pasted	on	the	mesh	(formally	known	as	texture	coordinates),	or	any	other
vertex‐based	 attribute	 that	 is	 useful	 for	 the	 given	 application.	 Topological
properties	are	properties	that	do	not	change	with	change	in	geometric	properties.
For	mesh	 processing,	 a	 few	 topological	 properties	 are	 very	 important.	 First	 is
Euler	characteristics	e	defined	as	V	-	E	+	F	where	V	is	the	number	of	vertices,	E

is	the	number	of	edges,	and	F	is	the	number	of	faces	(not	necessarily	triangular)
of	the	mesh.	Note	that	if	you	change	the	cube	to	a	parallelepiped	by	changing	the
position	of	the	vertices	which	is	a	geometric	property,	e	does	not	change.
Essentially	e	may	change	only	when	the	object	undergoes	some	change	in	the

mesh	 connectivity.	Genus	 of	 a	mesh	 is	 defined	 as	 the	 number	 of	 handles.	 For
example,	a	sphere	has	a	genus	zero,	a	donut	has	a	genus	1	and	a	double	donut
has	a	genus	2.	One	will	need	to	change	the	topology	of	the	mesh	to	change	from
one	genus	to	another	while	only	geometric	changes	are	sufficient	to	change	one
object	to	another	with	same	genus	(Figure	1.12).	Finally,	a	mesh	is	not	orientable
if	 you	 start	 walking	 on	 the	 top	 of	 the	 mesh	 and	 end	 up	 in	 its	 backside.	 An
example	of	a	non‐orientable	mesh	is	the	mobius	strip	(Figure	1.12).

Fun	Facts

A	non-orientable	surface	that	has	been	intriguing	to	topologists	is	the	Klein
bottle.	Unlike	a	mobius	strip,	it	does	not	have	any	boundary.	It	is	what	you
get	 when	 you	 put	 two	mobius	 strips	 together.	 The	Klein	 bottle	 was	 first
described	in	1882	by	the	German	mathematician	Felix	Klein.	It	cannot	be
embedded	in	3D	space,	only	in	4D	space.	It	is	hard	to	say	how	much	water
Klein	bottles	would	hold,	 they	contain	 themselves	when	embedded	 in	4D
space!	 This	 has	 not	 stopped	 people	 from	 trying	 to	 embed	 them	 in	 3D
however,	and	there	are	some	beautifully-made	representations	on	display	at
the	London	Science	Museum!

We	 have	 so	 far	 only	 considered	 triangular	 primitives	 for	 meshes.	 Though
other	 primitives	 can	 be	 used	 (e.g.	 six	 quadrilaterals	 instead	 of	 12	 triangles	 for
mesh	representation	of	a	cube),	triangles	are	preferred	for	various	reasons.	First,
triangles	 are	 always	 planar	 since	 three	 non‐collinear	 points	 define	 a	 plane.
Hence,	modeling	packages	do	not	need	to	assure	that	a	surface	fits	the	vertices
when	 they	 output	 the	mesh	 representation.	 Second,	 as	we	will	 see	 in	 the	 next
chapter,	 in	 computer	 graphics	 it	 is	 important	 to	 find	 out	 the	 attributes	 or

1.4

properties	of	points	lying	inside	a	primitive	from	the	properties	at	its	vertices	via
techniques	 called	 interpolation	 where	 triangular	 primitives	 hold	 a	 great
advantage.

Noise
Any	discussion	on	data	cannot	be	complete	without	discussing	noise.	Noise	can
be	caused	due	to	several	factors	like	mechanical	imprecision,	sensor	imprecision
(e.g.	 occasional	 always‐dead	 or	 always‐live	 pixels)	 and	 so	 on.	 The	 origins	 of
noise	in	different	systems	are	different.	It	is	best	described	as	addition	of	random
values	 as	 random	 locations	 in	 the	 data.	 In	 this	 chapter	 we	 will	 discuss	 some
common	types	of	noise.

Figure	1.13	This	figure	 illustrates	random	noise	 in	1D	audio	data	 (left),	2D	 image	data	 (middle),	and	3D
surface	data	(right).	In	each	example,	the	clean	data	is	shown	on	the	left	and	the	corresponding	noisy	data	is
shown	on	the	right.

The	most	common	and	general	kind	of	noise	is	what	we	call	random	noise	i.e.
addition	of	small	random	values	at	any	location	of	the	data.	Figure	1.13	shows
some	examples.	A	common	 technique	 to	 reduce	 such	noise	 in	data	 is	what	we
call	low	pass	filtering	and	it	will	be	dealt	with	in	detail	in	Chapter	3.
Another	common	type	of	noise	originates	from	having	outliers	in	the	data	i.e.

samples	which	clearly	cannot	belong	to	the	data.	For	example,	in	a	camera	some
sensor	 pixels	 may	 be	 dead	 making	 thereby	 blocking	 or	 allowing	 all	 the	 light
providing	pixels	that	are	always	either	black	or	white	respectively.	The	locations
of	such	pixels	may	be	random.	In	 the	specific	case	of	2D	images,	 this	noise	 is
called	 salt	 and	 pepper	 noise	 (see	 Figure	 1.14).	 Such	 outliers	 are	 handled
adequately	by	median	filters	or	other	order	statistics	filters.	We	will	see	some	of
these	in	Chapter	5.

Figure	1.14	This	shows	the	outliers	or	salt	and	pepper	noise	in	1D	(left),	2D	(middle)	and	3D	(right)	data.

1.5

On	the	left,	we	show	the	effect	of	a	median	filter	in	removing	the	outliers	in	red.

Finally,	some	noise	may	look	random	in	the	spatial	domain	but	can	be	isolated
to	a	few	frequencies	in	the	spectral	domain.	An	example	of	such	noise	is	shown
in	Figure	1.15.	Such	noise	can	be	removed	by	applying	a	filter	in	the	frequency
domain	 called	 the	 notch	 filter	 and	we	 are	 going	 to	 talk	 about	 that	 in	 detail	 in
Chapter	4.

Conclusion
In	 this	 chapter	 we	 discussed	 the	 fundamentals	 of	 representing	 and	 visualizing
different	kinds	of	visual	data	like	images,	3D	surfaces	and	point	clouds.	We	also
learned	 about	 two	 alternate	 representations	 of	 data	 in	 the	 spatial/time	 domain
and	frequency	domain.	We	talked	about	practical	issues	involving	noise	in	data
and	how	it	needs	to	be	handled	on	a	case	by	case	basis.	Here	are	some	references
for	 familiarizing	 yourself	 for	 some	 advanced	 concepts.	 [Ware	 04]	 explores	 in
details	all	about	information	visualization.	[Goldstein	10]	provides	an	excellent
first	 reading	 for	 topics	 related	 to	 sensation	and	human	perception.	The	chapter
on	 Data	 Structures	 for	 3D	 graphics	 in	 [Ferguson	 01]	 provides	 a	 detailed
description	of	representation	of	3D	models.	The	chapter	on	noise	on	[Gonzalez
and	Woods	06]	provides	a	very	detailed	treatise	on	noise	that	is	worth	reading.

Figure	1.15	This	figure	shows	the	frequency	domain	noise	that	can	be	removed	or	reduced	by	notch	filters.

Bibliography
[Ferguson	01]	R.Stuart	Ferguson.	Practical	Algorithms	for	3D	Computer	Graphics.	A.	K.Peters,	2001.
[Goldstein	10]	BruceE.	Goldstein.	ThomasWadsworth:	Sensation	and	Perception;	2010.

[Gonzalez	 and	 Woods	 06]	 Rafael	 C.Gonzalez	 and	 Richard	 E.Woods.Digital	 Image	 Processing	 (3rd
Edition).Prentice-Hall,,	2006.

[Ware	04]	ColinWare.Information	Visualization:	Perception	for	Design.Morgan	Kaufmann	Publishers	Inc.,
2004.

Summary:	Do	you	know	these	concepts?

Height	Field
Discretization
Sampling	and	Nyquist	Sampling	Theorem
Decomposition	and	Reconstruction
Aliasing
Quantization
Time	and	frequency	domain	representation
Mesh	-	Geometry	and	Topology
Manifold,	manifold	with	boundaries	and	non-manifolds
Euler	characteristics,	genus,	orientability
Random	Noise
Salt	and	Pepper	Noise

Exercises
1.	 Consider	an	8‐bit	grayscale	image	I	(x	,	y)	whose	size	 is	256	×	256.

Each	column	of	the	image	has	the	same	gray	value	which	starts	from	0
for	 the	 left	most	column	and	 increases	by	1	as	we	sweep	from	left	 to
right.	What	 kind	 of	 shape	 does	 the	 height	 field	 of	 this	 image	 form?
Find	its	equation?

2.	 Consider	 a	 height	 field	 H	 (x	 ,	 y)	 of	 size	 256	 ×	 256	 given	 by	 the
function	H	(x	,	y)	=	(x	m	o	d	16)	 	16	.	What	kind	of	shape	would
this	height	field	have?	How	many	gray	levels	would	this	image	have?
Create	a	table	to	show	the	percentage	of	pixels	 that	belong	to	each	of
these	gray	levels.

3.	 Consider	a	gray	scale	spatial	function	A	(x	,	y)	which	does	not	vary	in
the	y‐direction	but	 form	a	sine	wave	as	we	go	 from	left	 to	 right	 in	x‐
direction	 making	 50	 cycles.	 What	 will	 be	 the	 minimum	 horizontal
resolution	of	an	digital	image	that	can	sample	this	function	adequately?

Consider	 another	 function	B	(x	 ,	y)	 formed	 by	 rotating	A	 about	 the
axis	perpendicular	 to	 the	plane	 formed	by	x	and	y.	Now	 consider	 the
function	formed	by	adding	A	and	B.	What	 is	 the	minimum	horizontal
and	 vertical	 resolution	 of	 the	 image	 required	 to	 sample	 A	 +	 B
adequately?

4.	 Consider	an	object	moving	at	60	units	per	second.	How	many	frames
per	second	video	 is	 required	 to	adequately	capture	 this	motion?	What
kind	of	 artifact	would	you	 expect	 if	 the	 frame	 rate	 is	 lesser	 than	 this
desired	rate?	What	is	this	artifact	more	commonly	known	as?

5.	 The	image	of	your	TV	looks	washed	out.	The	technician	says	that	the
intensity	response	curve	of	the	TV	is	linear	and	hence	the	problem.	To
correct	the	problem,	he	has	to	make	it	non‐linear.	Why?	What	kind	of
non‐linear	response	do	you	think	he	will	put	in?

6.	 If	 the	 number	 of	 bits	 used	 for	 representing	 the	 color	 of	 each	 pixel	 is
increased	quantization	error	is	reduced.	Justify	this	statement.

7.	 Can	quantization	be	explained	as	an	artifact	of	 insufficient	 sampling?
Justify	your	answer.

8.	 Your	 TV	 has	 three	 channels—R,	 G	 and	 B.	 However	 one	 of	 these
channels	 is	 broken	 and	 now	 you	 can	 only	 see	 blacks	 and	 purples.
Which	channel	is	broken?

9.	 A	1D	function	contains	all	the	harmonics	of	the	sine	wave	that	makes	1
cycle	with	a	spatial	span	of	1	unit.	Choose	the	correct	answer.

a.	 The	amplitude	plot	of	 the	frequency	domain	response	of	this
function	is	a(i)	a	sine	wave;	(ii)	a	horizontal	line;	(iii)	a	comb
function.

b.	 The	 phase	 plot	 of	 the	 frequency	 domain	 response	 of	 this
function	is	a	(i)	a	sine	wave;	(ii)	a	horizontal	line;	(iii)	a	comb
function.

10.	 What	 is	 the	 euler	 characteristics	 of	 a	 cube	 represented	 by	 six	 planar
quadrilaterals.	Euler	characteristics	of	an	object	are	related	to	its	genus
by	the	formula	e	=	2	-	2g.	Can	you	derive	the	genus	of	a	sphere	from
the	Euler	characteristics	of	a	cube?	If	so,	how?

11.	 Topologically,	 a	 cube	 is	 an	 approximation	 of	 a	 sphere	 using
quadrilateral	faces.	In	such	a	cube,	all	vertices	have	degree	three.	It	is
claimed	 that	 one	 can	 construct	 an	 approximation	 of	 a	 sphere	 using
quadrilaterals	where	 each	vertex	has	degree	4.	Prove	or	disprove	 this
claim.

12.	 Objects	like	spheres	are	usually	approximated	in	computer	graphics	by

simpler	objects	made	of	flat	polygons.	Start	with	a	regular	tetrahedron
constructed	from	four	triangles.	Derive	one	or	more	methods	to	obtain
a	 close	 approximation	 of	 a	 sphere	 based	 on	 subdividing	 each	 face	 of
the	 tetrahedron	 recursively	using	 the	 same	geometric	 operation.	Does
these	 constructions	 change	 the	 topological	 properties	 of	 the	 sphere?
Can	 you	 think	 of	 some	 criteria	 to	 evaluate	 the	 quality	 of	 these
constructions?

13.	 Match	the	noisy	images	in	the	top	row	with	the	filters	that	will	remove
the	noise	in	the	bottom	row.

14.	 Consider	the	mesh	representing	a	pyramid	with	a	quadrilateral	as	base	and
four	triangles	attached	to	each	of	its	sides	to	form	the	structure	of	the
pyramid.	Find	its	Euler	characteristics	and	genus.

2.1

2

Techniques
We	are	 familiar	with	different	kinds	of	data.	 In	 this	 chapter,	we	will	 introduce
two	 fundamental	 techniques	 that	 we	 will	 be	 using	 throughout	 this	 book:
interpolation	and	computation	of	geometric	intersections.

Interpolation
Consider	a	function	(e.g.	attributes	or	properties	like	color	or	position)	sampled
at	certain	parametric	values.	Interpolation	is	a	process	by	which	this	function	is
estimated	at	parametric	values	at	which	it	has	not	been	measured	or	sampled.	An
image	data	can	be	considered	as	samples	of	a	2D	 function	 I(x,y)	 that	provides
color	at	each	spatial	 location	(x,y).	Typically,	 image	data	points	are	sampled	at
integer	values	of	x	and	y.	Given	the	function	values	of	I(x,y)	at	the	integer	grid
points	(x	,	y)	,	we	use	interpolation	to	find	the	function	value	I	(x	 ,	y)	at	 in-
between,	 and	possibly	non‐integer	values	of	x,	 	y.	Or,	 consider	 a	 triangle.	The
position	function	(defined	by	3D	coordinates)	is	defined	only	at	the	vertices.	We
need	to	interpolate	the	positions	of	the	vertices	to	the	interior	of	the	triangle	to
compute	the	position	of	any	point	lying	inside	the	triangle.
Interpolation	 is	based	on	 the	assumption	 that	 the	 function	changes	 smoothly

between	 the	different	 sampled	values.	However,	 interpolation	 techniques	differ
based	on	the	degree	of	smoothness	of	change	assumed	between	the	samples.	For
example,	consider	the	1D	function	shown	in	Figure	2.1.	The	simplest	assumption
is	that	the	1D	function	changes	linearly	between	two	adjacent	samples,	i.e.	two
adjacent	samples	are	connected	by	straight	lines.	Therefore,	the	function	can	be
estimated	 at	 a	 parameter	where	 it	 is	 not	 sampled,	 by	 considering	 the	 function
values	at	its	two	nearest	neighbors	which	defines	the	straight	line.	This	kind	of
interpolation	that	uses	a	straight	line	to	estimate	function	values	at	points	where
it	is	not	sampled	is	called	linear	interpolation.	However,	it	is	evident	from	Figure
2.1	that	at	sample	points,	the	function	values	can	changes	abruptly	(also	called	C
0	 continuity).	 In	many	applications	 such	discontinuities	 in	 the	derivative	of	 the
function	values	are	not	acceptable.	Therefore,	in	more	sophisticated	interpolation

2.1.1

techniques,	 it	 is	 assumed	 a	 smooth	 curve	 passes	 through	 multiple	 of	 these
samples	such	that	the	tangent	vector	of	the	curve	also	smoothly	changes.	In	order
to	 compute	 the	 derivatives,	 we	 need	 a	 larger	 neighborhood	 of	 sample	 points
rather	than	just	two	that	we	used	for	linear	interpolation.	For	tangent	continuity
(aka	first	derivative	continuous,	C	1	continuous,	quadratic	interpolation),	we	use
three	sample	points.	Similarly,	for	second	derivative	continuous	cubic	curve	(C	2
continuous),	we	use	four	sample	points,	and	so	on.	In	this	book	we	will	almost
always	use	only	linear	interpolation	and	therefore	we	will	explore	this	in	detail.
We	will	 first	 describe	 linear	 interpolation	 in	 1D	 (as	 shown	 in	 Figure	 2.1)	 and
then	extend	the	concept	to	2D	data	(e.g.	images	and	meshes)	in	which	case	it	is
called	a	bilinear	interpolation.

Figure	2.1	This	shows	the	assumption	of	smooth	transition	between	samples	in	interpolation	and	how	it	can
be	modeled	differently.	Top:	Linear;	Bottom:	Non-Linear.

Linear	Interpolation
Let	us	consider	a	straight	line	segment	between	the	endpoints	V	1	and	V	2.	Let	the
color	at	these	two	vertices	be	C	(V	1)	=	(r	1	,	g	1	,	b	1)	and	C	(V	2)	=	(r	2	,	g
2	,	b	2)	respectively.	Any	point	V	on	the	line	segment	V	1	V	2	is	given	by	V	=	αV
1	+	(1	-	α)V	2	where	0	≤	α	≤	1.
We	say	a	function	f	is	linear	if	f(aX	+	bY)	=	af(X)	+	bf(Y).	Similarly,	we	say	the

color	at	 the	point	V,	 	C(V),	 in	 the	 line	 segment	V	 1	V	 2	 is	 linearly	 interpolated
when

(2.1)
C	(V)	=	C	(α	(V	1)	+	(1	-	α)	(V	2))	=	α	C	(V	1)	+	(1	-	α)	C	(V	2)	.
We	can	see	that	rate	of	change	of	color	of	a	point	between	V	1	to	V	2,	with	respect
to	the	distance	traveled	between	V	1	and	V	2,	is	constant.
Technically,	 the	 above	 interpolation	 is	 much	 more	 specific	 than	 a	 general

linear	 interpolation	(or	 linear	combination)	—it	 is	called	a	convex	combination
of	C(V	1)	and	C(V	2)	where	the	coefficients	are	positive	and	they	add	up	to	1.0.	It

is	 said	 that	 the	 function	value	at	V	 (in	 this	case	color)	 is	 interpolated	 from	 the
function	values	at	V	1	and	V	2	linearly	by	weighting	the	function	at	those	values
using	coefficients	α	and	(1	-	α).	The	coefficients	α	are	 typically	computed	as	a
relative	function	of	the	distance	of	the	point	V	from	V	1	and	V	2.	For	example,	we
know	that	the	parametric	equation	of	a	line	is	given	by

(2.2)
(x	,	y	,	z)	=	α	(x	1	,	y	1	,	z	1)	+	(1	-	α)	(x	2	,	y	2	,	z	2)
where	(x	,	y	,	z)	are	the	3	D	coordinates	of	any	point	on	the	line	V	1	V	 2.	Note
that,	though	the	coordinates	are	3	D	,	the	geometric	entity	is	1	D	line	embedded
in	3	D	and	therefore	we	are	using	linear	interpolation.	Given	the	locations	of	the
points	V	1,		V	2	and	V,	we	can	find	α	by	solving	the	equation

Figure	2.2	Left:	Bilinear	interpolation	at	V	from	V	1,		V	2	and	V	3	in	a	triangle.	Right:	Bilinear	interpolation
to	find	the	value	of	F	at	P	from	the	value	of	F	at	the	integer	pixels	at	(i	,	j)	,	(i	+	1	,	j)	,	(i	,	j	+	1)	and	(i	+
1	,	j	+	1)	in	an	image.

(2.3)
x	=	α	x	1	+	(1	-	α)	x	2
and	use	this	α	to	find	the	value	of	C(V)	from	C(V	1)	and	C(V	2).	The	coefficients
for	V	1	and	V	2	are	both	between	0	and	1	and	their	sum	is	equal	to	1.0.	Therefore,
the	 function	 at	V	 is	 estimated	 by	 a	weighted	 sum	 of	 functions	 at	V	 1	 and	V	 2
where	each	of	the	weights	are	fraction	between	0	to	1	and	their	sum	is	equal	to	1.
This	is	called	a	convex	combination	of	V	1	and	V	2.
If	 the	 constraint	 is	 only	 that	 the	 sum	 of	 the	 coefficients	 is	 1.0,	 but	 the

coefficients	can	be	of	any	value,	then	it	is	called	an	affine	combination.	If	there
are	no	constraints	on	the	coefficients,	it	is	called	a	linear	combination.	Note	that
a	linear	combination	does	not	always	mean	linear	interpolation.	For	example,	if
the	Equation	2.1	was	C(V)	=	α	2	C(V	1)	+	(1	-	α	2)C(V	2),	it	would	not	be	a	linear
interpolation	in	α,	but	would	still	be	a	 linear	combination	of	C(V	1)	and	C(V	 2)
because	alpha	2	and	(1	-	alpha	2)	are	still	scalar	values.	In	other	words,	for	linear

2.1.2

interpolation,	the	derivative	of	the	interpolated	function	should	be	a	constant.

Bilinear	interpolation
Instead	 of	 considering	 1	 D	 data,	 let	 us	 now	 consider	 2	 D	 data	 where	 the
neighborhood	 of	 a	 sample	 extends	 in	 two	 different	 directions.	 Bilinear
interpolation	 entails	 interpolating	 in	 one	 direction	 followed	 by	 interpolating	 in
the	second	direction.
For	this,	let	us	consider	a	triangle	with	three	vertices	V	1,		V	2	and	V	3	(Figure

2.2a).	To	estimate	the	function	C	at	a	point	V	inside	the	triangle,	we	first	estimate
the	function	in	the	two	directions	V	1	V	3	and	V	1	V	2.	The	point	Q	on	V	1	V	 3	 is
given	by	linear	interpolation	as

(2.4)
Q	=	(1	-	α)	V	1	+	α	V	3	.
Similarly,	the	point	R	along	V	2	V	1	is	given	as

(2.5)
R	=	(1	-	β)	V	1	+	β	V	2	.
where	0.0	≤	α,		β	≤	1.0.	Therefore	V	is	given	by	the	vector	addition	of	V	1,		R	and
Q	as

(2.6)
V	=	V	1	+	(1	-	α)	V	1	+	α	V	3	+	(1	-	β)	V	1	+	β	V	2

(2.7)
=	(1	-	α	-	β)	V	1	+	α	V	3	+	β	V	2	.
Therefore	C	at	V	can	be	estimated	as

(2.8)
C	(V)	=	(1	-	α	-	β)	C	(V	1)	+	α	C	(V	3)	+	β	C	(V	2)	.
Bilinear	 interpolation	also	 results	 in	a	convex	combination	and	 the	values	of	α
and	β	can	be	recovered	by	solving	 two	equations	formed	by	 the	coordinates	of
V,		V	1,		V	2	and	V	3	in	Equation	2.7.	Further,	you	can	verify	for	yourself	that	the
coefficients	 for	 finding	 V	 does	 not	 change	 if	 you	 consider	 any	 two	 different
directions	like	V	3	V	2	and	V	3	V	1	or	V	1	V	2	and	V	2	V	3	(See	exercise	for	problems
on	this).
Now	 let	 us	 consider	 bilinear	 interpolation	 in	 another	 scenario	 of	 an	 image

(Figure	2.2b).	Any	 non‐integer	 spatial	 location	may	 be	 considered	 4connected
when	 its	 neighborhood	 is	 defined	by	 four	 nearest	 neighbors,	 two	 in	 horizontal

direction	and	two	in	vertical	direction.	A	neighborhood	can	also	be	8‐connected
when	the	diagonal	neighbors	are	also	included.	The	distance	of	the	neighbors	in
the	8–connected	neighborhood	can	be	different	(for	example,	diagonal	neighbors
are	2	distance	away	while	the	horizontal	and	vertical	neighbors	are	unit	distance
away).	This	is	illustrated	in	Figure	2.3.

Figure	2.3	This	shows	the	4	and	8	connected	neighbors	in	blue	for	the	red	pixel	in	the	center.

Let	us	consider	a	function	F	that	defines	the	color	at	integer	pixels	at	(i	,	j)	,	(
i	,	j	+	1)	,	(i	+	1	,	j)	and	(i	+	1	,	j	+	1)	denoted	by	A,		B,		C	and	D	respectively.
Let	us	consider	a	point	P	where	C	has	to	be	estimated	as	shown	in	Figure	2.2b.
Note	 that	 in	 this	case,	 the	 location	of	each	of	 these	pixels	 is	defined	using	2D
coordinates.	Therefore,	the	distance	between	pixel	(i	,	j)	and	P	in	horizontal	and
vertical	 direction	 can	 be	 found	 from	 their	 location.	 Let	 this	 be	 α	 and	 β
respectively	where	0	≤	α,		β	≤	1.	Therefore,	the	value	of	C	at	the	pixel	Q	is	given
by	linear	interpolation	in	the	horizontal	direction	as

(2.9)
F	(Q)	=	(1	-	α)	C	+	α	D
Similarly	the	value	of	F	at	R	is	given	by

(2.10)
F	(R)	=	(1	-	α)	A	+	α	B	.
Now,	the	value	of	C	at	P	is	found	by	interpolating	between	R	and	Q	linearly	in
the	vertical	direction	as

(2.11)
F	(P)	=	F	(Q)	β	+	F	(R)	(1	-	β)

(2.12)
=	β	(1	-	α)	C	+	β	α	D

(2.13)
+	(1	-	β)	(1	-	α)	A	+	(1	-	β)	α	B

(2.14)
=	β	(1	-	α)	F	(i	+	1	,	j)	+	β	α	F	(i	+	1	,	j	+	1)

(2.15)
+	(1	-	β)	(1	-	α)	F	(i	,	j)	+	(1	-	β)	α	F	(i	,	j	+	1)
Now,	consider	the	case	where	P	happens	to	be	on	the	straight	line	connecting	A
and	D.	 In	 this	 case,	P	 can	 be	 expressed	 as	 a	 linear	 combination	 of	 these	 two
points.	The	distance	AP	is	given	by	α	2	+	β	2	and	the	distance	PD	is	given	by	(1
-	α)	2	+	(1	-	β)	2	.	Therefore,

(2.16)
F	(P)	=	α	2	+	β	2	D	+	(1	-	α)	2	+	(1	-	β)	2	A
Therefore,	 there	 are	multiple	ways	 to	 interpolate	F	 at	P,	 using	 either	 equation
2.14	 and	 2.16	 and	 many	 more	 can	 be	 found.	 For	 example,	 we	 may	 want	 to
interpolate	the	point	at	the	intersection	of	AD	and	BC	using	A,		B	and	C	followed
by	 an	 interpolation	 of	 this	 point	 and	A	 to	 get	P.	 Each	 of	 these	 will	 result	 in
different	 coefficients.	 This	 non‐uniqueness	 of	 interpolation	 in	 an	 image	 data
which	is	sampled	uniformly	in	the	same	two	directions,	horizontal	and	vertical,
is.	 avoided	by	 always	 interpolating	 along	 these	 two	directions.	You	 can	verify
that	 interpolating	 in	 the	 vertical	 direction	 first	 and	 then	 in	 the	 horizontal
direction	will	yield	the	same	result	as	Equation	2.14.

Figure	2.4	This	shows	a	mesh	made	of	quadrilaterals.

However,	unlike	this	case	of	a	uniform	planar	grid,	if	this	2	D	surface	happens
to	 be	 a	 mesh	 as	 in	 Figure	 2.4,	 the	 result	 of	 the	 interpolation	 will	 completely
depend	on	the	particular	intermediate	points	you	use.	Consider	the	quadrilateral
highlighted	 in	 red	 in	 Figure	 2.4.	 Let	 two	 opposite	 vertices	 have	 color	 black
denoted	by	B	and	the	other	two	vertices	have	color	white	denoted	by	W.	A	point
at	 the	 intersection	 of	 the	 two	 diagonals	 shown	 by	 dotted	 red	 lines	 can	 be
interpolated	 to	 have	 two	 completely	 different	 colors.	 If	 interpolated	 from	 the

2.2

black	vertices,	it	will	be	black.	If	interpolated	from	the	white	vertices	it	will	be
white.
Therefore,	there	is	something	special	about	a	triangle,	where	a	point	inside	it

will	 be	 interpolated	 uniquely	 irrespective	 of	 how	 you	 do	 it.	 This	 is	 because	 a
triangle	is	a	simplex.	A	simplex	is	a	geometric	construct	achieved	by	connecting
n	points	to	each	other	in	(n	-	1)	dimensions.	A	straight	line	is	the	1	D	simplex.	A
triangle	is	the	2	D	simplex	(encloses	a	surface).	Similarly,	a	tetrahedron	is	the	3D
simplex.	 These	 are	 illustrated	 in	 Figure	 2.5.	 The	 linear	 interpolation	 on	 these
simplices	(called	bilinear	for	2	D	,	trilinear	for	3	D)	yields	unique	interpolation
coefficients	which	are	also	called	barycentric	coordinates	of	a	point	 inside	 the
simplex	with	respect	to	the	vertices	forming	the	simplex.	Therefore	in	Equation
2.8	provides	the	barycentric	coordinates	of	the	point	V	with	respect	to	V	1,	 	V	 2
and	V	 3	 respectively	 in	Figure	2.	 2a	 .	 This	 is	 the	 reason	 triangles	 and	 not	 any
other	 polygons	 are	 chosen	 for	 representing	 geometric	meshes.	The	 advantages
will	be	even	more	evident	when	we	cover	computer	graphics	later	in	the	book.

Figure	2.5	From	left	to	right:	The	smallest	1D	(line),	2D	(triangle)	and	3D	(tetrahedron)	simplex.

Geometric	intersections
Linear	equations	represent	lines	(when	using	2	variables)	or	planes	(when	using
three	 variables)	 and	we	would	 often	 need	 to	 compute	 the	 intersection	 of	 such
geometric	 entities.	 Such	 intersections	 are	 computed	 by	 solving	 a	 set	 of	 linear
equations.	 In	 order	 to	 solve	 equations	 with	 n	 unknowns,	 we	 need	 at	 least	 n
equations.	 First,	 let	 us	 derive	 a	 matrix	 formulation	 for	 this	 problem.	 Let	 us
consider	n	 linear	 equations	with	n	 unknowns,	x	 1,	 	x	 2,	 .	 .	 .	x	 n	 ,	 where	 the	 ith
equation	is	given	by

(2.17)
a	i	1	x	1	+	a	i	2	x	2	+	…	+	a	in	x	n	=	b	i

Now,	this	can	be	written	as

(2.18)
A	x	=	b

where	A	is	a	n	×	n	matrix	given	by

(2.19)
A	=	a	11	a	12	⋯	a	1	n	a	21	a	22	⋯	a	2	n	⋯	⋯	⋯	a	n	1	a	n	2	⋯	a	nn

and	x	and	b	are	n	×	1	column	vectors	given	by	x	T	=	(x	1	x	2	.	.	.	x	n)	and	b	T	=
(b	1	b	2	.	.	.	b	n)	respectively.	The	solution	to	this	system	of	linear	equations	is

(2.20)
X	=	A	-	1	B

Note	that	A	-1	exists	only	when	all	the	equations	are	linearly	independent	of	each
other.	Geometrically,	 you	 can	 imagine	 this	 problem	 in	 an	n	 dimensional	 space
where	 each	 of	 the	 n	 equations	 defines	 a	 hyperplane	 and	 x	 will	 give	 you	 the
intersection	 point	 in	 n	 dimensions	 of	 all	 these	 n	 hyperplanes.	 Full	 rank	 A
indicates	non‐parallel	hyperplanes	which	will	have	a	unique	 intersection	point.
For	example,	when	n	=	2,	two	non‐parallel	lines	will	always	intersect	at	a	point.
Now	 consider	 the	 case	 when	 you	 have	 the	 same	 number	 of	 unknowns	 but

have	 a	much	 larger	 number	 of	 equations,	m,	 where	m	 >	 n.	 Such	 a	 system	 of
equations	 is	 called	 an	 over‐constrained	 system	of	 equations.	 In	 this	 case,	 note
that	 there	 may	 not	 be	 one	 common	 intersection	 point.	 For	 example,	 consider
m	 =	 3	 and	 n	 =	 2.	 Therefore,	 we	 are	 considering	 three	 lines	 which	 may	 not
intersect	 at	 a	 point	 as	 shown	 in	 Figure	 2.6.	 Therefore,	 one	 (and	 probably	 the
most	 widely	 used)	 way	 to	 geometrically	 solve	 this	 set	 of	 over‐constrained
equations	is	equivalent	to	finding	a	point	P	such	that	the	sum	of	the	squares	of
the	 distance	 from	 P	 to	 the	 lines	 defined	 by	 the	 set	 of	 linear	 equations	 is
minimized.	 The	 squaring	 is	 done	 to	 make	 sure	 that	 negative	 and	 positive
distances	do	not	cancel	each	other	out.	This	process	is	called	linear	regression.
Since	the	square	of	 the	distances	 is	used,	 this	 is	also	often	referred	to	as	 linear
least	square	optimization.

Figure	2.6	This	shows	three	non-parallel	 lines	 in	2D	which	may	not	meet	at	a	single	point.	The	red	lines
show	the	perpendicular	distance	of	each	of	these	lines	from	the	point	P.

An	over‐constrained	system	of	linear	equations	can	be	expressed	by	the	same
Equation	2.18.	However,	the	dimension	of	A	is	now	m	×	n	and	that	of	b	is	m	×	1.

Now,	since	A	is	no	longer	a	square	matrix,	its	inverse	is	not‐defined.	Therefore,
let	us	consider	the	following.

(2.21)
A	x	=	b

(2.22)
O	r	,	A	T	A	x	=	A	T	b

(2.23)
O	r	,	x	=	(A	T	A)	-	1	A	T	b

Note	that	A	T	is	a	n	×	m	matrix.	Therefore,	A	T	A	is	a	n	×	n	matrix	whose	inverse
is	defined	and	is	called	the	pseudo-inverse	of	A.	Therefore,	x	can	be	solved	now
using	 this	 pseudo-inverse.	 However,	 it	 only	 works	 well	 when	A	 T	A	 is	 a	 full-
ranked	 matrix	 and	 not	 singular	 (i.e.	 determinant	 is	 not	 zero).	 Often	 when
m	>	>	n,		it	is	very	hard	to	assure	that	the	pseudo	inverse	is	full-ranked.
Singular	value	decomposition	(SVD)	is	a	technique	This	that	helps	us	to	solve

x	 in	such	situations.	 It	decomposes	shows	 the	strucA	 into	 three	matrices	U,	 	D
and	V	such	that

Figure	2.7	This	shows	the	structure	of	D	matrix	in	singular	value	decomposition.

(2.24)
A	=	U	D	V	T

where	U	is	a	m	×	m	square	matrix,	D	is	a	m	×	n	diagonal	matrix	and	V	is	a	n	×	n
square	matrix.

Put	a	Face	to	the	Name

Linear	regression,	one	of	 the	most	used	optimization	techniques,	was	first
conceptualized	in	1894	by	Sir	Francis	Galton,	who	was	a	cousin	of	Charles
Darwin.	 This	 started	 with	 the	 then	 vexing	 problem	 of	 heredity	 —

2.3

understanding	how	strongly	 the	characteristics	of	one	generation	of	 living
things	manifested	in	 the	following	generation.	Galton	initially	approached
this	problem	by	examining	characteristics	of	the	sweet	pea	plant.	Galton’s
first	 insights	 about	 regression	 sprang	 from	 a	 two‐dimensional	 diagram
plotting	the	sizes	of	daughter	peas	against	the	sizes	of	mother	peas.	Galton
realized	that	the	median	weights	of	daughter	seeds	from	a	particular	size	of
mother	seed	approximately	described	a	straight	line	with	positive	slope	less
than	 1.0.	 Later	 on,	 Galton’s	 colleague	 and	 researcher	 from	 his	 own	 lab,
Karl	 Pearson,	 formalized	 this	 concept	 mathematically	 in	 1922	 after
Galton’s	death	in	1911.

Figure	2.8	Left:	Sir	Francis	Galton;	Right:	Karl	Pearson

If	the	rank	of	A	is	r	<	n,	then	only	the	first	r	of	the	diagonal	entries	of	D	are
non‐zero	as	shown	in	Figure	2.7.	Also,	U	and	V	 are	 orthonormal	matrices,	 i.e.
they	 represent	 unit	 vectors	 that	 are	 orthogonal	 to	 each	 other.	 One	 property	 of
orthonormal	 matrices	 that	 is	 important	 here	 is	 that	 their	 inverse	 is	 their
transpose.	Therefore,	U	-1	=	U	T	and	V	-1	=	V	T	.	Now,	let	us	consider	a	matrix	D	⋆
given	by	inverting	the	r	×	r	submatrix	of	D	while	the	rest	of	the	entries	remain
zero	 as	 in	D.	 Note	 that	 D	⋆	 is	 again	 a	 diagonal	 matrix	 whose	 top	 left	 r	 ×	 r
submatrix	 has	 diagonal	 elements	 that	 are	 reciprocal	 of	 those	 of	D.	 It	 can	 be
shown	that	A	V	D	⋆	U	T	b	=	b	.	Therefore,	x	=	V	D	⋆	U	T	b	is	 the	solution	of
Ax	=	b.

Conclusion
We	 have	 given	 enough	 details	 in	 this	 chapter	 to	 take	 you	 through	 the	 book.
However,	 such	 mathematical	 fundamentals	 and	 their	 geometric	 interpretations
are	 an	 interesting	 area	 of	 study	 by	 itself.	 To	 learn	 more	 about	 this,	 refer	 to
[Lengyel	02].	Matrices	 inherently	 represent	 geometry	 and	 analysis	 of	matrices
and	in	fact	analysis	of	the	underlying	geometry	they	represent.	To	know	more	in
this	direction,	refer	to	[Sa	and	Snider	15,	Nielsen	and	Bhatia	13].

Bibliography
[Lengyel	 02]	 Eric	 Lengyel.	Mathematics	 for	 3D	 Game	 Programming	 and	 Computer	 Graphics.	 Charles

River	Media	Inc.,	2002.
[Nielsen	and	Bhatia	13]	Frank	Nielsen	and	Rajendra	Uhatia.	Matrix	Information	Geometry.	Springer	Verlag

Uerlin	Heidelberg,	2013.
[Sa	 and	Snider	 15]	 Edward	Uarry	 Saff	 and	Arthur	David	 Snider.	Fundamentals	 of	Matrix	Analysis	with

Applications.	John	Wiley	and	Sons;	2015.

Summary:	Do	you	know	these	concepts?

Interpolation
Bilinear	Interpolation
Linear	Regression
Singular	Value	Decomposition

Exercises
1.	 Consider	 the	 triangle	 P	 1	 P	 2	 P	 3	 where	 P	 1	 =	 (100,	 100),	 P

2	=	(300,	150),	P	3	=	(200,	200).	Consider	a	function	whose	values	at	P
1,		P	2	and	P	3	are	1	2	,	3	4	and	1	4	respectively.	Find	the	interpolation
coefficients	at	P	=	(220,	160)	.	Compute	them	considering	two	different
directions	to	verify	getting	the	same	interpolation	coefficients.	What	is
the	interpolated	value	of	the	function	at	P?

2.	 Consider	two	planes	given	by	4x	+	y	+	2z	=	10	and	3x	+	2y	+	3z	=	8.
Consider	 a	 line	 given	 by	 2x	 +	y	 =	 2.	 Solve	 the	 equations	 to	 find	 the
intersection	points	of	these	planes	and	the	line.	Next	verify	your	result
using	matrix	based	on	solution	of	the	equation	Ax	=	b.

3.	 Consider	the	set	of	linear	equations	given	by	x	-	y	=	0,		2x	+	5y	=	10,	
4x	-	3y	=	12	and	x	=	5.	Solve	these	using	SVD.

Part	II

Image	Based	Visual	Computing

3.1

3

Convolution

Linear	Systems
A	system	is	defined	as	a	method	that	modifies	a	signal.	An	audio	amplifier	that
modifies	the	1D	audio	signal	to	make	it	louder,	or	an	image	processing	method
that	modifies	the	2D	image	signal	to	detect	some	features	are	a	few	examples	of
a	system.	Systems	can	be	very	complex.	But	we	will	be	mostly	dealing	with	a
specific	class	of	systems	that	are	simpler,	namely	linear	systems.
Linear	systems	satisfy	some	conducive	properties	of	linearity.	We	will	denote

the	ystem	by	S,	input	to	the	systems	by	x	and	output	by	y	and	z.	For	the	sake	of
simplicity	 of	 explanation,	 we	 assume	 1D	 signals	 which	 depend	 on	 the	 single
parameter	 t.	However,	 the	 following	 properties	 hold	 for	 a	 linear	 signal	 in	 any
dimension.

1.	 Homogeneity:	If	the	input	to	a	linear	system	is	scaled,	the	output	would
also	be	scaled	by	the	same	factor.

1.	 Additivity:	 The	 independent	 responses	 (output)	 of	 multiple	 different
input	 signals	 are	 added	when	 the	 inputs	 are	 added.	 This	 implies	 that
each	 signal	 is	 passed	 through	 the	 system	 independently	 without
interacting	with	others.

1.	 Shift	 Invariance:	 Finally,	 the	 output	 of	 a	 shifted	 input	 is	 also	 shifted.

When	 that	 data	 passes	 through	multiple	 systems,	 the	 properties	 of	 linearity

3.1.1

assures	the	following.

1.	 Commutative:	 If	 two	 linear	 systems	 are	 applied	 to	 a	 signal	 in	 a
cascaded	manner	(i.e.	in	series),	the	order	of	their	application	does	not
matter.	Given	two	linear	systems	S	A	and	S	B	,

1.	 Superposition:	 If	 each	 input	 generates	 multiple	 outputs	 in	 a	 linear
system,	 the	 addition	 of	 the	 inputs	 will	 generate	 an	 additions	 of	 the
outputs.

This	superposition	property	is	especially	important	for	finding	the	response	of
a	complex	signal	when	passing	through	a	linear	system.	A	complex	input	signal
x(t)	can	be	broken	into	a	bunch	of	simpler	input	signals	x	1(t),	x	2(t),	.	.	.,	x	n	(t),
via	different	processes	of	decomposition.	It	is	usually	easier	to	find	the	outputs	y
i	(t)	of	the	simpler	input	signals	x	i	(t)	when	passing	through	the	system.	The	y	i	s
are	then	combined	or	added	via	the	process	of	synthesis	to	create	the	output	y(t)
for	 the	 complex	 signal.	 This	 is	 illustrated	 in	 Figure	 3.1.	We	 will	 study	 many
different	 ways	 to	 decompose	 and	 synthesize	 in	 the	 following	 sections	 and
chapters.

Response	of	a	Linear	System
An	impulse,	i[t],	is	a	discrete	signal	with	only	one	non-zero	sample.	Therefore,	it
is	a	signal	with	a	sharp	spike	at	one	location	and	zero	elsewhere.	Delta,	δ[t],	is	a
special	kind	of	impulse	whose	non-zero	sample	is	at	t	=	0	and	has	a	value	δ[0]	=
1.	Therefore,	δ[t]	has	a	normalized	spike	at	0.	Considering	each	sample	to	be	of
unit	width	 and	 height	 proportional	 to	 its	 value,	 the	 area	 covered	 by	 a	 delta	 is
therefore	1.	δ[t]	is	considered	the	simplest	signal.

Figure	3.1	This	figure	illustrates	the	process	of	decomposing	a	complex	signal	to	simpler	signals	which	are
then	passed	through	the	linear	system	and	combined	to	generate	the	output	of	the	complex	signal.

Consider	an	impulse	with	value	i[2]	=	3	and	zero	elsewhere.	This	impulse	can
be	represented	as	a	scaled	and	shifted	δ	as	3δ[t	-	2].	Therefore,	any	impulse	with
a	non-zero	value	of	k	at	t	=	s	can	be	represented	in	general	as	a	scaled	and	shifted
δ	as

(3.1)
i	[t]	=	k	δ	[t	-	s]
The	 impulse	 response	 (also	 called	 kernel	 or	 filter),	 h[t],	 of	 a	 linear	 system	 is
defined	as	the	output	of	the	system	to	the	input	δ[t].	The	size	of	h	(width	in	case
of	1D	h)	is	also	called	its	support.	Due	to	the	properties	of	shift	invariance	and
homogeneity,	 the	 response	 of	 the	 same	 linear	 system	 to	 a	 general	 impulse
function	is	given	by	a	scaled	and	shifted	h	as	kh[t	-	s].

Figure	3.2	This	figure	illustrates	the	input	side	algorithm	for	convolution.

Convolution	is	the	method	to	find	the	response	of	a	linear	system	with	impulse
response,	h,	to	a	general	signal	or	function.	It	is	rather	evident	that	convolution	is
hence	a	pretty	powerful	function.
Let	us	consider	a	discrete	signal	x[t]	where	t	=	1,	2,	.	.	.,	n.	Note	that	x	can	be

decomposed	as	the	sum	of	n	impulse	functions	i	1[t],	i	2[t],	.	.	.,	i	n	[t]	where	i	l	[t]
has	a	non-zero	value	of	x[l]	at	t	=	l	and	x	[t]	=	∑	i	l	[t]	.	The	response	of	the
system	to	each	i	l	[t]	is	given	by	x[l]h[t	-	l].	Due	to	the	additivity	property	of	the
linear	system,	the	response	R[t]	of	the	linear	system	to	x[t]	is	given	by

(3.2)
R	=	∑	l	=	1	n	x	[l]	h	[t	-	l]	=	x	[t]	⋆	h	[t]	.
x	[t]	⋆	h	[t]	is	the	convolution	of	x[t]	with	the	impulse	response	h[t].	We	will
use	the	symbol	⋆	for	convolution.	This	is	illustrated	in	Figure	3.2.
Now	 that	we	have	defined	 convolution,	 let	 us	 ponder	 for	 a	while	 on	Figure

3.2.	 First,	 note	 that	 when	 the	 first	 few	 or	 last	 few	 samples	 of	 x	 are	 being
multiplied	by	h,	h	extends	beyond	x	in	left	and	right	where	x	is	not	defined	(for
e.g.	we	do	not	know	the	value	of	x	at	t	=	0	or	t	=	-	1	or	t	=	n	+	1).	In	such	cases,
we	 assume	 some	 arbitrary	 values	 for	 x.	 The	 most	 common	 assumption	 is	 to
consider	x	 to	be	0	at	 these	indices.	Sometimes,	x	 is	reflected	about	 the	left	and
right	ends.	Either	way,	this	brings	in	two	important	issues.	First,	the	size	of	R	is
larger	than	that	of	x.	If	the	support	of	h	is	m,	then	the	size	of	R	is	n	+	m	-	1.	This
is	illustrated	in	Figure	3.2	where	n	=	4	and	m	=	3	and	therefore	 the	size	of	 the
output	is	5	+	3	-	1	=	6.	Second,	some	of	the	values	of	R	are	not	accurate	since
they	involve	calculations	from	assumed	information.	For	example	in	Figure	3.2,
the	output	of	convolution	at	t	=	-	1,	0,	3,	4	depends	on	the	values	of	x	at	t	=	-	1,
4,	5	and	x	is	not	defined	at	these	locations.	Therefore,	only	a	subset	of	samples

of	 R,	 in	 fact	 only	 n	 -	 m	 +	 1	 of	 them,	 are	 obtained	 from	 precisely	 defined
information	and	these	samples	are	called	fully	immersed	samples.	In	Figure	3.2,
the	only	fully	immersed	samples	are	samples	at	t	=	1	and	2.
Another	point	 to	note	here	 is	 that	 in	using	Equation	3.2,	 each	 sample	of	 the

input	 x	 corresponds	 to	 a	 scaled	 and	 shifted	 impulse	 response	 to	 create	 an
intermediate	function	x[l]h[t	-	l].	All	these	intermediate	functions	are	added	up	to
create	R	 (Figure	 3.2).	 Hence,	 any	 single	 output	 sample	 of	 R	 is	 generated	 by
accumulating	 the	 samples	 at	 the	 same	 location	 from	 all	 of	 these	 intermediate
functions.	Since	a	single	sample	at	l	from	input	x	contributes	to	multiple	output
samples	via	the	corresponding	intermediate	function	x[l]h[t	-	l],	this	is	called	the
input	side	algorithm
Now	 take	 a	 careful	 look	 at	 one	 of	 the	 fully	 immersed	 samples	 at	 t	 =	 1	 in

Figure	3.2.	Note	that	it	is	given	by
R	[1]	=	h	[1]	x	[0]	+	h	[0]	x	[1]	+	h	[-	1]	x	[2]

This	is	the	same	as	flipping	h	and	weighting	the	neighborhood	of	x	at	t	=	1	with
this	flipped	h.	Therefore,	another	method	to	find	the	convolution	is	 to	generate
each	output	sample	at	t	by	shifting	a	flipped	h	to	align	its	center	with	l	and	find
the	weighted	sum	of	 the	underlying	x	 and	 the	 flipped	 shifted	h.	Therefore,	 the
sample	at	l,	R[l],	is	generated	by	the	dot	product	of	x[t]	with	flipped	h	shifted	at

(3.3)
R	[l]	=	x	·	h	[-	(t	-	l)]	.

Note	that	for	all	indices	at	which	the	value	of	h	is	not	defined,	it	is	assumed	to	be
0.	 In	 this	 method,	 each	 output	 sample	 of	 R	 gets	 constructed	 in	 each	 step	 by
gathering	 contributions	 from	 multiple	 samples	 of	 h.	 Hence,	 this	 is	 called	 the
output	side	algorithm.	This	 is	a	more	efficient	algorithm	since	no	 intermediate
functions	needs	to	be	maintained.	Each	output	can	be	generated	directly	from	the
input	and	h.	Further,	 if	h	 is	symmetric	 (as	 in	Figure	3.2),	 then	 the	flipping	can
also	be	avoided.
Extending	 convolution	 to	 2D	 is	 really	 trivial.	 x,	 R,	 and	 h	 are	 now	 two

dimensional	 functions.	 In	 the	case	of	 images,	 these	 two	dimensions	are	due	 to
two	 spatial	 coordinates	 s	 and	 t.	 However,	 the	 support	 of	 h	 is	 usually	 much
smaller	 than	x.	R	[s	 ,	 t]	 is	 now	obtained	 by	moving	h	 that	 is	 flipped	 in	 both
dimensions	 to	 the	 desired	 location	 (s	 ,	 t)	and	 finding	 the	 dot	 product	 of	 this
flipped	h	with	x	.	However,	note	that	in	most	cases	in	image	processing,	we	use
symmetric	filters	or	h	which	deems	the	flipping	unnecessary.
In	the	rest	of	the	chapter	we	will	study	the	properties	of	convolution	using	1D

signal	since	they	are	simple	to	understand.	The	concepts	can	be	easily	extended

3.1.2

to	2D	and	we	will	mention	them	at	the	end	of	each	treatise	on	1D	signals.

Properties	of	Convolution
In	this	section	we	are	going	to	discuss	the	properties	of	convolution.	Consider	a
signal	x	convolved	with	δ.	This	means	that	if	the	impulse	response	of	a	system	is
the	 impulse	 itself,	what	will	 be	 its	 response	 to	 an	 arbitrary	 function	 x[t].	 It	 is
rather	intuitive	that	this	system	outputs	the	impulse	unchanged	and	hence	it	will
also	output	the	signal	x	unchanged.	Therefore,

(3.4)
x	[t]	⋆	δ	[t]	=	x	[t]	.
This	is	called	an	all	pass	system.
Let	 us	 now	 consider	 a	 system	 which	 simply	 scales	 the	 impulse	 response.

Therefore,

(3.5)
x	[t]	⋆	k	δ	[t]	=	k	x	[t]	.
If	k	>	1,	then	this	system	is	called	an	amplifier	since	it	increases	the	strength	of
the	 signal	 x[t].	 On	 the	 other	 hand,	 if	 k	 <	 1,	 it	 is	 called	 an	 attenuator	 since	 it
reduces	the	strength	of	x[t].
Finally,	if	we	consider	a	system	whose	impulse	response	is	to	shift	the	signal,

then

(3.6)
x	[t]	⋆	δ	[t	+	s]	=	x	[t	+	s]	.
This	is	called	a	delay	system.
As	 a	 mathematical	 operation,	 convolution	 has	 the	 following	 conducive

properties.
First,	it	is	commutative,	i.e.

(3.7)
a	[t]	⋆	b	[t]	=	b	[t]	⋆	a	[t]	.
This	 indicates	 that	when	 convolving	 two	 functions,	 the	 order	 does	 not	matter.
This	 is	 why	we	 always	 use	 the	 smaller	 sized	 function	 as	 the	 kernel	 for	more
efficient	processing.
Second,	convolution	is	associative,	i.e.

(3.8)
(a	[t]	⋆	b	[t])	⋆	c	[t]	=	a	[t]	⋆	(b	[t]	⋆	c	[t])	.

3.2

This	means	 that	 if	 an	 function	 x	 undergoes	 cascading	 convolutions	 using	 two
different	kernels	b	and	c,	the	same	operation	can	be	achieved	by	first	designing	a
new	kernel	 by	 d	=	b	⋆	 c	 and	 convolving	 x	 with	 this	 new	d	 to	 provide	 x	⋆	 d
(Figure	3.3.
Third,	convolution	is	distributive,	i.e.

a	[t]	⋆	b	[t]	+	a	[t]	⋆	c	[t]	=	a	[t]	⋆	(b	[t]	+	c	[t])	.

Figure	3.3	This	figure	illustrates	the	effect	of	cascading	convolutions.

Figure	3.4	This	figure	illustrates	the	effect	of	combination	of	parallel	convolutions.

This	means	that	if	a	function	x	undergoes	two	different	convolutions	in	parallel
with	 b	 and	 c	 which	 are	 then	 combined,	 the	 same	 effect	 can	 be	 obtained	 by
designing	a	new	kernel	d	by	adding	b	and	c(d	=	b	+	c)	 and	 then	undergoing	a
single	convolution	with	this	new	kernel	d	(Figure	3.4).

Linear	Filters
The	next	question	to	ask	is	how	does	knowing	about	convolution	help	us	in	any
way?	In	fact,	convolution	can	help	us	greatly	in	designing	systems	since	instead
of	worrying	about	complex	signals,	we	need	 to	only	worry	about	 the	 simple	δ
function.	 If	 we	 can	 design	 the	 impulse	 response	 of	 a	 system,	 we	 know	 that
convolving	 the	 input	 signal	 with	 impulse	 response	would	 provide	 us	with	 the
correct	answer	for	any	general	function.
Let	us	take	the	case	of	designing	a	filter	(or	impulse	response)	that	will	blur

any	general	signal.	To	design	this,	we	have	to	first	think	intuitively	about	what	a
blurred	delta	signal	would	look	like.	In	other	words,	what	would	a	linear	system
that	blurs	a	signal	produce	when	a	delta	is	provided	as	its	input.	For	this	consider
Figure	3.5.	Delta	is	a	function	that	has	a	single	sample	of	value	1	at	0	which	is
essentially	a	sharp	spike.	Therefore,	intuitively,	blurring	a	delta	function	can	be
expected	 to	 produce	 a	 spike	with	 a	 broader	 base	 and	 a	 smaller	 height.	This	 is
represented	 by	 a	 function	 that	 has	multiple	 samples	 centered	 around	 0	whose

values	are	smaller	 than	1.	Now	the	next	question	is,	how	much	broader	should
the	 base	 be	 and	 how	much	 shorter	 should	 the	 spike	 be?	 In	 fact,	 there	 can	 be
many	answers	to	this	question.	For	example,	it	can	be	three	samples	centered	at
0,	each	of	value	0.7.	Or,	it	can	be	five	samples	centered	around	0,	each	of	value
0.5.	So,	how	do	we	constrain	this	problem	to	find	an	appropriate	answer	to	these
questions?
One	way	to	constrain	the	problem	may	be	to	first	fix	the	base	of	the	spike	as	a

parameter	 for	 the	 amount	 of	 blurring.	 Therefore,	 a	 width	 of	 seven	 pixels
indicates	more	blurring	than	a	width	of	five.	And	a	width	of	five	pixels	indicates
more	blurring	than	a	width	of	three	pixels.	Now	the	question	that	remains	is	once
the	base	width	is	fixed,	how	should	we	decide	the	height	of	the	blurred	spike?	To
decide	 this,	 we	 can	 apply	 the	 constraint	 that	 the	 energy	 (defined	 by	 the	 area
under	the	curve	depicting	a	function)	of	the	delta	function	will	not	be	changed	by
blurring.	This	constraint	is	that	the	delta	function	spike	has	a	height	of	1	and	a
width	of	1.	Therefore,	its	energy	is	given	by	the	multiplication	of	its	width	and
height,	i.e.	1.	Now,	if	a	three	pixel	wide	blurred	spike	needs	to	have	the	area	1,
then	 its	 height	 should	be	1	3	 .	 Therefore,	 this	 additional	 energy	 constraint	 has
now	allowed	us	to	define	a	blurred	delta	to	be	a	spike	of	three	pixel	width	and
value	 of	 1	 3	 centered	 around	 0.	 Therefore,	 if	 delta	 is	 given	 as	 input	 to	 the
blurring	 system	 we	 want	 to	 design,	 we	 would	 expect	 its	 output	 to	 be	 the
aforementioned	shorter	and	wider	spike.	Therefore,	the	impulse	response	of	this
blurring	system	is	given	by	a	function	that	is	a	three	pixel	wide	spike,	centered	at
0	and	has	a	constant	value	of	1	3	at	those	three	pixels.	The	advantage	of	defining
this	impulse	function	is	that	if	we	now	convolve	any	other	general	function	with
this	impulse	response,	it	will	now	result	in	the	blurring	of	this	function.

Figure	3.5	This	figure	shows	how	to	design	a	blur	filter	by	consideringjust	the	simple	δ	 function.	The	top
row	 shows	 the	 concept	 at	 work	 in	 a	 digital	 representation	 while	 the	 bottom	 row	 shows	 the	 analog
counterpart.	 (a)	 shows	 a	 δ.	 (b)shows	 the	 impulse	 response	 of	 a	 blurring	 system,	 i.e.	 the	 fate	 of	 δ	 when
passed	through	a	blurring	system.	Instead	of	having	a	spike	of	1	at	0,	it	now	has	a	value	of	1/3	at	each	of	-	1,
0	and	1.	The	width	of	the	filterv	is	also	often	referred	to	as	the	support	of	the	kernel	or	filter.	If	the	width	of
the	blur	is	wider,	it	is	said	that	the	support	of	the	filter	is	now	higher.

3.2.1

Now,	if	we	want	to	design	a	system	that	blurs	the	signal	even	more,	we	have
to	 again	 design	 an	 impulse	 response	 for	 this	 system.	 Since	 we	 know	 more
blurring	implies	widening	the	base	and	shortening	the	height	of	the	spike	further,
one	possible	 impulse	 response	will	be	 a	 five	pixel	wide	 spike	centered	around
zero	with	height	1	5	.	Hence,	the	impulse	response	of	this	system	would	be	five
pixels	in	size	with	a	value	of	1	5	at	every	pixel	as	shown	in	Figure	3.5(c).	Notice
the	 analog	 representations	 of	 these	 filters	 in	 (d)	 and	 (e).	 Since	 they	 look	 like
boxes,	these	are	most	commonly	referred	to	as	box	filters.

Figure	3.6	This	figure	shows	how	the	extension	of	1D	box	filters	to	2D.

However,	 there	 are	 multiple	 ways	 to	 maintain	 the	 same	 energy	 as	 the	 δ	 of
which	 only	 one	 is	 to	 assign	 the	 same	 value	 at	 every	 pixel.	 Therefore,
conceptually,	the	shape	of	the	filter	can	change	and	still	remain	a	blurring	filter
as	 long	as	 the	support	of	 the	kernel	 increases.	 It	 is	 indeed	 true	 that	many	such
blurring	filters	exist	and	we	will	revisit	this	issue	in	the	next	chapter	where	we
will	find	that	though	box	filter	is	the	easiest	to	implement,	it	is	not	the	best	for
blurring.
Now	the	next	question	is	how	do	we	extend	this	blurring	filter	to	2D.	In	this

case,	 the	 energy	 of	 the	 δ	 should	 be	 spread	 around	 a	 2D	 box	 around	 the
surrounding	of	origin.	So,	 the	extension	of	 the	 three	pixel	1D	box	 filter	 to	2D
will	be	a	3	×	3	filter	with	each	value	as	1	9	and	that	of	the	wider	box	filter	will
be	a	5	×	5	array	with	each	value	as	1	25	(Figure	3.6).

Figure	3.7	The	duality	in	convolution	is	given	by	the	fact	that	multiplication	of	two	functions	in	the	spatial
domain	is	a	multiplication	of	their	frequency	responses	in	the	frequency	domain	and	vice	versa.	Here	the	F
denotes	an	operation	that	converts	the	time	domain	function	to	the	frequency	domain.

All,	Low,	Band	and	High	Pass	Filters
Interestingly	you	will	find	that	a	box	filter	is	often	referred	to	as	a	low	pass	filter.

In	 order	 to	 understand	 why	 it	 may	 be	 worthwhile	 to	 go	 back	 and	 review
frequency	domain	representations	discussed	in	Chapter	1.	In	this	chapter	we	will
understand	this	concept	very	informally	and	intuitively,	and	will	revisit	 it	more
formally	in	the	next	chapter.

Figure	3.8	This	shows	the	concept	of	an	all	pass	filter.	The	frequency	response	of	a	δ	function	is	a	constant.
So,	 the	 frequency	 response	 of	 a	 general	 function	when	multiplied	 by	 a	 constant	 does	 not	 cut	 away	 any
frequencies.	Since,	it	passes	all	the	frequencies	it	is	called	an	all	pass	filter.

Let	us	start	again	from	the	delta	function	in	1D.	This	can	be	thought	of	as	a
very	sharp	spike	at	origin.	Now,	intutively,	what	would	you	expect	the	frequency
domain	 representation	 of	 the	 δ	 function	 to	 be?	Remember,	 that	 to	 form	 sharp
features	very	high	frequency	signals	are	needed.	This	fact	may	convince	you	that
a	function	like	δ,	which	is	the	sharpest	possible	digital	function,	would	involve
all	high	frequencies.	In	fact,	it	can	be	shown	formally	that	equal	strength	of	all
frequencies	is	needed	to	create	δ.	Therefore	the	frequency	domain	response	(we
only	consider	amplitude	here)	of	 the	δ	 function	 is	 a	constant.	Now,	 lets	us	ask
what	 would	 the	 frequency	 domain	 response	 of	 a	 constant	 function	 be	 i.e.	 a
function	which	 remains	 at	 a	 constant	 value	 in	 the	 time	 domain.	 It	 is	 probably
easy	to	see	that	such	a	function	is	represented	by	a	zero	frequency	cosine	wave.
Therefore,	 the	 frequency	domain	 response	 of	 this	 constant	 function	 is	 a	 single
value	 at	 the	 origin	 in	 the	 frequency	 domain,	 i.e.	 a	 δ	 function	 in	 frequency
domain.	You	probably	notice	an	interesting	pattern	here.	A	δ	is	the	time	domain
is	a	constant	in	the	frequency	domain	while	a	constant	in	the	time	domain	is	a	δ
in	 the	frequency	domain.	Is	 this	really	a	coincidence?	As	it	 turns	out,	 it	 is	not!
This	is	termed	as	the	duality	and	we	explore	it	more	formally	in	the	next	chapter.
But	we	will	use	this	concept	to	understand	a	few	things	in	this	chapter.
The	 concept	 of	 duality	 gives	 rise	 to	 an	 important	 property	 of	 convolution

which	is	as	follows.	If	the	frequency	domain	response	of	two	functions	in	spatial
domain	 a[t]	 and	 b[t]	 are	 A[f]	 and	 B[f]	 respectively,	 the	 frequency	 domain
response	of	 their	 convolution	 in	 time	domain	 is	 given	by	 the	multiplication	of
their	frequency	domain	responses	and	vice	versa	(Figure	3.7).
This	 provides	 us	 the	 background	 to	 understand	 the	 all,	 low,	 high	 and	 band

pass	filters.	Let	us	first	revisit	Equation	3.4.	We	mentioned	that	a	convolution	of
any	function	x[t]	with	delta	is	termed	as	an	all	pass	system.	Let	us	see	if	we	can
explain	 this	 using	 what	 we	 just	 learned	 about	 duality.	 First,	 the	 frequency
response	of	a	δ	is	a	constant.	Therefore,	the	frequency	response	of	x	[t]	⋆	δ	[t]
will	 be	 X[f]	 multiplied	 by	 a	 constant.	 This	 says	 that	 by	 this	 convolution,	 no
frequency	 will	 be	 blocked	 (or	 eliminated).	 Since	 this	 will	 pass	 all	 the
frequencies,	 convolution	with	 a	delta	 is	 an	all	 pass	 filter.	This	 is	 illustrated	 in
Figure	3.8.

Figure	3.9	This	shows	the	concept	that	as	a	function	becomes	narrower	or	wider,	its	frequency	response	gets
wider	and	narrower	respectively.

Next,	 let	 us	 take	 a	 look	 at	 low	 pass	 filter.	 For	 this,	 we	 need	 to	 turn	 our
attention	to	another	intuitive	consequence	of	duality.	Consider	a	function	which
is	compressed	in	space	to	create	another	function	that	undergoes	similar	changes
but	in	a	much	smaller	space.	Therefore,	intuitively,	the	latter	function	is	similar
to	the	former	but	has	much	sharper	changes.	How	are	the	frequency	responses	of
these	two	signals	related?	It	is	evident	that	we	will	need	more	higher	frequency
signals	 to	 create	 a	 ‘(sharper”	 function	 and	 fewer	 higher	 frequency	 signals	 to
create	a‘(flatter”	 function.	Therefore,	we	can	probably	 infer	 that	 the	 frequency
response	of	the	sharper	function	will	be	wider	than	the	other.	The	inverse	is	also
true.	 If	 the	 function	 becomes	 smoother,	 the	 frequency	 response	 gets	 narrower
(Figure	3.9).	Now,	assuming	 that	delta	 is	 the	sharpest	of	all	 functions,	you	can
see	how	as	 the	 function	gets	 sharper	and	sharper,	 its	 frequency	gets	wider	and
wider	and	finally	comes	to	span	all	possible	frequencies	for	δ.
Note	 that	 as	 the	 size	 of	 the	 filter	 (also	 called	 the	 support	 of	 the	 kernel)

increases	 the	 cut-off	 frequency	 beyond	 which	 the	 frequencies	 are	 blocked
reduces,	 i.e.	 the	 filter	 achieves	 more	 blurriness	 due	 to	 greater	 loss	 of	 higher
frequencies.	 Thus,	 convolving	 with	 kernels	 with	 progressively	 increasing	 size
creates	a	blurrier	and	blurrier	 function.	The	final	stage	would	be	a	 filter	of	 the
same	size	as	 the	 function	which	would	provide	 the	average	value	of	 the	entire
function.
Let	us	apply	this	concept	to	the	three	filters	seen	in	the	bottom	row	of	Figure

3.5	where	 the	filter	gets	wider	 to	create	a	 three-pixel-wide	and	subsequently,	a
five-pixel-wide	 box	 filter.	 So,	 intuitively,	 their	 frequency	 responses	 will	 be
narrowing	 as	 shown	 in	 Figure	 3.10(a).	 Therefore,	 the	 frequency	 response	 of
these	blur	filters	will	have	cut-off	frequencies	that	will	reduce	as	the	width	of	the
filter	increases.	Therefore,	the	cut-off	frequency	for	the	three	pixel	filter	is	f	1	and
that	 of	 the	 five	 pixel	 is	 f	 2	 such	 that	 f	 2	 <	 f	 1.	 Now	 let	 us	 consider	 a	 general
function	x[t]	as	in	Figure	3.10(b)	and	its	frequency	response.	When	we	convolve
x[t]	 with	 the	 blur	 filter	 b[t],	 their	 frequency	 responses	 X[f]	 and	 B[f]	 are
multiplied.	 The	 consequence	 of	 this	 is	 that	 all	 frequencies	 beyond	 f	 1	 are
multiplied	 by	 zero	 when	 convolving	 with	 the	 three	 pixel	 filter	 i.e.	 all	 the
frequencies	above	f	1	are	thrown	away	creating	the	blurry	or	smoother	signal	in
Figure	3.10(c).	Similarly,	when	multiplied	by	the	frequency	response	of	the	five
pixel	filter,	even	more	frequencies—	essentially	everything	above	f	2	where	f	2	<
f	1	-	are	thrown	away	thereby	creating	an	even	blurrier	signal	in	Figure	3.10(c).
Since	 higher	 frequencies	 are	 thrown	 away	 as	 a	 result	 of	 convolution	with	 box
filters	while	 the	 lower	frequencies	are	passed,	 these	are	called	 low	pass	 filters.
However,	note	that	box	filters	are	only	one	kind	of	low-pass	filter.	The	shape	of
the	filter	need	not	be	an	exact	box	to	spread	the	energy	of	the	delta	from	a	single
pixel	 to	multiple	ones.	For	example,	a	 triangular	shaped	filter	can	also	be	used
for	 this	 purpose.	 The	 difference	 between	 these	 filters	will	 be	 in	 the	way	 they
spread	the	energy	which	is	defined	by	their	shape.	In	a	box	filter,	the	energy	is
spread	 equally	 to	 all	 the	 pixels	 while	 in	 a	 triangular	 filter	 the	 amount	 of	 the
energy	reduces	from	the	center	 towards	 the	periphery.	Another	 important	 thing
to	note	in	this	context	is	that	all	the	frequencies	that	are	passed	by	the	low-pass
filter	 are	 not	 passed	 unchanged.	 In	 fact,	 different	 frequencies	 are	 attenuated
differently,	 with	 the	 higher	 of	 the	 passed	 frequencies	 getting	 more	 severely
attenuated.	 The	 figures	 in	 this	 chapter	 focuses	 on	 the	 frequency	 content	 (the
range	 of	 frequencies	 passed)	 rather	 than	 the	 exact	 shape	 of	 the	 frequency
response	 of	 the	 filters	 so	 that	 your	 attention	 is	 not	 distracted	 from	 the	 most
important	aspect	of	frequency	domain	analysis,	the	frequency	content.	The	exact
shape	 of	 the	 frequency	 response	 of	 the	 filter	 will	 only	 affect	 the	 amount	 of
attenuation	of	the	passed	frequencies	and	will	be	discussed	in	details	in	the	next
chapter.

Figure	3.10	This	shows	the	concept	of	a	low	pass	box	filter.	(a)	On	the	left	the	δ	(red),	three	pixel	(blue)	and
five	pixel	(green)	box	filters	are	shown	in	time	domain.	On	the	right,	their	frequency	components	are	shown
with	cut-off	frequencies	at	f	1	and	f	2	respectively.	(b)	On	the	left,	a	general	function	x[t]	is	shown	in	black.
On	the	right,	its	frequency	response	is	shown	in	black.	A	convolution	between	x	and	b	on	the	left	indicates	a
multiplication	between	X[f]	and	B[f]	on	the	right.	When	this	multiplication	happens,	the	frequencies	that	are
thrown	away	(blocked)	by	each	filter	are	shown	by	their	corresponding	colors	all	the	frequencies	above	f	1
for	the	three	pixel	filter	and	those	above	f	2	for	the	five	pixel	filter	are	blocked.	(c)	This	shows	the	result	of
the	 convolution	 and	 multiplication	 in	 spatial	 and	 frequency	 domain	 respectively.	 Note	 that	 all	 higher
frequencies	are	 removed	 to	different	degrees	 (based	on	 the	width	of	 the	filters)	when	convolved	with	 the
box	filters	while	the	lower	frequencies	are	passed,	hence	the	name	low	pass	filter.	The	strength	of	the	low
frequency	components	is	also	changed,	and	in	general	reduced,	after	this	filtering	process.	The	signal	in	the
time	domain	gets	progressively	smoother	or	blurrier.

Figure	3.11	This	image	shows	the	effect	of	increasing	the	size	of	the	box	filter	and	convolving	it	with	an
image.	From	left:	Original	image	and	the	same	image	convolved	with	a	3	×	3,	5	×	5	and	15	×	15	box	filter.

Now	consider	 this	 same	 situation	 in	 2D.	 Consider	 an	 image	which	 is	 being
progressively	 convolved	 with	 filters	 of	 larger	 and	 larger	 size	 (3,	 5,	 7	 and	 so
forth).	The	images	that	would	be	created	would	be	progressively	blurrier	(Figure
3.11)	with	the	final	one	being	a	flat	gray	colored	image	where	the	gray	color	is
given	 by	 the	 average	 of	 all	 the	 pixels	 in	 the	 original	 image.	 In	 the	 frequency

domain,	we	 know	 that	 the	 cut-off	 frequency	 for	 each	 of	 these	 images	will	 be
progressively	 reducing.	 In	 2D,	 different	 frequencies	 are	 represented	 as
concentric	circles	with	the	length	of	the	radius	representing	the	frequency.	Figure
3.12	 illustrates	 the	 cut-off	 frequency	 of	 low	 pass	 filters	 beyond	 which	 all
frequencies	 are	 blocked.	 With	 larger	 kernel	 size,	 this	 cut-off	 frequency	 gets
smaller.

Figure	3.12	This	 image	shows	the	effect	of	 increasing	the	size	of	 the	box	filter	when	convolving	with	an
image	in	 the	frequency	domain.	The	frequency	response	 is	visualized	as	a	gray	scale	 image.	From	left	 to
right:	Frequency	response	of	the	original	image	and	the	same	image	convolved	with	filters	of	increasingly
bigger	size.	Note	that	the	cut-off	frequency	is	denoted	by	a	circle	beyond	which	every	frequency	has	zero
contribution	and	is	hence	black.	The	radius	of	this	circle	reduces	as	the	size	of	the	filter	increases	to	show
that	more	high	frequencies	are	getting	chopped	off.

Issue	of	Sampling	Let	us	now	consider	the	sampling	consequences	of	 low	pass
filtering	 an	 image.	 Nyquist	 sampling	 criteria	 says	 that	 the	 minimum	 samples
required	 to	sample	an	 image	are	double	 the	highest	 frequency	contained	 in	 the
image.	As	an	image	undergoes	low	pass	filtering,	its	frequency	content	decreases
(f	3	<	f	2	<	f	1	in	Figure	3.12).	This	means	that	the	minimum	number	of	samples
required	to	adequately	sample	the	low	pass	filtered	image	goes	down	too.	This
says	 that	 the	 low	pass	 filtered	 image	can	be	at	 a	 smaller	 size	 than	 the	original
image.	Or,	as	we	progressively	increase	the	size	of	the	low	pass	filter,	we	do	not
need	to	have	the	image	at	its	original	size,	but	we	can	resample	and	store	them	at
a	much	smaller	size,	 just	adequately	 large	 to	sample	 the	highest	 frequencies	 in
them.
This	 property	 is	 used	 to	 build	 a	 pyramid	 of	 progressively	 low	 pass	 filtered

images	called	the	Gaussian	pyramid.	For	this,	we	resample	the	original	image	to
the	size	of	2	n	×	2	n	.	This	forms	level	0	of	the	pyramid.	2	×	2	pixel	blocks	of	this
image	are	low	pass	filtered	to	create	a	single	pixel	of	the	image	at	the	next	level
of	 the	 hierarchy	 providing	 a	 2	 n-1	 ×	 2	 n-1	 image.	When	 using	 a	 box	 filter,	 this
amounts	to	just	averaging	every	2	×	2	blocks	of	pixels	in	level	n	to	create	each
pixel	of	level	(n	+	1)	×	(n	+	1)	.	Note	that	since	the	image	at	level	i	+	1	is	a	low
pass	filtered	from	the	image	at	level	i,	the	lower	resolution	is	adequate	to	sample
this	image	with	lower	frequency	content.	This	process	if	progressively	continued

creates	n	levels	of	the	pyramid	with	the	last	level	being	a	single	pixel	which	can
be	considered	to	be	an	image	of	2	n-n	×	2	n-n	=	1	×	1.	This	is	illustrated	in	Figure
3.13.

Figure	3.13	This	image	illustrates	the	concept	of	Gaussian	Pyramid.	On	the	left,	it	shows	a	4-image	pyramid
with	n	 =	3.	On	 the	 right,	we	 show	 the	 example	of	 a	Gaussian	pyramid	 starting	with	 a	512	×	512	 image
where	n	=	9.	Note	how	 the	 images	halve	 in	 size	and	 it	 is	very	difficult	 to	 see	 the	content	of	 the	 smaller
images.	Therefore,	on	the	top	each	image	is	shown	resampled	at	the	same	size	to	show	the	reduction	in	the
frequency	content.

Put	a	Face	to	the	Name

Johann	Carl	Friedrich	Gauss	(30	Apri11777	to	23	February

1855)	was	 a	German	mathematician	who	 contributed	 significantly	 to	 the
fields	of	number	 theory,	algebra,	statistics,	analysis,	differential	geometry,
geodesy,	 geophysics,	 mechanics,	 electrostatics,	 astronomy,	 matrix	 theory,
and	 optics.	 He	 came	 from	 poor	 working-class	 parents.	 His	 mother	 was
illiterate	and	never	recorded	the	date	of	his	birth,	remembering	only	that	he
had	 been	 born	 on	 a	 Wednesday,	 eight	 days	 before	 the	 Feast	 of	 the
Ascension,	which	itself	occurs	40	days	after	Easter.	Gauss	would	later	solve
this	 puzzle	 about	 his	 birthdate,	 deriving	methods	 to	 compute	 the	 date	 in
both	 past	 and	 future	 years.	 At	 the	 age	 of	 three,	 Gauss	 corrected	 an
arithmetical	error	in	a	complicated	payroll	calculation	for	his	father.

Gauss	made	his	first	ground-breaking	mathematical	discoveries	while	still	a
teenager.	 At	 age	 19,	 he	 demonstrated	 a	 method	 which	 had	 eluded	 the
Greeks	 for	 constructing	 a	 heptadecagon	 using	 only	 a	 straightedge	 and
compass.	Gauss’s	intellectual	abilities	attracted	the	attention	of	the	Duke	of
Brunswick,	who	sent	him	to	the	Collegium	Carolinum	(now	Braunschweig
University	 of	 Technology)	 from	 1792	 to	 1795,	 and	 to	 the	 University	 of
Gottingen	 from	1795	 to	1798.	He	completed	Disquisitiones	Arithmeticae,
his	magnum	opus,	 in	 1798	 at	 the	 age	 of	 21,	 though	 it	was	 not	 published
until	1801.	This	work	was	fundamental	in	consolidating	number	theory	as	a
discipline	 and	 has	 shaped	 the	 field	 to	 the	 present	 day.	 Unfortunately	 for
mathematics,	Gauss	 reworked	 and	 improved	 papers	 incessantly,	 therefore
publishing	only	a	 fraction	of	his	work,	 in	keeping	with	his	motto	“	pauca
sed	matura”	(few	but	ripe).	He	kept	a	terse	diary,	just	19	pages	long,	which
later	confirmed	his	precedence	on	many	results	he	had	not	published.	Gauss
wanted	 a	 heptadecagon	 placed	 on	 his	 gravestone,	 but	 the	 carver	 refused,
saying	 it	 would	 be	 indistinguishable	 from	 a	 circle.	 The	 heptadecagon
appears,	 however,	 as	 the	 shape	 of	 a	 pedestal	with	 a	 statue	 erected	 in	 his
honor	in	his	home	town	of	Braunschweig.

Let	us	assume	that	we	are	working	with	a	box	filter.	Therefore,	every	2	×	2
block	of	pixels	 in	 level	0	 is	averaged	 to	create	a	 single	pixel	 in	 level	1.	2	×	2
pixels	in	levell	are	in	turn	averaged	to	create	a	single	pixel	in	level	2.	When	2	×
2	pixels	in	levell	are	averaged	i.e.	a	weighted	sum	with	equal	weights	of	1	4	,	it
is	equivalent	to	averaging	4	×	4	pixels	in	level	0	i.e.	a	weighted	sum	with	equal
weights	 of	 1	 16	 .	 In	 other	 words,	 applying	 a	 2	 ×	 2	 box	 filter	 to	 level	 1	 is
equivalent	to	applying	a	4	×	4	=	22	×	22	box	filter	to	level	0	to	create	the	image	at
level	 2.	 This	 concept	 can	 be	 generalized	 to	 show	 that	 level	 i	 is	 equivalent	 to
applying	a	2	i	×	2	i	filter	 to	 level	0.	Therefore,	as	we	are	going	up	 in	 the	 levels,
each	image	is	a	low	pass	filtered	version	of	the	original	image,	but	using	filters
of	 progressively	 larger	 sizes	 and	 therefore	 of	 progressively	 lesser	 frequency
content	as	shown	in	Figure	3.10.	But	creating	 it	 from	level	 i	 -	1	using	a	2	×	2
filter	 is	 computationally	more	efficient.	Generalizing	 this	 concept,	you	can	 see
that	level	n	is	created	by	applying	a	box	filter	of	size	2	n	×	2	n	to	level	0	which	is
essentially	 averaging	 all	 the	 values	 of	 the	 image.	Therefore,	 the	 level	n	 of	 the
pyramid	is	a	single	gray	value.	Note	that	this	concept	generalizes	to	any	low	pass
filter,	 not	 necessarily	 a	box	 filter.	 In	 case	of	other	 filters,	 the	weights	used	 for
filtering	are	not	equal	for	every	pixel,	but	the	notion	of	filter	size	increasing	as
the	levels	increase	still	remains	the	same.

From	 the	 aforementioned	 explanation,	 you	 may	 think	 that	 images	 in	 a
Gaussian	 pyramid	 should	 progressively	 reduce	 in	 size.	 This	 is	 not	 true.	 The
reducing	size	only	defines	the	minimum	sampling	requirement	at	each	level	and
it	can	be	proved	mathematically.	However,	having	a	size	larger	than	2	n-i	×	2	n-i	for
level	 i	 only	 provides	 a	 higher	 sampling	 density	 that	 the	 minimum	 sampling
requirement.	 Therefore,	 an	 alternate	 way	 to	 create	 the	 pyramid	 is	 to	 simply
convolve	the	image	in	level	i	with	2	×	2	box	filter	to	create	level	i	+	1	creating	an
image	of	the	same	size	of	level	i	for	level	i	+	1.	In	this	case,	though	the	images	at
all	levels	of	the	Gaussian	pyramid	will	be	the	same	size,	the	content	slowly	loses
details	as	we	go	higher	up	in	the	pyramid.	However,	since	the	size	is	unchanged,
it	is	much	easier	to	perceive	this	removal	of	details.	In	both	cases,	the	pyramid	is
still	 called	 a	 Gaussian	 pyramid	 since	 the	 important	 concept	 here	 is	 the
progressively	reducing	frequency	content	as	you	go	higher	in	the	pyramid.	The
sampling	 is	 inconsequential	 as	 long	 as	 the	minimum	 sampling	 criteria	 is	met.
Figure	3.13	shows	the	representation	with	reducing	image	size	while	Figure	3.14
shows	the	representation	where	the	image	size	is	kept	unchanged.
In	 fact,	 this	 can	 also	 be	 shown	 mathematically	 from	 the	 properties	 of

convolution.	Let	us	denote	the	image	at	 i	 level	of	the	Gaussian	pyramid	by	G	i
and	the	low	pass	filter	of	size	2	×	2	as	l.	Therefore,

(3.9)
G	1	⋆	l	=	(G	0	⋆	l)	⋆	l	=	G	0	⋆	(l	⋆	l)
Note	 that	 l	⋆	 l	 is	 a	 kernel	 of	 greater	 size	 than	 l.	 Similarly,	 for	 ith	 level,	 l	 is
convolved	multiple	times	with	itself	to	create	a	much	wider	kernel	and	hence	a
much	lower	frequency	content	of	the	filtered	image.	These	kinds	of	operation	are
also	 called	multi-scale	 operations.	 This	 is	 due	 to	 the	 fact	 that	 the	 scale	 of	 the
objects	appearing	in	each	level	of	the	pyramid	differs.	For	example,	at	the	lowest
level	of	the	Gaussian	pyramid,	all	the	minute	edges	are	present.	But	as	we	go	up
the	pyramid,	only	the	bigger	changes	show	up	as	edges,	the	details	are	lost.
At	 this	 point,	 one	 question	 remain:	 what	 is	 the	 use	 of	 Gaussian	 pyramids?

Here	 is	a	very	common	application.	Suppose	we	want	 to	 reduce	 the	size	of	an
image	to	half	to	display	the	image	in	a	smaller	mobile	device.	The	first	instinct
in	 this	 situation	 is	 to	 subsample	 the	 image	which	 is	 essentially	 throwing	 away
every	other	pixel	in	the	horizontal	and	vertical	direction.	However,	this	may	lead
to	a	sampling	that	fall	below	the	Nyquist	rate	for	the	highest	frequencies	in	the
image	leading	to	aliasing	artifacts.	Therefore,	a	better	way	to	achieve	this	 is	 to
first	 low	 pass	 filter	 the	 image	 and	 then	 subsample	 it.	 This	 way	 the	 low	 pass
filtering	 first	 reduces	 the	 Nyquist	 sampling	 criterion	 by	 removing	 the	 high
frequency	 content	 following	 which	 the	 subsampling	 resolution	 provides

3.2.2

adequate	sampling.	This	is	called	pre-filtering	and	then	subsampling.	Reducing
the	 image	 size	 to	 half	 is	 equivalent	 to	 the	 next	 highest	 level	 of	 the	 Gaussian
pyramid.	This	is	illustrated	in	Figure	3.14.	A	more	drastic	example	of	aliasing	in
such	situations	is	given	in	Figure	3.15.

Designing	New	Filters
Now	that	we	know	the	concepts	of	 low	pass	filters,	 let	us	see	how	we	can	use
this	and	the	knowledge	of	the	mathematical	properties	of	convolution	to	design
new	filters.	Being	able	to	design	new	filters	arms	us	with	a	entirely	new	set	of
tools	that	we	can	start	using	in	several	contexts.

Figure	3.14	This	 figure	 illustrates	 the	 difference	 between	 simple	 subsampling	 (top)	 and	 pre-filtering	 and
subsampling	(bottom).	The	resolution	is	halved	as	we	go	from	left	to	right	—	but	the	images	are	generated
in	the	alternative	way	to	keep	their	size	unchanged	throughout	the	pyramid.

A	low	pass	filter	is	a	filter	that	allows	the	lower	frequencies	of	an	image	to	be
retained.	Now	 let	 us	 consider	 a	 filter	which	 is	 complementary	 to	 this—a	 filter
that	will	throw	away	the	frequencies	passed	by	the	low	pass	filter	and	retain	the
higher	frequencies	that	are	thrown	away	by	the	low	pass	filters.	Such	a	filter,	as
you	can	probably	guess,	is	called	an	high	pass	filter.	The	question	is	how	we	can

design	a	high	pass	filter?	One	way	that	probably	has	come	to	the	mind	of	most	of
you	is	to	subtract	the	low	pass	filtered	image	from	the	original	image.	And	this	is
a	perfect	route	to	take.
Let	us	consider	I	to	be	the	image	and	l	be	the	low	pass	filter.	Let	the	low	pass

filtered	image	be	I	l	and	the	high	passed	image	be	I	h	.	Therefore

Figure	 3.15	 This	 figure	 illustrates	 severe	 aliasing	 artifacts	 that	 can	 occur	 due	 to	 subsampling	 without
prefiltering.

(3.10)
I	h	=	I	-	I	⋆	l

(3.11)
=	I	⋆	δ	-	I	⋆	l

(3.12)
=	I	⋆	(δ	-	l)
In	the	second	line	of	the	above	algebra,	we	consider	the	image	to	be	an	all	pass
filtered	 version	 of	 itself.	 Using	 this	 fact	 and	 the	 mathematical	 properties	 of
convolution,	we	see	that	the	high	pass	filtered	image	I	h	can	be	expressed	as	the
convolution	of	the	original	image	I	with	a	single	filter	given	by	δ	-	l.	This	gives
us	the	design	of	an	high	pass	filter	resulting	from	the	subtraction	of	any	low	pass
filter	from	δ,	as	shown	in	Figure	3.16.	This	figure	also	shows	the	general	shape
of	any	high	pass	 filter	with	 its	charactaristic	positive	spike	near	 the	center	and
the	 negative	 lobes	 adjacent	 to	 it.	 For	 example,	 a	Gaussian	 function	 is	 another
good	low	pass	filter	which	has	a	much	smoother	response	than	the	box	filter.	In
this	case,	the	high	pass	filter	will	still	look	the	same	having	smoother	and	deeper
negative	 lobes.	 The	 image	 formed	 due	 to	 high	 pass	 filtering	 will	 have	 the
complementary	 frequencies	 that	 will	 give	 the	 details	 of	 the	 image.	 This	 is

3.2.3

illustrated	in	Figure	3.17.	Now,	do	not	confuse	a	Gaussian	filter	with	a	Gaussian
pyramid.	 Both	 are	 named	 after	 the	 same	 person,	 but	 are	 entirely	 different
concepts.	A	Gaussian	filter	is	a	kind	of	low	pass	filter,	while	a	Gaussian	pyramid
is	a	pyramid	of	image	formed	by	progressively	applying	any	low	pass	filter	on
an	image,	not	necessarily	a	Gaussian	filter.

Figure	3.16	This	figure	illustrates	the	creation	of	high	pass	filters	(bottom)	in	1D	from	box	filters	of	size	3
(top)	and	5	(middle)

Now,	let	us	consider	the	Gaussian	pyramid	G	0,	G	1,	.	.	.,	G	n	.	Let	us	now	build
another	pyramid	L	0,	L	2,	.	.	.	L	n-1	where	L	i	=	G	i	-	G	i+1.	Note	that	to	construct	this
pyramid,	G	i+1	has	to	be	resampled	at	double	the	resolution	since	G	i	and	G	i+1	are
not	at	the	same	resolution	to	perform	an	image	subtraction	(which	is	essentially	a
pixel	 by	 pixel	 subtraction).	 Now	 note	 what	 happens	 from	 the	 frequency
standpoint	 in	 this	 pyramid.	 If	 f	 0,	 f	 1,	 .	 .	 .,	 f	 n	 are	 considered	 to	 be	 the	 cut-off
frequency	of	G	0,	G	1,	.	.	.,	G	n	,	then	each	of	L	 i	consists	of	only	a	band	or	range
of	frequencies	f	i	-	f	i+1.	Therefore,	these	images	are	created	by	passing	a	band	of
frequencies.	This	pyramid	is	called	a	Laplacian	Pyramid	as	illustrated	in	Figure
3.18.
Now,	let	us	consider	the	single	filter	that	we	will	use	on	G	0	to	create	the	ith

level	of	 the	Laplacian	pyramid	L	 i	 .	This	 single	 filter	 is	 given	by	 convolving	 l
with	itself	for	 i	+	1	 times	and	subtracting	from	it	 l	convolved	for	 i	 times.	This
filter	 passes	 the	 band	of	 frequencies	 between	 f	 i	and	 f	 i+1	 and	 is	 the	band	 pass
filter.

2D	Filter	Separability

From	the	above	discussions,	we	are	now	capable	of	visualizing	or	generating	2D
filters	 like	 a	 2D	 box	 filter	 or	 a	 2D	 high	 pass	 filter	 (Figure	 3.19)..	 Now,	when
considering	2D	filters,	there	is	another	important	property	to	be	aware	of.	This	is
called	separability.	Let	us	consider	a	p	×	q2D	filter	given	by	h[i][j]	where	1	≤	i	≤
p	and	1	≤	j	≤	q.	If	h	can	be	separated	into	two	1D	filters,	a	and	b	of	size	p	and	q
respectively,	such	that	h[i][j]	=	a[i]	×	b[j],	then	h	is	a	separable	filter.

Figure	3.17	This	figure	shows	the	original	image	(left),	the	corresponding	low	pass	filtered	image	(middle)
that	provides	the	basic	shape	of	the	object,	and	the	high	pass	filtered	image	(right)	created	by	subtracting	the
low	pass	filter	from	a	delta	that	provides	the	details	required	to	identify	the	face.	The	frequency	contents	of
the	right	3two	images	are	complementary	to	each	other	and	together	create	the	entire	range	of	frequencies
present	in	the	original	image	on	the	left.

As	an	example,	let	us	consider	a	3	×	3	box	filter	where	p	=	q	=	3.	We	know
that	h	is	a	constant	function	where	h	[i]	[j]	=	1	9	.	Now,	consider	two	filters	a
and	b,	each	of	size	3	such	that	a	[i]	=	1	3	,	1	≤	i	≤	p	and	b	[j]	=	1	3	,	1	≤	j	≤	q.
You	can	think	of	a	and	b	as	two	1D	box	filters,	one	in	horizontal	direction	and
the	 other	 in	 vertical	 direction.	Note	 that	 in	 this	 case,	h[i][j]	 is	 indeed	 equal	 to
a[i]b[j],	 	(i	,	j)	.	Therefore,	a	2D	box	filter	is	separable.
The	advantage	of	this	is	that	it	can	be	shown	that	the	result	of	convolving	an

image	with	h	 is	equivalent	 to	convolving	 its	 rows	with	a	 and	 then	 its	 columns
with	b.	This	is	because	for	any	image	I,

(3.13)
(I	⋆	a)	⋆	b	=	I	⋆	(a	⋆	b)	=	I	⋆	h
You	can	verify	that	a	⋆	b	is	indeed	h	for	the	box	filter.
Let	 us	 now	 discuss	 the	 advantage	 of	 convolving	 the	 rows	 with	 a	 and	 the

columns	with	b.	 Let	 us	 consider	 an	 image	with	N	 pixels.	 The	 convolution	 for
each	pixel	with	h	of	size	pq	will	need	pqN	multiplications	and	pqN	additions,	i.e.
a	total	of	2pqN	floating	point	operations.	If	we	instead	apply	a	first,	we	will	need
2pN	operations.	Next,	with	b,	we	will	need	2qN	operations.	This	leads	to	a	total
of	2(p	+	q)N	operations	 that	 is	much	less	 than	2pqN.	 In	other	words,	separable
filters	can	be	implemented	a	lot	more	efficiently.

3.2.4

Let	us	now	consider	the	1D	Gaussian	function	given	by

(3.14)
ϕ	(x)	=	1	σ	2	π	e	-	x	2	2	σ	2	,

Figure	 3.18	 On	 the	 left	 we	 show	 the	 frequency	 response	 of	 the	 band	 pass	 filters	 which	 can	 act	 on	 the
original	picture	to	create	the	first	three	levels	of	the	Laplacian	pyramid.	On	the	right	we	show	the	Laplacian
pyramid	itself	for	the	same	image	shown	in	Figure	3.13.	The	images	are	shown	in	the	same	size	on	the	top
for	better	perception.

We	will	 see	 in	 the	next	chapter	 that	 this	Gaussian	 function	 is	a	very	good	 low
pass	filter	(Figure	3.19).	Now,	let	us	consider	the	2D	Gaussian	filter	given	by

(3.15)
ϕ	(x	,	y)	=	1	2	π	σ	2	e	-	(x	2	+	y	2	2	σ	2)

(3.16)
=	ϕ	(x)	×	ϕ	(y)	.
Since	 the	 2D	 Gaussian	 can	 be	 expressed	 as	 above,	 it	 is	 a	 separable	 filter.
Therefore,	it	can	be	implemented	efficiently	using
I	⋆	ϕ	(x	,	y)	=	(I	⋆	ϕ	(x))	⋆	ϕ	(y)

Correlation	and	Pattern	Matching
In	 this	 section,	 we	 will	 introduce	 yet	 another	 application	 of	 convolution.
Consider	a	picture	which	is	a	checkerboard	pattern	and	a	filter	which	looks	like	a
corner	of	the	checker	board	(Fig	3.20).	Consider	the	image	and	template	both	to

be	in	grayscale	with	values	between	0	and	1	(0	for	black	and	1	for	white).

Figure	3.19	Visualizing	the	2D	filters	from	their	1D	counter	part:	Box	filter	(left),	Gaussian	filter	(middle)
which	is	a	very	good	low	pass	filter	and	High-Pass	Filter	(right)	obtained	by	subtracting	the	Gaussian	from
a	delta.

On	 the	 left	 in	 Fig	 3.20	 the	 value	 of	 the	 convolution	 is	 shown	 for	 sample
colored	windows.	Note	 that	 the	 value	 of	 the	 convolution	 is	 highest	where	 the
template	matches	the	image	at	the	blue	window.	It	is	also	the	lowest	where	the
image	is	exactly	complementary	to	the	template	as	in	the	red	window.	Further	it
is	 something	 in	between	at	 the	purple	window	which	 is	also	 showing	a	corner
but	with	a	different	distribution	of	black	and	white	around	it.	But	the	problem	is,
other	areas	 like	 the	green	window	also	shows	the	highest	value	and	the	yellow
window	 shows	 the	 lowest	 value.	 Intuitively,	 correlation	 should	 provide	 a
measure	of	the	match	between	the	template	and	the	subregion	of	the	image	being
considered.	 From	 that	 perspective,	 the	 subregions	 defined	 by	 the	 green	 and
yellow	windows	are	similar	despite	 their	vastly	different	colors	 (one	black	and
one	white).	The	justification	for	this	is	based	on	the	variation	of	colors	present	in
the	template	which	can	be	considered	maximal.	Since	correlation	is	a	measure	of
similarity,	one	would	expect	the	blue	window	to	have	the	highest	value	since	it
has	identical	spatial	distribution	as	the	template	(white	on	top	right	and	bottom
left	quadrants	and	black	elsewhere).	Using	 the	 same	measure	of	 similarity,	 the
red	window	should	have	the	lowest	value	though	it	has	the	same	color	variation
due	to	the	complementary	spatial	distribution	(black	on	top	right	and	bottom	left
quadrants	 and	white	 elsewhere).	Also,	one	would	expect	 the	yellow	and	green
windows	 to	 have	 some	 value	 right	 in	 the	 middle	 of	 these	 lowest	 and	 highest
values	 since	 the	 template	 has	 to	 go	 through	 either	 of	 these	 to	 go	 to	 the
complementary	 pattern	 in	 the	 red	window.	 Similarly,	 the	 pattern	 in	 the	 purple
window	 should	 also	 have	 a	 value	 between	 the	 lowest	 and	 the	 highest,	 but	 it
should	 be	 closer	 to	 the	 lowest	 value	 (red	 square)	 than	 the	 highest	 value	 (blue
square)	since	the	spatial	distribution	of	the	black	and	white	pixels	in	the	purple

window	is	more	similar	more	similar	to	the	former	than	the	latter.

Put	a	Face	to	the	Name

Pierre-Simon	Laplace	 (23	March	1749	 to	5	March	1827)	was

an	 influential	 French	 scholar	 whose	 work	 was	 important	 to	 the
development	 of	 mathematics,	 statistics,	 physics,	 and	 astronomy.	 He
summarized	and	extended	the	work	of	his	predecessors	in	his	five-volume
Mecanique	 Celeste	 (Celestial	 Mechanics)	 (1799-1825).	 This	 work
translated	 the	 geometric	 study	 of	 classical	 mechanics	 to	 one	 based	 on
calculus,	 opening	 up	 a	 broader	 range	 of	 problems.	 He	 formulated	 the
Laplacian	differential	operator	widely	used	 in	mathematics,	pioneered	 the
Laplace	 transform	 that	 forms	 the	 cornerstone	 of	 many	 branches	 of
mathematical	 physics,	 and	 was	 one	 the	 first	 scientists	 to	 postulate	 the
existence	of	black	holes	and	the	notion	of	gravitational	collapse.
Laplace	was	the	son	of	a	farmer	and	cider	merchant	who	intended	that	he
be	 ordained	 in	 the	Roman	Catholic	Church	 and	 sent	 to	 the	University	 of
Caen	to	read	theology	at	the	age	of	16.	At	the	university,	two	enthusiastic
teachers	of	mathematics,	Christophe	Gadbled	and	Pierre	Le	Canu,	inspired
his	 zeal	 for	 the	 subject.	 His	 brilliance	 as	 a	 mathematician	 was	 quickly
recognized	 and	 while	 still	 at	 Caen	 he	 wrote	 his	 first	 paper	 in	 ajournal
founded	 by	 Lagrange.	 Recognizing	 that	 he	 did	 not	 have	 any	 inclination
towards	 priesthood,	 Laplace	 became	 an	 atheist,	 broke	 away	 from	 the
church	and	left	for	Paris	to	become	the	student	of	Jean	le	Rond	d’Alembert
(famous	today	for	Lambertian	reflectance	models).	Lambert	tried	to	get	rid
of	Laplace	initially	by	giving	him	impossible	assignments	of	reading	tough
math	 books	 and	 solving	 unsolved	 math	 problems.	 But	 when	 Laplace’s
brilliance	allowed	him	to	complete	such	tasks	in	much	less	time	than	was
provided,	 he	 took	 him	 under	 his	 wings	 and	 recommended	 a	 teaching
position	in	the	Royal	Military	Academy	of	Belgium	where	Laplace	devoted
his	 time	 to	 path	 breaking	 research	 for	 the	 next	 seventeen	 years.	 Laplace
became	 a	 count	 of	 the	 First	 French	 Empire	 in	 1806	 and	 was	 named	 a

marquis	(nobleman)	in	1817.	He	died	in	1827.	Intrigued	by	the	magnitude
of	his	brilliance,	his	physician	removed	his	brain	and	preserved	it	before	it
was	displayed	in	an	anatomical	museum	in	Britain.	It	was	reportedly	much
smaller	than	the	average	human	brain.

Figure	 3.20	 This	 image	 shows	 the	 convolution	 of	 an	 8	 ×	 8	 template	 that	 needs	 to	 be	matched	 with	 an
identical	subregion	to	the	checkboard	image.	On	the	left	image	this	is	achieved	by	a	simple	convolution	of
the	template	with	the	image	and	on	the	right	image	this	is	achieved	by	first	subtracting	the	average	value	of
all	the	pixels	from	the	template	and	the	region	to	be	matched	before	applying	the	convolution.	On	the	left
image,	window	of	different	colors	show	the	result	of	convolution	in	those	windows.	On	the	right	image,	the
information	is	also	augmented	with	the	value	of	the	mean	(μ)	at	those	windows.

To	arrive	at	this	intuitive	result,	we	will	still	do	the	convolution,	but	first	we
will	subtract	the	mean	of	all	the	pixel	colors	from	the	template	and	the	region	of
the	 image	 it	 is	 overlapping	 with	 before	 performing	 the	 convolution.	 This	 is
shown	in	the	right	image	of	Fig	3.20	where	the	mean	is	also	indicated	by	μ.	Note
that	now	the	convolution	provides	us	with	what	we	expected	from	the	correlation
operation	 intuitively.	 The	 blue	 window	 has	 the	 highest	 value	 of	 1,	 the	 red
window	has	 the	 lowest	value	of	 -	1	and	 the	yellow	and	green	windows	have	a
value	of	0	which	is	halfway	between	-	1	and	1.	Also,	note	that	the	value	at	the
purple	 window	 is	 negative	 making	 it	 closer	 to	 the	 red	 window	 than	 the	 blue
window.	Therefore,	 convolution	when	 used	 on	 functions	 offset	 by	 their	mean,
can	be	used	to	find	the	extent	of	similarity	between	a	 template	and	a	region	in
the	image.	This	process	is	called	cross-correlation.
Recall	that	convolution	usually	involves	flipping	the	impulse	response	which

we	 did	 not	 need	 to	 do	 in	 this	 chapter	 (and	 in	 many	 image	 processing
applications)	 since	we	 deal	with	 symmetric	 filters	most	 of	 the	 time.	 The	way
cross-correlation	differs	from	convolution	is	that	the	flipping	of	the	kernel	is	not
required.
Next,	let	us	take	another	perspective	to	this	cross	correlation.	You	can	think	of

it	as	an	element	wise	multiplication	of	the	template	elements	with	the	underlying
image	elements	with	which	the	template	overlaps	and	then	adding	them	up.	Does
this	 remind	 you	 of	 anything?	Well,	 this	 is	 a	 dot	 product	 of	 two	 vectors,	 one
vector	consisting	of	 the	elements	of	 the	 template	and	 the	other	made	up	of	 the
elements	of	the	region	of	the	image	with	which	the	template	overlaps.	The	value
of	the	dot	product	gives	an	estimate	of	how	close	is	one	vector	to	another.	The
dot	 product	 of	 1	 signifies	 identical	 vectors,	 the	 dot	 product	 of	 zero	 signifies
orthogonal	vectors	and	the	dot	product	of	-	1	signifies	opposite	vectors.	Notice
that	the	same	thing	holds	for	cross	correlation.

Figure	3.21	On	the	left	is	an	image	and	the	template	to	be	matched	in	the	image.	In	the	middle	is	the	result
of	the	process	of	normalized	cross	correlation.	On	the	right	is	the	template	(in	color)	superimposed	at	the
location	given	by	the	highest	value	of	the	normalized	cross-correlation	finding	an	exact	match.

Now,	you	probably	remember	that	while	performing	dot	products	for	vectors,
they	 needed	 to	 be	 normalized.	 This	 was	 to	 make	 sure	 that	 we	 are	 only
considering	the	directions	of	the	vectors	and	not	their	magnitudes.	The	values	of
this	 dot	 product	 range	 between	 -	 1	 to	 +	 1	 only	 when	 such	 normalization	 is
applied.	 Our	 subtraction	 of	 the	 mean,	 as	 shown	 in	 Figure	 3.21,	 was	 an
attempting	 to	 do	 approximate	 this	 normalization.	 But	 a	 subtraction	 does	 not
affect	 the	magnitude	of	the	colors	to	assure	unit	vectors.	Therefore,	 ideally,	we
should	 subtract	 the	mean	 and	divide	with	 the	 standard	deviation,	 given	by	 the
square	root	of	the	sum	of	squared	differences	of	each	value	from	the	mean.	This
step	would	achieve	the	desired	normalization.
What	 does	 this	 normalization	 mean	 in	 the	 context	 of	 image	 processing.

Fundamentally,	 cross-correlation	 is	 a	way	 to	 examine	 if	 any	 part	 of	 the	 image
matches	with	a	 template	 image.	 Ideally,	we	should	be	able	 to	do	 this	matching
irrespective	 of	 three	 factors	 changing	 between	 the	 two	 images:	 (a)	 scene
illumination;	 (b)	 the	camera	exposure	 that	decides	 the	brightness	of	 the	 image;
and	 the	 (c)	 the	 camera	 gain	 that	 decides	 the	 contrast	 of	 the	 image.	 The
normalization	allows	us	to	make	the	cross-correlation	robust	against	these	three
changes	and	is	often	called	normalized	cross-correlation.

3.3

3.4

Implementation	Details
This	brings	us	to	the	end	of	the	fundamental	concepts	behind	the	linear	system
and	 convolution.	 However,	 you	 may	 still	 find	 some	 challenges	 when
implementing	convolution.	 So,	 following	 are	 the	 things	 to	 be	 remembered	 for
this	purpose.

1.	 When	performing	convolution	of	a	filter	with	an	image,	it	is	important
to	align	the	filter	with	every	pixel	and	then	apply	the	convolution.	Note
that	 the	 result	 of	 convolution	 at	 each	 pixel	 should	 be	 stored	 in	 a
different	image.	Otherwise	it	will	affect	the	convolutions	at	other	pixels
performed	later.

2.	 If	the	filter	size	is	an	even	number,	you	will	not	be	able	to	find	a	central
pixel	 to	 align	 with	 the	 image	 pixel	 at	 which	 convolution	 is	 being
performed.	The	common	thing	to	do	in	this	case	is	 to	align	the	image
pixel	with	 the	 top	 left	 pixel	of	 the	 filter.	This	will	 shift	 the	 image	by
half	the	size	of	the	kernel	in	each	direction	and	should	be	shifted	back
after	the	operation.

3.	 When	 the	 filter	 overlaps	 an	 area	 outside	 the	 edge	 of	 the	 image,	 the
pixel	 values	 of	 those	 pixels	 are	 undefined.	What	 should	we	 do	 then?
Usually	you	can	pad	the	image	with	0	or	1	or	by	reflecting	the	image
about	the	edge	or	any	other	way	you	choose.	What	is	chosen	does	not
matter	since	these	will	only	contribute	to	the	samples	that	are	not	fully
immersed	 and	 hence	 should	 be	 ignored	 from	 a	 data	 accuracy
perspective.

4.	 Convolution	 is	made	 of	many	 floating	 point	 operations	while	 images
are	 usually	 stored	 as	 8-bit	 integers.	 Performing	 floating	 point
operations	on	integers	results	in	accumulation	of	errors	at	every	step	of
the	operation	(e.g.	every	multiplication	and	addition).	The	best	way	to
handle	 this	 is	 to	 first	 convert	 the	 image	 and	 the	 filter	 into	 a	 floating
point	representation,	perform	the	filtering	and	then	round	it	back	to	the
integer	representation.

5.	 Finally,	 sometimes	convolution	can	 lead	 to	out-of-range	values	 in	 the
resulting	 image	 (beyond	0	 to	 1	 or	 beyond	0	 to	 256.	The	best	way	 to
handle	 this	 is	 to	 find	 the	 minimum	 and	 maximum	 values	 after	 the
operation	and	scale	the	image	back	to	be	within	range.

Conclusion

In	this	chapter	you	were	introduced	to	one	of	the	most	fundamental	concepts	of
visual	computing	—	systems	and	 their	 responses	and	how	to	find	responses	of
arbitrary	 inputs	 to	 the	 systems.	We	have	 tried	 to	give	you	 a	 less	mathematical
and	more	engineering	view	of	convolution	which	is	directly	applicable	to	digital
image	processing.	To	get	a	more	mathematical	treatise	of	the	subject,	especially
considering	general	multi-dimensional	continuous	signals,	please	refer	 to	[Pratt
07,	Gonzalez	and	Woods	06].

Bibliography
[Gonzalez	and	Woods	06]	Rafael	C.Gonzalez	and	RichardE.Woods.	Digital	Image	Processing	(3rd	Edition).

Prentice-Hall,	Inc.,	2006.
[Pratt	07]	William,	K.Pratt.	Digital	Image	Processing.	John	Wiley	and	Sons,	2007.

Summary:	Do	you	know	these	concepts?

Linear	System	and	its	Properties
Convolution	and	its	Properties	Low	Pass	Filters
Gaussian	Filter
Gaussian	Pyramid
High	Pass	Filters
Band	Pass	Filters
Laplacian	Pyramid
2D	Filter	Separability
Normalized	Cross	Correlation

Exercises
1.	 Consider	a	signal	blurring	system.	Every	sample	of	the	output	signal	is

generated	by	averaging	the	values	of	the	sample	itself,	and	its	left	and
right	 neighbors	 in	 the	 input	 signal.	 (Assume	 that	 the	 samples	 at	 the
boundary	of	the	input	signal	are	zero).

a.	 Is	this	system	linear?	Prove	your	answer.
b.	 What	is	the	impulse	response	of	the	system?
c.	 How	 would	 this	 impulse	 response	 change	 if	 a	 larger

neighborhood	of	five	samples	is	considered?

2.	 Calculate	the	convolution	of	the	following	signals	(your	answer	will	be
in	the	form	of	an	equation).

a.	 h[t]	=	δ[t	-	1]	+	δ[t	+	1],	x[t]	=	δ[t	-	a]	+	δ[t	+	b]
b.	 h[t]	=	δ[t	+	2],	x[t]	=	e	t
c.	 h[t]	=	e	-t	,	x[t]	=	δ[t	-	2]
d.	 h[t]	=	δ[t]	-	δ[t	-	1],	x[t]	=	e	-t

3.	 g[t]	is	a	1D	discrete	signal	defined	for	-	3t4.	The	impulse	response	h[t]
of	 a	 linear	 system	 is	 another	 discrete	 signal	 defined	 for	 2t6.	 The
response	 of	 g[t]	 when	 passed	 through	 this	 system	 is	 given	 by	 the
convolution	of	g[t]	with	h[t]	and	denoted	by	y[t].	What	is	the	length	of
y[t]?	What	 is	 the	 range	 of	 t	 for	which	 y[t]	 is	 generated?	What	 is	 the
range	of	n	for	which	the	input	g[t]	is	completely	immersed	in	the	output
y[t]?

4.	 The	low	pass	filter	is	a	linear	operation.	Given	this	prove	that	the	high
pass	filter	is	also	a	linear	operation.

5.	 System	A	is	an	“	all	pass”	system,	i.e.	its	output	is	identical	to	its	input.
System	 B	 is	 a	 low-pass	 filter	 that	 passes	 all	 frequencies	 below	 the
cutoff	frequency	without	change,	and	blocks	all	frequencies	above.	Call
the	impulse	response	of	system	B,	b[t].

a.	 What	is	the	impulse	response	of	system	A?
b.	 How	 would	 the	 impulse	 response	 of	 system	 B	 need	 to	 be

changed	to	make	the	system	have	an	inverted	output	(i.e.,	the
same	output,	just	changed	in	sign)?

c.	 If	the	two	systems	are	arranged	in	parallel	with	added	outputs,
what	is	the	impulse	response	of	the	combination?

d.	 If	the	two	systems	are	arranged	in	parallel,	with	the	output	of
system	B	subtracted	from	the	output	of	system	A,	what	is	the
impulse	response	of	the	combination?

e.	 What	kind	of	filter	is	the	system	in	(d)?
f.	 In	 this	 problem,	 system	 B	 has	 the	 ideal	 characteristic	 of

passing	certain	frequencies	“	without	change	How	would	the
outputs	of	 the	systems	described	in	(c)	and	(d)	be	affected	if
the	low-pass	filter	delayed	(i.e.	shifted)	the	output	signal	by	a
small	amount,	relative	to	the	input	signal?

6.	 Design	a	three	pixel	lD	kernel	for	ghosting	the	image	where	the	ghost
appears	 two	pixels	 to	 the	right	of	 the	 image	and	has	half	 its	 intensity.

Extend	 this	 concept	 to	design	a	2D	 filter	where	 two	ghosts	 appear	 in
horizontal	and	vertical	direction	in	the	same	manner.

7.	 Let	 f	 (x	 ,	 y)	 denote	 an	 image	 and	 f	G	 (x	 ,	 y)	 denote	 the	 image
obtained	by	applying	a	Gaussian	filter	g	(x	,	y)	 to	 f	 (x	 ,	y)	 .	 In	 the
photography	industry	an	operation	called	high	boost	filtering	generates
an	image	f	B	(x	,	y)	=	a	f	(x	,	y)	-	f	G	(x	,	y)	,	where	al.

a.	 You	are	asked	to	achieve	high	boost	filtering	by	using	a	single
filter.	Derive	an	expression,	h	(x	,	y)	,	for	such	a	filter.

b.	 How	would	the	frequency	response,	H(u,v),	of	this	filter	look
like?

8.	 You	are	asked	to	boost	the	edges	of	an	image.	How	would	you	achieve
this	operation	at	multiple	scales	using	the	Gaussian	pyramid?	Can	you
design	 a	 single	 filter	 to	 be	 applied	 at	 every	 level	 of	 the	 pyramid	 to
achieve	the	same?

9.	 Consider	 a	 1D	 signal	 that	 has	 a	 repeatable	 pattern	 of	width	n	 pixels.
Provide	a	method	to	find	the	value	of	n	using	correlation?

10.	 Given	the	Laplacian	pyramid	of	an	image,	how	would	you	reconstruct
the	original	image?

11.	 Consider	 the	 frequency	 domain	 response	 of	 the	 box	 filter	 and	 the
Gaussian	 filter,	 both	of	 the	 same	 size.	Which	one	 these	do	you	 think
will	be	smoother?	Justify	your	answer.

12.	 Consider	 two	 image	 taken	 by	 a	 stereo	 pair	 of	 cameras	 (two	 cameras
placed	closed	to	each	other	like	the	two	human	eyes).	We	have	marked
some	 features	 in	 the	 first	 image.	Provide	 a	method	 to	 find	 accurately
the	location	of	these	features	in	the	second	image.

4.1

4

Spectral	Analysis
In	 this	 chapter	we	will	 learn	 a	new	way	of	decomposing	 a	 signal	 into	 simpler
signals,	 each	 of	 which	 is	 a	 sinusoid.	 Studying	 the	 nature	 of	 each	 of	 these
sinusoids	 and	 their	 relationship	with	 each	other	 can	give	us	 important	 insights
about	 the	 signal	 and	 help	 us	 alleviate	 problems	 during	 common	 filtering
techniques.	This	kind	of	analysis	of	a	signal	 is	often	called	spectral	analysis—
since	 it	 decomposes	 a	 complex	 signal	 into	 a	 bunch	 of	 signals	 that	 span	 a
spectrum	of	frequencies,	phases	and	orientations.	Such	a	study	will	also	provide
us	a	way	to	synthesize	signals	and	we	will	study	some	of	that	as	well.
In	this	chapter,	we	will	focus	on	the	most	fundamental	and	popular	technique

for	 spectral	 analysis	—	 the	 discrete	 Fourier	 transform	 or	DFT.	However,	 it	 is
important	to	be	aware	that	several	different	ways	exist	for	such	spectral	analysis.
They	mostly	 differ	 in	 the	 kind	 of	 simpler	 signals	 (or	 basis	 functions)	 that	 are
used	 to	decompose	 the	complex	signal	 into.	Radial	basis	 functions	or	wavelets
can	be	used	to	provide	a	different	kind	of	spectral	analysis	using	data	dependent
basis	functions.	However,	DFT	provides	one	of	the	most	popular	tool	for	spectral
analysis	of	visual	signals	using	data	independent	or	standard	basis	functions.	We
will	first	study	DFT	for	1D	signals.	Usually	this	provides	us	key	insights	which
are	applicable	to	higher	dimensional	data.	Later	in	the	chapter	we	will	study	its
interpretation	for	2D	data	like	images.

Discrete	Fourier	Transform
Discrete	Fourier	Transform	or	DFT	is	a	technique	that	takes	as	input	a	periodic
signal	of	 infinite	 length	and	decomposes	 it	 into	a	set	of	sine	and	cosine	waves
which	 when	 combined	 (via	 a	 process	 called	 inverse	 DFT)	 would	 provide	 the
periodic	signal	itself.	As	soon	as	we	define	DFT	likewise,	the	first	question	that
comes	to	mind	maybe	how	we	would	use	DFT	on	digital	signals?	Digital	signals
are	hardly	periodic	and	never	infinite.	In	order	to	make	a	digital	signal	periodic
and	 infinite,	we	 assume	 that	 the	 span	of	 the	 signal	 is	 its	 period	 and	 the	 signal
span	 is	 repeated	 infinite	 number	 of	 times.	 For	 example,	 if	 we	 have	 an	 audio

signal	with	100	samples,	we	will	consider	a	periodic	signal	where	each	period	of
the	 signal	 is	 100	 samples	 long	 and	 is	 the	 function	 defined	 by	 the	 given	 100
samples,	as	illustrated	in	Figure	4.1.	This	assumption	has	its	consequences	which
we	will	discuss	later	in	the	chapter.

Figure	4.1	.	This	figure	shows	how	the	finite	1D	signal	on	the	left	is	repeated	to	be	considered	a	periodic,
infinite	signal	in	order	to	make	it	appropriate	for	applying	DFT.

Let	the	input	to	the	DFT	be	a	signal	x	with	N	samples	denoted	by	x	[0	,	1	,	.	.	.
,	N	-	1]	.	DFT	is	a	process	that	generates	two	arrays	from	x,	denoted	by	x	c	and	x
s	each	with	N	2	+	1	samples	denoted	by	x	c	[0	,	1	,	.	.	.	,	N	2]	and	x	s	[0	,	1	,	.	.	.
,	N	2]	respectively.	x	is	said	to	be	in	time	or	spatial	domain	while	x	c	and	x	s	is	the
representation	of	the	same	function/signal	in	the	frequency	domain,	as	illustrated
in	Figure	4.2.
So,	what	does	x	c	and	x	 s	mean?	DFT	decomposes	x	 into	N	2	+	1	cosine	and

sine	waves,	 each	 of	 a	 different	 frequency.	These	 cosine	 and	 sine	 waves	 when
added	together	create	the	signal	x.	x	c	and	x	s	gives	us	the	amplitude	of	the	cosine
and	sine	waves	respectively.	Note	that	the	length	of	each	of	these	waves	is	N.	x	c
[k]	 denotes	 the	 amplitude	 of	 a	 cosine	 wave	 that	 makes	 k	 cycles	 over	 the	 N
samples.	 For	 e.g.	 x	c	 [N	2]	 is	 a	 cosine	wave	 that	makes	N	 2	 cycles	 over	N
samples,	 i.e.	2	 samples	per	cycle.	Note	 that	 this	 is	 the	highest	 frequency	wave
possible	 given	 N	 samples	 and	 abiding	 by	 the	 Nyquist	 sampling	 criteria.
Similarly,	x	s	[k]	denotes	the	amplitude	of	a	sine	wave	that	makes	k	cycles	over	N
samples.

Figure	4.2	 .	This	_gure	 shows	 the	processes	of	DFT	and	 inverse	DFT	converting	a	 signal	 in	 time/spatial
domain	to	its	representation	in	frequency	domain	and	viceversa.

Next,	 we	 will	 discuss	 alternate	 ways	 of	 expressing	 the	 frequency	 of	 these
waves.	We	have	already	seen	that	the	wave	with	index	k	makes	k	cycles	over	the
N	pixels	(samples).	This	means	that	each	pixel	constitutes	f	=	k	N	cycles.	This	is
another	way	to	represent	the	frequency	in	terms	of	cycles	per	pixel.	Note	that	as
k	 spans	 from	0	 to	N	2	 ,	 f	 ranges	 from	 0	 to	 0.5.	 Finally,	 the	 frequency	 can	 be

expressed	as	ω	=	f	×	2π,	 its	natural	 frequency.	ω	 ranges	from	0	 to	π.	You	may
come	 across	 any	 of	 these	 representations	 when	 you	 work	 with	 spectral	 data.
Examining	the	range	of	the	independent	axes	of	such	data	will	immediately	tell
you	the	particular	representation	used.

Figure	4.3	.	This	figure	shows	how	the	sine	and	cosine	waves	are	scaled	by	the	factors	produced	in	x	c	and	x
s	.	These	waves	when	added	will	create	x,	the	original	signal	shown	on	the	left.

Now,	consider	 the	cosine	wave	c	k	whose	amplitude	 is	given	by	x	 c	 [k].	Note
that	c	k	is	a	signal	with	N	samples.	Further,	it	is	a	cosine	wave	that	makes	k	cycles
over	these	N	samples,	and	has	an	amplitude	of	x	c	[k].	This	cosine	wave	can	be
described	as

(4.1)
c	k	[i]	=	c	o	s	(2	π	k	i	N)	=	c	o	s	(2	π	f	i)	=	c	o	s	(ω	i)

where	i	denotes	the	ith	sample	of	c	k	,		0	≤	i	≤	N	-	1.	Similarly,	the	kth	sine	wave,
s	k	,	is	given	by

(4.2)
s	k	[i]	=	s	i	n	(2	π	k	i	N)	=	s	i	n	(2	π	f	i)	=	s	i	n	(ω	i)

Figure	4.4	.	This	figure	shows	decomposition	of	the	time	domain	signal	x	to	the	frequency	domain	x	c	and	x	s
.

Now,	recall	that	the	signal	x	is	formed	by	the	addition	of	all	the	cosine	and	sine
waves	weighted	by	their	amplitudes	given	by	x	c	and	x	s	respectively.	Therefore,

(4.3)
x	[i]	=	∑	k	=	0	N	2	x	c	[k]	c	o	s	2	π	k	i	N	+	∑	k	=	0	N	2	x	s	[k]	s	i	n	2	π	k	i	N

Note	 that	 this	provides	us	 the	equation	 for	using	x	 c	and	x	 s	and	 combining	 the
different	 sine	 and	 cosine	 waves	 to	 create	 the	 signal	 x.	 Therefore,	 this	 is	 the
equation	behind	the	inverse	DFT	or	synthesis.	It	is	simpler	to	understand	this	and
hence	we	derived	 this	 first.	 Figure	4.3	 shows	weighted	 sine	 and	 cosine	waves
that	when	combined	create	the	original	signal.
However,	 the	 actual	 equations	 for	 synthesis	 are	 slightly	 different	 than

Equation	4.3.	 There	 are	 some	 scale	 factors	 associated	with	 each	 term.	All	 the
terms	except	for	x	c	[0]	and	x	s	[N	2]	are	scaled	by	2	N	.	x	c	[0]	and	x	s	[N	2]	are
scaled	by	1	N	.	Therefore	the	actual	amplitudes	x	^	c	and	x	^	s	are	given	by

(4.4)
x	^	c	[k]	=	2	N	x	c	[k]

(4.5)
x	^	s	[k]	=	2	N	x	s	[k]

for	all	k	except	for

(4.6)
x	^	c	[0]	=	1	N	x	c	[0]

(4.7)
x	^	s	[N	2]	=	1	N	x	s	[N	2]

and	the	actual	synthesis	equation	is

Figure	4.5	.	Two	example	signals	are	shown	to	be	correlated	with	the	same	basis	function.	The	first	leads	to
the	value	of	0.5	indicating	an	amplitude	of	1.0	for	that	basis	function	in	the	synthesis	equation.	The	second
one	leads	to	a	value	of	0	indicating	that	this	basis	function	has	no	contribution	in	synthesizing	the	function.

(4.8)
x	[i]	=	∑	k	=	0	N	2	x	^	c	[k]	c	o	s	2	π	k	i	N	+	∑	k	=	0	N	2	x	^	s	[k]	s	i	n	2	π	k	i
N

These	scale	factors	are	related	to	the	underlying	process	of	discretization	of	the
analog	Fourier	transform	during	its	digital	processing	and	we	will	come	back	to
it	soon.
The	 next	 question	 is	 how	 we	 really	 find	 x	 c	 and	 x	 s	 .	 Note	 that	 this

decomposition	is	trying	to	figure	out	how	much	of	each	of	these	sine	and	cosine
waves	is	contained	in	the	signal	x.	What	does	this	remind	you	of?	Of	course,	this
is	 best	 computed	 by	 correlation.	 If	 x	 is	 a	 cosine	 or	 sine	 wave,	 it	 will	 be
completely	 correlated	 with	 the	 sine	 and	 cosine	 waves	 of	 the	 same	 frequency
resulting	in	only	one	element	of	x	c	and	x	s	to	be	non-zero.	Thus,	we	can	write	the
equation	for	DFT	as	a	correlation	as

(4.9)
x	c	[k]	=	∑	i	=	0	N	-	1	x	[i]	c	o	s	2	π	k	i	N

(4.10)
x	s	[k]	=	∑	i	=	0	N	-	1	x	[i]	s	i	n	2	π	k	i	N

Here	too,	due	to	the	same	scale	factors,	the	real	coefficients	are	given	by	x	^	c
and	x	^	s	 .	 In	 fact,	 these	are	 the	exact	weights	 that	are	used	 in	Figure	4.3.	The

arrays	x	c	and	x	s	thus	generated	from	x	are	shown	in	Figure	4.4.	An	example	of
the	process	of	correlation	is	shown	in	Figure	4.5.
Let	 us	 briey	 examine	 Equation	 4.10	 first.	 Note	 that	 x	 c[0]	 is	 given	 by

correlation	with	cos(0)	=	1.	This	means

(4.11)
x	^	c	[0]	=	1	N	∑	i	=	0	N	-	1	x	[i]	,

i.e.	 the	first	coefficient	for	cosine	waves	 is	 the	average	of	all	 the	samples	of	x.
This	 is	often	called	 the	DC	component.	Second,	note	 that	sin[0]	=	sin	 [πi]=	0.
Therefore,	x	^	s	 [0]	=	x	^	N	2	=	0	 .	Some	of	you	may	have	been	wondering
before	how	we	generate	N+	2	samples	in	the	frequency	domain	from	N	samples
in	 the	spatial	domain.	Here	you	can	see	 that	we	actually	do	not	generate	more
information	since	two	of	the	N+	2	samples	are	zero.

Figure	4.6	.	This	figure	shows	the	origin	of	the	scale	factors	in	Equation	4.8.	Th	∊		blue	lines	indicate	the
frequencies	generated	by	DFT.	The	dotted	red	 lines	denote	 th	∊	 	boundaries	of	 the	ranges	of	 frequencies
represented	by	each	of	these	frequencies.

Let	 us	 now	 revisit	 the	 issue	 of	 the	 scale	 factors	 introduced	 to	 generate
Equation	 4.8.	 In	 this	 book,	 we	 do	 not	 discuss	 analog	 Fourier	 transform.
However,	 mathematically,	 discrete	 Fourier	 transform	 is	 derived	 from	 analog
Fourier	 transform.	 In	 DFT,	 when	 we	 move	 from	 time/spatial	 domain	 to
frequency	domain,	we	generate	a	few	discrete	frequencies,	with	uniform	distance
between	them.	In	other	words,	DFT	only	creates	frequencies	that	makes	k	cycles
over	the	N	sample,	where	k	is	limited	to	an	interger.	However,	when	we	perform
the	same	Fourier	transform	in	the	analog	domain,	it	can	generate	many	different
frequencies	since	conceptually	both	k	and	N	can	take	any	value.
Therefore,	 the	set	of	 frequencies	generated	by	 the	DFT	can	be	 thought	of	as

the	 sampling	 of	 the	 frequencies	 in	 continuous	 domain.	 Each	 of	 these	 discrete
frequencies	can	be	considered	 to	be	a	 representative	of	a	 range	of	 frequencies.

All	the	frequencies	with	k	=	1,	2,	.	.	.	N	2	can	be	thought	of	representative	of	a
range	 of	 frequencies	 with	 width	 2	 N	 (Figure	 4.6).	 However,	 the	 range	 of
frequencies	represented	by	the	first	and	last	frequency,	i.e.	k	=	0,		N	2	is	half	of
this,	 i.e.	 1	 N	 .	 These	 are	 exactly	 the	 scale	 factors	 used	 for	 the	 different
frequencies	 in	 Equation	 4.8.	 Therefore,	 these	 scale	 factors	 originate	 from	 the
width	of	the	spectral	band	represented	by	each	of	the	discrete	frequencies.

Put	a	Face	to	the	Name

Jean-Baptiste	Joseph	Fourier	was	a	French	mathematician	(21	March	1768
16	May	1830)	who	played	an	important	role	during	the	French	Revolution
for	which	he	was	briefly	imprsioned.	He	accompanied	Napoleon	Bonaparte
in	his	Egyptian	expedition	in	1798	and	contributed	heavily	to	the	Egyptian
institute	 in	Cairo	 that	Napoleon	founded.	Fourier’s	biggest	contribution	 is
in	the	investigation	of	Fourier	series	and	their	applications	to	problems	of
heat	transfer	and	vibrations.
Though	Fourier	transform	is	probably	the	most	fundamental	mainstay	of

image	processing,	it	was	not	easy	for	Fourier	to	publish	this	work.	Fourier
first	 tried	 to	 publish	 this	 work	 in	 1807	 when	 he	 claimed	 that	 “any
continuous	periodic	 signal	 can	be	 expressed	 as	 a	 sum	of	properly	 chosen
sinusoids”.	 Two	 stalwart	 mathematicians	 of	 those	 times,	 Lagrange	 and
Laplace,	 reviewed	 the	 paper.	While	Laplace	wanted	 to	 publish	 the	 paper,
Lagrange	vehemently	opposed	it	saying	that	sinusoids	cannot	be	sufficient
to	 represent	 signals	with	 corners.	The	paper	was	published	15	years	 later
after	 Lagrange’s	 death.	 As	 to	 the	 question	 of	 who	 was	 right,	 well,	 both
were.	 It	 is	 true	 that	 you	 cannot	 represent	 signals	 with	 corners	 with
sinusoids,	but	you	can	get	extremely	close.	In	fact,	you	can	get	so	close	that
the	 energy	 difference	 is	 zero	which	was	 shown	 by	Gibbs	 later	 on	 and	 is
famously	called	the	Gibbs	effect.	Also,	it	was	shown	that	this	is	true	only	in
the	analog	domain.	In	the	digital	domain,	the	representation	is	exact,	even

4.1.1

4.2

for	signals	with	corners.

Why	Sine	and	Cosine	Waves?
A	question	that	is	probably	hovering	in	everyone’s	mind	by	this	time,	is	what	is
so	 special	 about	 sine	 and	 cosine	waves	 and	why	 are	we	 decomposing	 general
signals	 into	 sine	 and	 cosine	waves?	 In	 fact,	 sine	 and	 cosine	waves	 are	 indeed
special.	 You	 can	 show	 the	 sine	 and	 cosine	waves	 of	 different	 frequencies	 are
completely	independent	of	each	other.	In	other	words,	none	of	these	waves	can
be	given	by	a	linear	combination	of	the	others.	You	can	verify	this	by	correlating
any	 of	 these	 waves	 with	 any	 of	 the	 other.	 The	 answer	 will	 always	 be	 zero
confirming	that	each	wave	is	completely	uncorrelated	and	hence	independent	of
another.	Therefore,	these	waves	form	a	basis	for	representing	other	functions.	It
can	 be	 shown	 that	 these	 set	 of	 waves	 are	 both	 necessary	 and	 sufficient	 to
represent	any	general	1D	periodic	function.

Figure	4.7	.	This	shows	both	the	rectangular	and	the	polar	representation	for	the	same	function.

Polar	Notation
Now,	 the	 question	 is,	 how	 do	 we	 represent	 this	 frequency	 domain	 for	 us	 to
interpret	 it	 for	our	needs.	Of	course,	one	obvious	way	 is	 to	plot	x	 c	and	x	 s	 (as
shown	in	Figure	4.4).	This	 is	 referred	 to	as	 the	rectangular	 representation.	But
note	 that	 we	 are	 dealing	 with	 sine	 and	 cosine	 waves	 in	 the	 rectangular
representation	which	when	 drawn	 out	 as	 in	 Figure	4.3	will	 cause	 constructive

and	destructive	interference	(yes,	this	is	the	concept	in	physics	that	you	learned
in	high	school!).	Therefore,	some	parts	of	one	wave	will	cancel	out	some	parts	of
another	wave	while	others	will	reinforce	it.	Therefore,	it	is	very	difficult	to	really
understand	anything	useful	from	this	plot	of	x	c	and	x	s	.
However,	 there	 is	 respite	 from	 this.	When	 considering	 a	 pair	 of	 scaled	 sine

and	 cosine	waves	 of	 the	 same	 frequency,	 they	 can	 be	 represented	 by	 a	 single
cosine	wave	of	certain	amplitude	and	phase.	This	is	due	to	the	fact	that	sine	and
cosine	waves	are	phase	shifted	versions	of	each	other.	Therefore,	for	each	pair	of
same	frequency	sine	and	cosine	waves,	we	can	do	the	following.

(4.12)
x	c	[k]	c	o	s	(ω	i)	+	x	s	[k]	s	i	n	(ω	i)	=	M	k	c	o	s	(ω	i	+	θ	k)
where	M	k	=	x	c	[k]	2	+	x	s	[k]	2	and	θ	i	=	t	a	n	-	1	x	s	[k]	x	c	[k]	are	the
amplitude	and	phase	respectively	of	the	k	cosine	wave.	Therefore,	instead	of	two
arrays	x	c	and	x	s	which	makes	it	a	little	complicated	to	analyze,	we	can	represent
x	by	a	set	of	only	the	cosine	waves,	each	with	a	different	amplitude	and	phase.	N
2	such	cosine	waves	each	of	which	scaled	by	the	right	amplitude	and	shifted	by
the	right	phase	is	added	together	to	create	the	original	signal.	This	amplitude	and
phase	 generates	 two	 1D	 plots	 which	 constitutes	 the	 frequency	 domain
representation	 of	 the	 signal	 x.	 This	 representation	 is	 called	 the	 polar
representation.	Now	note	here,	that	the	phase	can	be	expressed	either	in	degrees
or	in	radians.	If	expressed	in	degrees,	the	independent	axis	will	range	from	-	180
to	180.	If	expressed	in	radians	it	will	range	from	-	π	tp	π.	Another	aspect	to	keep
in	mind	when	 coding	 this	 up	 is	 computing	 θ	 involves	 a	 division	with	 x	 c	 [k].
Therefore,	 sometimes	 this	 can	 lead	 to	 a	 division	 zero.	 The	 case	 of	 x	 c	 [k]	 =	 0
should	be	treated	as	an	exception	and	appropriate	phase	assigned	to	it.	Most	of
these	are	more	pertinent	 if	you	have	 to	 code	up	DFT	which	will	be	 rare	 since
multiple	mathematical	packages	(e.g.	Matlab)	are	available	today	that	do	this	for
you.
Figure	4.7	 shows	 the	 rectangular	 representation	and	 the	 corresponding	polar

representation	of	 the	DFT	of	a	1D	signal.	Now,	 let	us	 take	a	moment	 to	 study
this	polar	representation	a	little	more.	Interpreting	this	plot	is	absolutely	essential
to	 internalize	 concepts	 in	 image	 analysis.	 While	 multiple	 computer	 programs
will	generate	this	plot	for	you	in	no	time,	none	will	tell	you	how	to	interpret	it.
First,	note	that	the	independent	axis	of	the	plot	can	be	either	k	ranging	from	0	to
N	2	or	f	ranging	from	0.0	to	0.5	or	ω	ranging	from	0	to	π	(in	Figure	4.7	we	have
used	f).	You	should	be	prepared	to	see	any	of	these	representations.	The	ranges
will	 tell	you	which	particular	parameter	 is	being	used.	Second,	note	 that	phase
provides	us	information	about	how	synchronous	the	rise	and	fall	of	the	different

4.2.1

waves	are,	indicating	whether	they	result	in	features	(e.g.	edges,	corners).	Such
features	 are	 best	 studied	 in	 the	 spatial/time	 domain	 and	 not	 in	 the	 frequency
domain.	Therefore,	the	amplitude	plot	is	of	most	importance	to	us	as	we	saw	in
the	previous	chapter.

Figure	4.8	.	This	figure	shows	the	the	process	of	unwrapping	of	phase.

However,	the	polar	notation	is	not	devoid	of	problems.	Consider	the	two	cases
of	x	s	[k]	=	x	c	[k]	=	1	and	x	s	[k]	=	x	c	[k]	=	-	1.	In	both	these	cases	M[k]	=	1.414.
But	the	phase	for	one	of	them	is	45	o	and	the	other	is	-	135	o	.	This	is	due	to	the
phase	ambiguity.	Similar	problem	arises	because,	for	example,	a	phase	shift	of	θ
is	equal	to	that	of	θ	+	2π	or	θ	+	4π	and	so	on.	This	ambiguity	in	representation
needs	to	be	taken	care	of	after	θ	is	computed.	This	process	is	called	unwrapping
of	the	phase	and	is	illustrated	in	Figure	4.8.

Properties
It	is	now	time	to	explore	some	basic	properties	of	DFT	as	follows.

1.	 Homogeneity:	If	the	DFT	of	a	signal	x[t]	is	given	by	M[f],	the	DFT	of
the	 signal	 scaled	 by	 a	 factor	 k	 is	 also	 scaled	 by	 k.	 In	 other	 words,
homogeneity	implies	that	if	a	signal	is	scaled	in	the	spatial	domain,	its
amplitude	 in	 frequency	 domain	 is	 also	 scaled	 similarly.	 Assuming
→	stands	for	DFT,	this	can	be	expressed	as,

(4.13)
x	[t]	→	(M	[f]	,	θ	[f])	⇒	k	x	[i]	→	(k	M	[f]	,	θ	[f])
Note	that	the	phase	θ[f]	remains	unchanged	with	scaling.

1.	 Additivity:	 Addition	 of	 signals	 in	 the	 spatial	 domain	 results	 in	 an
addition	 of	 its	 responses	 in	 the	 frequency	 domain.	 This	 can	 be
expressed	as

(4.14)
x	[t]	→	(x	c	[f]	,	x	s	[f])	,	y	[t]	→	(y	r	[f]	,	y	i	[f])

(4.15)

4.2.2

⇒	x	[t]	+	y	[t]	→	(x	c	[f]	+	y	r	[f]	,	x	s	[f]	+	y	i	[f])

Addition	 of	 two	 sine	 or	 cosine	waves	makes	 sense	 only	when	 they	 are	 of	 the
same	phase.	Therefore,	 this	addition	cannot	be	performed	 in	 the	polar	notation
(where	we	 express	 x	 as	 sum	 of	 different	 cosine	 waves	 of	 different	 phase	 and
amplitude).	Hence,	we	resort	 to	the	rectangular	notation	(where	we	express	the
signal	 as	 a	 sum	 of	 sine	 and	 cosine	 waves	 of	 similar	 phase)	 to	 achieve	 this
addition.

1.	 Linear	Phase	Shift:	A	shift	in	the	signal	in	the	spatial	domain	results	in
a	 linear	 phase	 shift	 proportional	 to	 the	 spatial	 shift	 in	 the	 frequency
domain	as	follows.

(4.16)
x	[t]	→	(M	[f]	,	θ	[f])	⇒	x	[t	+	s]	→	(M	[f]	,	θ	[f]	+	2	π	f	s)
This	can	be	 intuitively	explained	also.	Think	of	x[t]	getting	 shifted	by	s	 in	 the
spatial	domain.	This	means	that	all	the	waves	comprising	x[t]	will	be	shifted	by
s.	 Note	 that	 the	 same	 shift	 s	 makes	 up	 a	 larger	 part	 of	 a	 cycle	 for	 a	 lower
frequency	 wave	 than	 a	 higher	 frequency	 wave	 which	 corresponds	 to	 a	 lower
phase	 shift.	 Therefore	 the	 phase	 shift	 for	 each	 wave	 is	 proportional	 to	 its
frequency.

Figure	 4.9	 .	 This	 shows	 how	 a	 symmetric	 signal	 can	 be	 decomposed	 to	 two	 signals	which	 are	 complex
conjugates	of	each	other.

Example	Analysis	of	Signals
Let	us	see	if	we	can	explain	some	of	the	phenomena	using	what	we	have	learned
so	far.	This	will	help	you	understand	how	to	use	these	properties	for	analyzing
signals.	First	let	us	consider	a	symmetric	signal	as	seen	in	Figure	4.10.	What	can
you	say	about	the	phase	of	a	symmetric	signal?
For	this	we	need	to	understand	something	called	the	complex	conjugate	of	a

signal.	A	signal	whose	frequency	domain	response	has	the	same	magnitude	but
negative	phase	is	called	the	complex	conjugate	of	x	and	is	denoted	by	x	⋆	.	It	can
also	 be	 shown	 that	 if	 the	 frequency	 response	 of	 a	 signal	 and	 its	 complex
conjugate	are	added,	the	resulting	phase	is	zero	at	all	frequencies.	Further,	if	the

phase	response	in	the	frequency	domain	is	negated	as	above,	the	signal	is	flipped
in	the	spatial	domain.
Now	considering	 this,	 let	 us	 look	 at	 a	 symmetric	 signal	 as	 shown	 in	Figure

4.9.	A	symmetric	signal	can	be	decomposed	into	two	signals,	each	of	which	is	a
flipped	version	of	 the	other	 i.e.	 complex	conjugate	of	 the	other.	Therefore,	 the
addition	 of	 these	 two	 signals	 provides	 a	 signal	whose	 phase	 response	 is	 zero.
Therefore	a	symmetric	signal	always	has	zero	phase	as	shown	in	Figure	4.10.
Now,	let	us	next	consider	what	happens	when	we	consider	shifting	of	such	a

symmetric	 signal.	For	 this,	 please	 refer	 to	Figure	4.10.	Here	we	 show	 circular
shifts	of	the	symmetric	signal.	Note	that	from	the	property	of	linear	phase	shift
due	to	spatial	shift	in	the	signal	we	know	that	any	such	shift	will	cause	the	phase
to	be	shifted	linearly.	The	slope	of	this	shift	will	be	positive	or	negative	based	on
if	 the	 shift	 is	 to	 the	 right	 or	 left	 respectively.	 Finally,	 when	 the	 circular	 shift
results	 in	another	 symmetric	 signal	as	 shown	 in	Figure	4.10,	 it	 leads	 to	 a	 zero
phase	signal	again.
This	 provides	 us	 with	 an	 example	 of	 how	 these	 properties	 can	 be	 used	 to

analyze	signals.	However,	the	issue	of	phase	of	symmetric	signals	also	brings	in
the	 question	 of	what	 does	 it	meant	 by	 a	 non-linear	 phase?	Usually	 non-linear
phase	 means	 non-linear	 features	 superimposed	 on	 linear	 phase	 as	 shown	 in
Figure	4.11.	It	is	typical	of	more	general	non-symmetric	signals.

Figure	4.10	.	This	shows	the	frequency	responses	of	symmetric	signals	and	their	circular	movement.

Let	 us	 now	 see	 another	 example	 of	 signal	 analysis	 called	 amplitude
modulation.	 Lets	 us	 consider	 an	 audio	 signal	 x[t]	 whose	 response	 X[f]	 in
frequency	domain	is	bandlimited	by	b.	This	signal	is	multiplied	by	a	very	high
frequency	 cosine	 wave	 y[t]	 called	 the	 carrier	 wave	 or	 carrier	 frequency.	 The
frequency	 of	 this	wave	 is	 called	 the	 carrier	 frequency	 and	 denoted	 by	 c.	Note
that	 since	 this	 is	 a	 single	 cosine	wave,	 its	 frequency	 response	Y[f]	 is	 a	 shifted
delta	at	c.
A	multiplication	in	spatial	domain	is	a	convolution	is	frequency	domain	which

results	in	creating	two	mirror	copies	of	X[f]	centered	around	c.	To	recover	 the
signal	 in	frequency	domain	a	filter	 that	extracts	a	region	of	bandwidth	b	to	the
left	or	right	of	c,	often	called	a	notch	filter,	would	be	sufficient.	This	is	exactly
how	 AM	 (standing	 for	 amplitude	 modulation)	 radio	 works	 with	 each	 station
having	their	own	carrier	frequency	transmitting	a	signal	modulated	by	the	carrier
wave.	When	we	tune	in	the	radio,	we	are	applying	the	notch	filter	to	recover	the
signal	back.	Note	that	c	>>	b	for	this	to	work	and	also	the	carrier	frequencies	of

the	 different	 channels	 needs	 to	 be	 at	 least	 2b	 apart	 to	 ensure	 no	 mingling	 of
signals.	We	will	see	in	Section	4.4	that	this	mingling	of	signals	have	a	name	and
distinct	feature.

Figure	4.11	.	This	shows	the	non	linear	phase	of	a	typical	non-symmetric	signal.

Figure	4.12	.	This	shows	the	phenomenon	of	amplitude	modulation.	A	audio	signal	x[t]	 in	spatial	domain,
bandlimited	by	b	 in	frequency	domain,	is	multiplied	by	a	carrier	sine	wave	y[t]	of	very	high	frequency	c.
This	multiplication	results	in	a	convolution	of	a	shifted	delta	with	the	frequency	response	X[f]	of	the	audio
signal.	This	results	in	a	shifted	copy	of	X[f]	centered	at	frequency	c.

Figure	4.13	.	The	amplitude	plot	is	frequency	domain	is	periodic	and	repeats	itself	as	an	even	function.	The
red	plot	signifies	the	[0	,	π]	range	that	we	have	seen	so	far.

4.3

This	 constraint	 that	 carrier	 frequencies	 should	 be	 2b	 apart	 did	 not	 allow
enough	 carrier	 frequencies	 as	 were	 demanded	 by	 the	 fast	 growing	 number	 of
stations.	So,	 frequency	modulation	or	FM	came	 later.	Here,	 the	 frequency,	and
not	 the	 amplitude,	 of	 the	 signal	 to	 be	 transmitted	 is	 modulated	 based	 on	 the
amplitude	 of	 the	 spatial	 signal.	 For	 example,	 the	 frequency	 can	 be	modulated
from	55KHz	to	65KHz	for	one	station	and	between	40-50KHz	in	another	station.
Here	also	a	frequency	domain	notch	filter	extracts	the	signal	on	the	receiver	end.
However,	 the	 range	 of	 frequencies	 to	 be	 used	 for	 modulation	 can	 be	 much
smaller	allowing	much	larger	number	of	stations	to	be	packed	in.

Periodicity	of	Frequency	Domain
As	 explained	 in	 Figure	 4.1,	 DFT	 consider	 the	 signal	 to	 be	 repeating	 itself
periodically	infinitely.	However,	we	have	not	discussed	yet,	the	consequence	of
such	an	assumption.	A	question	may	be	hovering	in	your	minds	as	to	how	does
an	infinitely	periodic	function	have	a	finite	DFT.	In	fact,	it	doesn’t!	We	will	now
discuss	 how	 this	 periodicity	 in	 spatial	 domain	 induces	 a	 periodicity	 in	 the
frequency	domain.	Let	us	explore	now	how	this	periodicity	looks.
DFT	decomposes	a	signal	into	cosine	waves	of	different	magnitude	and	phase.

If	we	consider	a	frequency	f,	we	know	from	trigonometry	that

(4.17)
A	c	o	s	(f)	=	A	c	o	s	(-	f)	=	A	c	o	s	(2	π	-	f)	=	A	c	o	s	(n	2	π	-	f)

where	n	is	any	integer.	From	this,	you	can	see	that	if	the	value	of	the	amplitude
at	f	in	the	DFT	magnitude	response	is	A,	then	the	same	value	would	repeat	at	-	f
and	also	at	2π	-	f	and	so	on.	Therefore	the	amplitude	repeats	as

(4.18)
M	[f]	=	M	[-	f]

as	shown	in	Figure	4.13.	Thus	it	repeats	as	an	even	function,	a	function	whose
value	 at	 a	 negated	 parameter	 is	 the	 same	 as	 its	 value	 at	 the	 corresponding
positive	parameter.

4.4

Figure	4.14	.	The	phase	plot	is	frequency	domain	is	periodic	and	repeats	itself	as	an	odd	function.	The	red
plot	signifies	the	[0	,	π]	range	that	we	have	seen	so	far.

Let	us	now	see	what	happens	to	the	phase.	We	know	from	trigonometry	that

(4.19)
c	o	s	(f	+	θ)	=	c	o	s	(-	f	-	θ)	.
Therefore,	the	negative	of	the	value	of	the	phase	θ	repeats	at	-	f.	Therefore,	the
phase	repeats	itself	as

(4.20)
θ	[f]	=	-	θ	[-	f]
as	shown	in	Figure	4.14.	This	is	an	odd	function,	a	function	whose	value	at	the
negated	 parameter	 is	 the	 negative	 of	 its	 value	 at	 the	 corresponding	 positive
parameter.	Also,	note	that	hence	forth	most	of	the	times	when	you	will	be	shown
a	1D	frequency	plot	you	will	be	shown	the	plot	for	the	entire	range	of	[-	π	,	π]	.

Aliasing
Now	 that	 we	 have	 understood	 periodicity,	 this	 brings	 us	 to	 a	 very	 important
phenomenon	called	aliasing.	Let	us	start	with	the	amplitude	modulation	we	did
in	Section	4.2.2.	Let	us	assume	that	 the	carrier	frequencies	of	different	stations
are	less	than	2b	apart.	Let	us	see	what	happens	in	that	case.
Check	out	Figure	4.15.	We	see	here	 two	signals,	blue	and	green	 transmitted

with	carrier	 frequencies	c	and	d	 respectively.	On	 the	 left	when	c	 and	d	 are	 2b
apart,	 the	 blue	 and	 green	 signals	 do	 not	 overlap	 with	 each	 other	 after
convolution.	Therefore,	when	the	blue	signal	is	reconstructed	using	a	notch	filter
with	frequencies	from	c	to	c	+	b,	the	original	signal	is	reconstructed	via	inverse
DFT.	But	now	note	what	happens	when	c	and	b	are	not	2b	apart	as	shown	in	the
right.	 Here	 the	 blue	 and	 green	 signals	 overlap	 each	 other	 and	 now	 during
reconstruction	part	of	the	green	signals	higher	frequencies	get	added	to	the	blue
signal	thereby	amplifying	its	higher	frequency.	This	would	create	high	frequency

artifacts	 in	 the	 reconstructed	signal.	The	phenomena	of	ghost	 frequencies	 from
other	signals	contaminating	a	signal	is	called	aliasing.

Figure	4.15	.	Left:	The	Y	and	X	denote	the	frequency	domain	response	of	the	carrier	wave	and	the	signal	to
be	 transmitted	 respectively.	 Since	 carrier	 waves	 are	 a	 cosine	 or	 sine	 wave	 of	 a	 single	 frequency,	 their
response	 is	 a	 single	 spike	 at	 the	 carrier	 frequency.	Two	such	carrier	 frequencies,	c	 and	d,	 are	 exactly	 2b
apart	and	the	reconstructed	signal	by	notch	filter	of	frequency	c	to	c	+	b	would	give	the	correct	signal	back.
Right:	c	and	d	are	less	than	2b	apart.	Now	during	reconstruction,	part	of	the	green	signal	gets	added	to	the
blue	signal	giving	a	signal	which	has	some	extra	high	frequencies.	This	reconstructed	signal	is	highlighted
in	dark	blue.

To	start	with	this,	let	us	start	with	the	simplest	case.	Let	us	consider	a	discrete
1D	signal	x[t]	of	size	n	=	100	samples	being	convolved	with	a	filter	h[t]	of	size
m	=	25.	We	know	that	the	size	of	the	resulting	signal	will	have	-	62	-	50	0	50	62
n	+	m	-	1	=	125	samples.	Now	let	us	consider	performing	the	same	convolution
by	 first	 finding	 the	 DFT	 of	 x	 and	 h	 given	 by	 X	 and	 H	 of	 size	 50	 and	 13
respectively.	Then,	we	multiply	X	and	H	to	get	the	response	of	size	50	and	then
find	 the	 inverse	DFT	 that	 results	 in	 a	 signal	with	 100	 samples.	 So,	 using	 one
approach	we	get	an	answer	which	is	125	samples	long	and	using	another	we	get
to	 a	 signal	with	 100	 samples.	So,	what	 is	 the	 problem	here?	 In	 fact,	 since	 the
convolved	signal	should	be	124	samples,	it	would	need	sinusoids	that	make	0	to
62	 cycles	 to	 represent	 the	 convolved	 signal	 as	 per	 the	 Nyquist	 criterion.
However,	 when	 going	 by	 the	 frequency	 domain	 multiplication,	 we	 are	 not
sampling	the	frequency	domain	adequately	by	using	only	50	samples.	Hence,	the
convolved	signal	achieved	via	that	route	will	show	an	aliasing	artifact.	Here	the
aliasing	 is	 purely	 due	 to	 inadequate	 sampling.	 To	 do	 this	 correctly	 via	 the
frequency	domain,	you	should	first	pad	both	x	and	h	 adequately	 to	make	 them
125	samples	in	size.	Next,	we	find	the	DFT	of	x	and	h	yielding	X	and	H,	each	of
which	is	62	samples	in	size.	These	after	inverse	DFT	will	create	the	correct	124
sample	sized	convolved	signal.

4.5

Figure	4.16	.	This	figure	shows	the	aliasing	stemming	from	the	periodicity	of	the	DFT.

Note	 that	 this	 aliasing	 essentially	 stems	 from	 the	 periodicity	 of	 the	DFT	 as
shown	in	Figure	4.16.	The	size	of	the	frequency	response	array	is	supposed	to	be
62	 and	when	 50	 samples	 are	 used	 the	 frequency	 response	 overlaps	 with	 each
other.	 It	 is	 almost	 as	 if	 the	 last	12	 samples	have	 flipped	over	 to	be	part	of	 the
frequency	response	when	it	is	not	supposed	to	be	like	that.	This	leads	to	leak-in
high	frequency	that	shows	up	as	aliasing	artifacts.

Extension	for	2D	Interpretation
In	 this	 chapter,	we	have	 so	 far	 been	 considering	only	1D	 signals.	Now	 lets	 us
consider	2D	data.	As	you	already	know,	grayscale	images	are	considered	as	2D
data.	Therefore,	they	can	undergo	DFT	too.	A	multitude	of	software	can	perform
this	DFT,	but	 it	 is	 important	 to	 interpret	 the	results	of	DFT.	So,	 let	us	see	how
would	 the	 frequency	 domain	 representation	 of	 the	 DFT	 of	 2D	 data	 be
interpreted.	We	had	already	touched	upon	this	briefly	in	Section	1.3	of	Chapter
1.	It	may	be	useful	if	you	want	to	go	back	and	brush	up	on	this	section.	We	will
get	into	lot	more	details	in	this	chapter.

Figure	4.17	.	This	figure	shows	the	amplitude	and	phase	plot	on	the	right	corresponding	to	the	frequency
domain	representation	of	the	image	in	the	left.

As	we	 saw	 in	Chapter	1,	 the	 frequency	 domain	 response	 of	 a	 2D	 data	will
result	in	a	2D	plot.	Therefore,	M	and	θ	are	now	a	2D	functions	representing	the
amplitude	and	phase	of	cosine	waves	of	different	frequencies	(as	in	the	case	of
1D)	and	different	orientation.	Let	M	and	θ	depend	on	two	variables	g	and	h	such

that	M	[g	 ,	h]	and	θ	[g	 ,	h]	give	 the	 amplitude	 and	phase	 respectively	 of	 a
cosine	wave	 of	 frequency	 g	2	+	 h	 2	 and	 orientation	 tan	 -1	 (h	 g)	 .	 The	most
common	way	of	visualizing	M	and	θ	is	to	plot	them	as	a	grayscale	image	where
the	values	of	M	[g	,	h]	and	θ	[g	,	h]	is	visualized	as	a	gray	value	between	black
and	white.
Let	 us	 now	 understand	 this	 representation	 thoroughly.	 Let	 us	 consider	 a

grayscale	image	which	is	2D	data—	note	that	an	RGB	image	will	be	considered
as	a	3D	data	due	to	multiple	channels.	However,	each	channel	of	RGB	image	is
usually	 considered	 as	 2D	 data.	 The	 frequency	 domain	 representation	 of	 an
example	image	is	shown	in	Figure	4.17.	There	are	a	few	things	 to	note	here	 in
the	amplitude	and	phase	plots.	First,	the	zero	frequency	(or	the	DC	component)
is	at	the	bottom	center	of	the	image.	Second,	the	orientation	of	the	cosine	wave
can	be	from	0	 to	180.	Beyond	 that	 the	orientation	can	be	mapped	back	 to	0	 to
180.	Therefore	the	bottom	horizontal	line	denotes	frequencies	of	0	degree	on	the
right	and	180	degree	on	the	left.	Third,	note	that	as	expected,	high	gray	values
are	 at	 lower	 radius	 from	 the	 center	 denoting	 concentration	 of	 the	most	 of	 the
energy	of	the	signal	at	lower	frequencies.	In	this	particular	plot,	note	that	the	the
vertical	 frequencies	 (90	degrees)	 have	high	 frequencies.	 Finally,	 note	 that	 it	 is
almost	 impossible	 to	 make	 any	 sense	 out	 of	 the	 phase	 plot.	 This	 is	 expected
since	this	plot	is	not	unwrapped.	Also,	as	mentioned	earlier,	the	phase	plot	shows
how	synchronous	 the	rise	and	fall	of	 the	cosine	waves	are.	This	 information	 is
pertinent	 for	 detecting	 features	 (e.g.	 edges).	 However,	 feature	 detection	 is
usually	 done	 in	 the	 spatial	 domain	 and	 hence	 the	 phase	 plot	 is	 typically	 not
interpreted	for	spectral	analysis.

4.5.1

Figure	 4.18	 .	 This	 figure	 shows	 that	 when	 the	 phase	 information	 of	 one	 image	 is	 combined	 with	 the
amplitude	of	another	to	create	a	new	image	via	inverse	DFT,	the	perception	of	the	image	whose	phase	was
used	prevails.

This	may	give	you	an	impression	that	the	phase	plot	is	not	that	important.	But
this	is	a	grave	misconception	as	is	illustrated	by	Figure	4.18.	Here	we	have	taken
the	phase	response	of	the	cheetah	image	and	the	amplitude	response	of	the	zebra
image	and	combined	 them	using	 the	 inverse	DFT	 to	create	a	new	 image	back.
Note	 that	 the	 predominant	 perception	 of	 this	 image	 is	 that	 of	 cheetah	 whose
phase	plot	has	been	used.	This	shows	that	phase	information	is	very	important,
just	that	it	is	easier	to	study	this	in	the	spatial	domain	rather	then	the	frequency
domain.

Effect	of	Periodicity
Now	 let	 us	 see	 how	 this	 periodicity	 extends	 to	 2D.	 We	 have	 seen	 that	 the
amplitude	and	phase	plots	repeat	themselves	to	infinity	in	positive	and	negative
directions	as	an	even	and	odd	function	respectively.	The	same	will	be	true	in	2D.
But	 now	 since	we	 are	 dealing	with	 2D	 functions,	 the	 plot	will	 repeat	 itself	 in
each	of	 the	 four	quadrant	directions.	We	will	be	working	with	amplitude	plots
mostly	and	 to	show	one	period	of	 the	plot,	we	will	be	showing	four	quadrants
where	the	bottom	two	quadrants	will	be	the	reflection	of	the	top	two	quadrants.
Let	us	now	look	at	a	few	frequency	response	plots	(amplitude	only)	in	Figure

4.19	to	understand	these	better.	(a)	is	the	image	of	a	sine	wave	making	8	cycles
in	 the	 horizontal	 direction.	 Note	 that	 horizontal	 direction	 sinusoids	 result	 in
vertical	stripes	and	vice	versa.	Therefore,	you	see	the	plot	with	two	high	points
on	the	x	axis	denoting	the	symmetric	position	for	the	horizontal	sinusoid	which
can	be	considered	to	be	of	orientation	0	or	180.	The	bright	spot	in	the	center	is
due	 to	 the	 averaging	 of	 all	 the	 pixels	 in	 the	 image.	 (b)	 contains	 only	 one
frequency	in	the	vertical	direction.	Therefore,	again	we	find	two	highlights	in	the
vertical	axis	at	90	and	370	degrees.	The	next	 two	images,	(c)	and	(d),	contains
both	 vertical	 and	 horizontal	 frequencies	 and	 therefore	 you	 see	 four	 highlights
instead	 of	 two	 in	 the	 amplitude	 graph	 in	 the	 frequency	 domain.	 Finally,	 (e)
shows	an	image	which	is	just	a	rotation	of	a	single	sinusoid.	Ideally,	you	would
see	two	highlights	in	the	direction	perpendicular	to	the	direction	of	the	stripes	as
shown	in	(g).	However,	instead	we	see	strong	horizontal	and	vertical	patterns	in
Figure	 4.19.	 This	 may	 look	 surprising	 but	 this	 is	 exactly	 what	 is	 due	 to	 the
periodicity.	 Due	 to	 periodicity	 we	 are	 finding	 the	 DFT	 of	 the	 image	 in	 (e)
repeated	 in	 both	 directions	 multiple	 times	 as	 shown	 in	 (h).	 The	 edges	 thus
created	causes	the	horizontal	and	vertical	highlights	in	the	frequency	domain.	To

4.5.2

alleviate	this	effect,	we	perform	a	windowing	operation	on	this	image	as	shown
in	(f).	This	 is	essentially	pixel-wise	multiplication	of	an	 image	with	a	gaussian
image	 that	 has	 the	 peak	 brightness	 at	 the	 center	 and	 the	 brightness	 falls	 off
smoothly	 to	 a	 medium	 gray	 near	 the	 fringes	 based	 on	 a	 Gaussian	 function.
Though	 this	 brings	 in	 a	 new	 effect	 getting	 rid	 of	 the	 edges	 when	 repeated	 in
horizontal	 and	 vertical	 direction,	 we	 can	 see	 a	 better	 approximation	 of	 the
original	 non-repeated	 sinusoid	 where	 the	 two	 highlights	 can	 at	 least	 be
deciphered.

Notch	Filter
At	 this	 point,	 you	 may	 possibly	 be	 wondering	 about	 the	 possible	 uses	 of
frequency	 domain	 computation	 and	 how	 it	 can	 be	more	 effective	 than	 spatial
domain	 computation.	 Towards	 this,	 let	 us	 see	 an	 example	 of	 a	 notch	 filter.
Consider	 an	 image	 which	 has	 some	 periodic	 high	 frequency	 pattern
superimposed	 on	 it	—	 this	 can	 be	 due	 to	 the	 technology	 of	 its	 creation	 (e.g.
newsprint,	 tapestry).	 Removing	 this	 superimposed	 pattern	 in	 spatial	 domain	 is
not	obvious.	But	if	you	now	see	the	spectral	response	of	the	image	you	will	see
that	its	magnitude	plot	will	clearly	show	this	pattern	as	a	outlier	high	frequency.
It	is	easy	to	isolate	this	high	frequency	in	the	magnitude	plot,	remove	it	and	then
apply	the	inverse	DFT	to	get	a	new	image	back.	And	voila!	This	high	frequency
pattern	is	removed	from	this	image.	This	example	is	illustrated	in	Figure	4.20.

4.5.3

Figure	4.19	.	The	top	row	shows	the	spatial	domain	image	and	the	bottom	row	shows	its	amplitude	response
in	the	frequency	domain.	(a)	A	cosine	of	8	horizontal	cycles.	(b)	A	cosine	of	32	vertical	cycles.	(c)	A	cosine
of	 4	 cycles	 horizontally	 and	 16	 cycles	 vertically.	 (d)	 A	 cosine	 of	 32	 cycles	 horizontally	 and	 2	 cycles
vertically.	(e)	This	is	(a)	rotated	by	45	degrees.	The	ideal	frequency	domain	response	of	an	infinite	image	of
this	pattern	is	(g).	But	this	is	suppressed	due	to	the	extra	pattern	and	therefore	frequencies	created	by	tiling
as	shown	in	(h).	(f)	This	image	is	that	of	(e)	but	with	a	“windowing”	that	slowly	tapers	off	to	a	medium	gray
at	the	edge	and	therefore	the	frequency	response	is	closer	to	(g).

Figure	4.20	.	A:	The	original	image	with	a	high	frequency	pattern	superimposed	on	it;	B:	The	DFT	of	the
image	in	Anote	the	white	high	frequency	regions	corresponding	to	the	high	frequency	pattern;	C:	Removal
of	the	outlier	frequency	in	the	spectral	domain;	D:	Inverse	DFT	is	applied	on	C	to	get	a	new	image	back.
This	is	devoid	of	the	high	frequency	pattern.

Example	of	Aliasing
To	discuss	aliasing	in	the	context	of	2D	images,	a	very	good	example	is	provided
by	the	process	of	digital	image	generation	and	display.	We	will	discuss	this	using

1D	images,	but	you	will	see	that	it	will	be	adequate.	An	analog	image	is	sampled
to	create	a	digital	image.	This	process	is	called	sampling.	The	process	of	using	a
light	spot	(called	pixel)	of	a	particular	size	and	intensity	profile	to	display	these
samples	 is	 called	 is	 called	 reconstruction.	 We	 will	 now	 provide	 a	 frequency
domain	 analysis	 of	 these	 two	 processes	 and	 show	 how	 aliasing	 artifacts	 can
result	during	these	processes.
Let	us	now	consider	an	analog	signal	with	bandwidth	f	s	which	means	that	the

highest	 frequency	wave	present	 in	 the	 signal	 f	 s	 .	Now	 sampling	 this	 image	 to
convert	 it	 to	 digital	 domain	 can	 be	 considered	 as	 a	 multiplication	 by	 a	 comb
function	in	 the	spatial	domain.	A	comb	function	is	a	periodic	function	where	a
scaled	 impulse	 repeats	 itself	 periodically	 (Figure	 4.21).	 Since	 the	 frequency
domain	 response	 of	 a	 comb	 function	 is	 another	 comb	 function,	 the	 sampling
process	becomes	a	convolution	with	a	comb	function	in	 the	frequency	domain.
Since	the	largest	frequency	present	in	the	function	is	f	s	,	it	has	to	be	sampled	at
least	at	the	rate	of	2	f	s	.	This	means	that	 the	interval	between	the	combs	in	the
spatial	domain	is	1	2	f	s	.	Therefore,	by	duality,	the	interval	between	the	combs
in	the	frequency	domain	is	2	f	s	as	shown	in	Figure	4.21.	Note	that	if	the	distance
between	 the	combs	 is	greater	 than	2	 f	 s	 in	 frequency	domain	 (by	duality,	 if	 the
interval	between	the	combs	is	greater	than	1	2	f	s	in	the	spatial	domain),	then	the
copies	achieved	due	to	convolution	in	the	frequency	domain	would	overlap	with
each	other	leading	to	aliasing.	This	is	also	what	Nyquist	criterion	states.

Figure	 4.21	 .	 This	 figure	 shows	 the	 process	 of	 sampling	 an	 analog	 signal	 to	 its	 digital	 counterpart	 in
frequency	domain	by	convolution	with	a	comb	function.	The	bandwidth	of	the	analog	image	is	f	s	.

Now,	 let	 us	 consider	 the	 process	 of	 displaying	 a	 digital	 signal	 on	 a	 display.

Now	note	that	a	pixel,	though	thought	of	as	a	dot	of	light,	practically	is	formed
by	 illuminating	 a	 finite	 area.	 Though	 ideally	 we	 would	 like	 this	 area	 to	 be
uniformly	 illuminated	 and	 the	 light	 to	 be	 cut-off	 sharply	 away	 from	 the
boundaries	of	the	pixel,	practically	this	is	hardly	possible.	The	illumination	of	a
pixel	 is	 usually	 highest	 at	 the	 center	 and	 then	 drops	 of	 smoothly	 towards	 its
boundary	 and	 hopefully	 dies	 down	 before	 reaching	 the	 other	 pixel.	 Let	 us
consider	the	illumination	profile	of	the	pixel	to	be	a	signal	is	spatial	domain.	We
call	 this	 function	 as	 the	 point	 spread	 function	 or	 PSF.	 The	 process	 of	 image
reconstruction	is	 to	convolve	the	sampled	signal	 in	 the	spatial	domain	with	 the
kernel	of	PSF.	Therefore,	it	is	a	multiplication	in	the	frequency	domain	as	shown
in	Figure	4.22.	Now	note	that	if	the	bandwidth	of	the	PSF	(or	highest	frequency
in	the	PSF)	is	exactly	 f	s	,	a	correct	 reconstruction	will	be	assured.	However,	 if
the	bandwidth	 is	a	 little	higher	 (i.e.	pixels	are	sharper	and	become	dark	before
reaching	 the	 boundary),	 as	 shown	 by	 the	 orange	 function,	 the	 reconstructed
signal	 will	 have	 leakage	 highfrequencies	 from	 the	 other	 copies	 leading	 to
aliasing	artifacts.	This	artifact	is	commonly	called	pixelization.	If	the	bandwidth
is	 a	 little	 smaller	 (i.e.	 pixels	 are	 larger	 and	 bleeds	 into	 the	 next	 pixel),	 only	 a
smaller	band	of	frequencies	will	be	recovered	i.e.	the	image	will	be	blurred	as	in
low	pass	 filters.	These	are	 indicated	 in	Figure	4.22	via	colored	 lines	 that	mark
the	bandwidth	of	the	reconstructed	signal	for	each	of	these	three	different	cases.

Figure	4.22	.	This	figure	shows	the	process	of	reconstruction	of	a	digital	signal	to	its	analog	counterpart	in
frequency	domain.	Note	that	if	the	PSF	does	not	have	the	perfect	bandwidth	of	f	s	,	artifacts	will	result.	If	the
PSF	is	too	wide,	higher	frequencies	will	leak	in	(shown	in	orange)	causing	a	pixelization	artifact.	If	the	PSF
is	too	narrow,	higher	frequencies	will	be	cut	off	causing	a	blurring	artifact.

4.6

Note	 that	most	 of	 the	 concepts	 in	 this	 chapter	 have	 been	 illustrated	 in	 1D,	
however	they	provide	perfect	understanding	for	2D	image	phenomenon.	Ponder
over	 this	 deeply	 and	 carry	 this	 skill	 forward.	DFTs	 can	 be	 extended	 to	 higher
dimension	 and	 they	 are	 surprisingly	 widespread	 in	 their	 use.	 However,
understanding	 1D	 DFT	 goes	 a	 long	 way	 in	 understanding	 DFT	 in	 higher
dimensions.

Duality
The	 most	 effective	 aspect	 of	 DFT	 is	 its	 duality	 which	 has	 been	 proved
theoretically,	 but	 here	 we	 would	 only	 explore	 the	 concept	 without	 proof.
Intuitively,	you	can	see	this	by	going	back	and	examining	the	DFT	synthesis	and
analysis	equations	(Equation	4.3	and	4.5)	and	appreciating	the	striking	similarity
between	 them.	 This	 duality	 gives	 rise	 to	 several	 interesting	 properties	 that
become	very	handy	tools	in	analyzing	signals.	With	all	the	background	that	you
have	in	DFT	now,	this	should	become	a	very	intuitive	now	and	let	us	explore	this
more	 in	 this	section.	However,	note	 that	when	we	are	 talking	about	duality	we
consider	only	amplitude	and	not	 the	phase.	As	such,	we	saw	earlier	 that	phase
information	 is	 not	 studied	 in	 frequency	 domain	 much.	 Also,	 since	 time	 and
spatial	 parameters	 are	 common	 independent	 variables	 for	 1D	 and	 2D
respectively,	 they	 are	 often	 referred	 to	 as	 time	 domain	 and	 spatial	 domain
functions	 respectively.	But	 the	 terms	 are	 used	 interchangeably	 since	 they	 both
refer	 to	 the	 primal	 space.	 The	 dual	 space	 is	 given	 by	 the	 frequency	 domain
representation.

Figure	4.23	.	This	shows	the	duality	in	expansion	and	compression	of	spatial	domain	signals	that	lead	to	the
compression	and	expansion	of	their	frequency	domain	counter	parts.

First,	let	us	consider	a	δ	in	the	spatial	domain.	We	know	that	it	is	the	sharpest
signal	possible	and	therefore	is	created	by	assembling	all	the	different	cosine	and
sine	 waves—	 from	 the	 smoothest	 to	 the	 sharpest	 of	 them.	 Therefore,	 its
frequency	 response	 is	 a	 constant.	 Now	 consider	 a	 signal	 which	 is	 constant	 in
time	 domain.	 This	means	 that	 it	 is	 of	 frequency	 zero	 and	 hence	 its	 amplitude

frequency	 response	 is	 a	 spike	 at	 0.	 This	 is	 called	 duality	 —	 the	 frequency
response	of	a	spike	is	a	constant	and	that	of	a	constant	is	a	spike.
Next,	let	us	consider	a	signal	in	spatial	domain,	as	in	Figure	4.23.	Note	that	as

the	signal	expands	in	the	spatial	domain,	its	frequency	response	compresses	and
vice	versa.	This	can	also	be	explained	intuitively.	When	the	signal	compresses	in
the	 spatial	 domain,	 it	 gets	 sharper	 which	 indicates	 that	 the	 higher	 frequency
increases.	Therefore,	the	response	in	frequency	domain	expands.	In	fact,	this	is
the	 basis	 of	 low	 pass	 filtering.	 Widening	 kernel	 indicates	 smaller	 range	 of
frequency	getting	passed	and	therefore	a	more	drastic	low	pass	filtering.
Given	 this	duality,	 let	us	define	 some	Fourier	pairs	 (Figure	4.24).	These	 are

specific	 functions	and	 their	DFT	amplitude	 response	 in	 frequency	domain.	For
example,	the	DFT	of	a	Gaussian	filter	is	a	Gaussian.	However,	their	widths	are
inversely	related;	i.e.	 if	 the	width	of	the	spatial	domain	Gaussian	increases,	 the
width	of	 its	 frequency	response	decreases.	This	 is	a	Fourier	pair.	Similarly,	 the
DFT	of	the	box	filter	is	a	Sinc	function	given	by	S	i	n	[f]	f	,	and	that	of	a	sinc
function	 in	 the	 spatial	 domain	 is	 a	 box	 function,	 thus	 forming	 another	Fourier
pair.	Note	that	the	sinc	is	an	infinite	function	that	asymptotically	approaches	to
zero	with	increasing	f.	Another	dual	function	is	a	comb	function.	The	frequency
response	of	a	comb	function	is	also	a	comb	function,	only	that	their	intervals	are
inversely	related	similar	to	the	Gaussian	function	duality.	In	other	words,	if	the
spatial	 domain	 comb	 gets	 denser,	 its	 frequency	 response	 gets	 sparser	 and	 vice
versa.

Figure	4.24	.	This	figure	shows	three	Fourier	pairs	from	top	to	bottom.	(a)	A	Gaussian	is	a	Fourier	pair	of	a
Gaussian;	(b)	A	box	is	a	Fourier	pair	of	a	sinc	and	(c)	a	comb	is	a	Fourier	pair	of	a	comb.

These	 Fourier	 pairs	 can	 give	 us	 a	 lot	 of	 insights.	 Recall	 from	 the	 low	 pass
filtering	discussion	that	the	box	filter	is	not	the	greatest	low	pass	filter.	Now	the
time	has	come	to	explain	why.	An	ideal	low	pass	filter	will	be	a	box	filter	in	the
frequency	domain	which	would	completely	cut	off	 frequencies	above	a	certain
threshold	and	retain	the	ones	below	the	threshold.	However,	a	box	in	frequency
domain	 is	 a	 sinc	 in	 spatial	 domain.	 Sinc	 is	 an	 infinite	 function	 and	 no	 finite
digital	kernel	can	be	developed	for	it.	So,	an	ideal	low	pass	filter	is	impossible	to
build.	 Further,	 the	 most	 commonly	 used	 low	 pass	 filter	 is	 a	 box	 filter	 (often
achieved	 by	 averaging	 neighboring	 pixels	 in	 a	 square	 region	 of	 an	 image).
However,	note	that	the	frequency	response	of	a	box	is	a	sinc.	Convolution	by	a
box	in	spatial	domain	is	a	multiplication	by	sinc	in	the	frequency	domain.	Since
sinc	 is	 an	 infinite	 function,	 it	means	 that	by	 low	pass	 filtering	by	a	box,	 some
high	frequencies	will	always	remain	in	the	filtered	function	due	to	multiplication
with	 an	 infinite	 function.	Therefore,	 a	 box	 filter	 in	 reality	 is	 not	 ideal	 since	 it
leads	to	leakage	of	high	frequency	in	the	filtered	signal.	Practically,	a	Gaussian
filter	 offers	 us	 the	 best	 of	 both	 worlds	 since	 it	 has	 very	 little	 high	 frequency
leaks.	However,	the	higher	frequencies	can	get	significantly	attenuated.	In	fact,	a
box	multiplied	by	a	Gaussian	in	spatial	domain	(sinc	convolved	with	a	Gaussian
in	 frequency	 domain)	 turns	 out	 to	 be	 one	 of	 the	 best	 low	 pass	 filters	 since	 it
reduces	 the	 attenuation	 of	 the	 higher	 frequencies	 without	 compromising	 the
leakage	 of	 high	 frequencies.	 More	 complex	 filters	 exist,	 offering	 different
tradeoffs	 between	 the	 amount	 of	 attenuation	 of	 the	 higher	 frequencies	 and	 the
amount	of	leakage	of	higher	frequencies.

Fun	Facts

Did	you	know	that	your	ears	do	Fourier	transform	automatically!	There	are
little	 hairs	 (cilia)	 in	 you	 ears	 which	 vibrate	 at	 specific	 (and	 different)
frequencies.	 When	 a	 wave	 enters	 your	 ear,	 the	 cilia	 will	 vibrate	 if	 the
wavefunction	 “contains”	 any	 component	 of	 the	 correponding	 frequency!
Because	of	this,	you	can	distinguish	sounds	of	various	pitches!
In	 fact,	 Fourier	 transform	 is	 one	 of	 the	 most	 widely	 used	 mathematical
tools.	 It	 has	 been	 used	 to	 study	 the	 vibrations	 of	 submersible	 structures
interacting	with	fluids,	 to	 try	 to	predict	upcoming	earthquakes,	 to	 identify
the	 ingredients	 of	 very	 distant	 galaxies,	 to	 search	 for	 new	 physics	 in	 the
heat	remnants	of	the	Big	Bang,	to	uncover	the	structure	of	proteins	from	X-
ray	 diffraction	 patterns,	 to	 study	 the	 acoustics	 of	musical	 instruments,	 to

4.7

refine	models	 of	 the	water	 cycle,	 to	 search	 for	 pulsars	 (spinning	 neutron
stars),	and	to	understand	the	structure	of	molecules	using	nuclear	magnetic
resonance.	 The	 Fourier	 transform	 has	 even	 been	 used	 to	 identify	 a
counterfeit	 Jackson	 Pollock	 painting	 by	 deciphering	 the	 chemicals	 in	 the
paint.	That	is	quite	the	legacy	for	a	little	math	trick.

Conclusion
Fourier	analysis	is	a	mathematical	concept	that	can	be	applied	to	any	function	of
any	 dimension.	 There	 are	 different	 flavors	 of	 Fourier	 transform	 based	 on
whether	we	are	dealing	with	periodic	signals	or	aperiodic	signals,	continuous	or
digital	 signals.	A	 large	 number	 of	 books	 has	 explored	Fourier	 analysis	 from	 a
mathematical	standpoint	—	[Tolstov	76,	Spiegel	74,	Morrison	94]and,	 in	more
recent	 times,	 from	 the	 perspective	 of	 its	 application	 [Stein	 and	 Shakarchi	 03,
Folland	 09,	 Kammler	 08].	 Other	 texts	 explore	 it	 from	 the	 context	 of	 signal
processing	 in	 the	 electrical	 engineering	domain	where	 it	 is	mostly	 relevant	 for
1D	signals	[Smith	97,	Proakis	and	Manolakis	06].	Few	image	processing	books
provide	 the	 insights	of	application	of	Fourier	analysis	 to	digital	 images.	 In	 this
book,	 we	 have	 tried	 to	 provide	 you	 with	 this	 rare	 understanding	 of	 spectral
analysis	of	images.

Bibliography
[Folland	09]	Folland,	Gerald	B.	.	Fourier	Analysis	and	Its	Applications	(Pure	and	Applied	Undergraduate

Texts).	 Pacific	 Grove:	 California	 and	Wadsworth	 &	 Brooks/Cole	 Advanced	 Books	 and	 Software,
2009.

[Kammler	08]	David,	W.	.	Kammler.	A	First	Course	in	Fourier	Analysis:	Cambridge	University	Press,	2008.
[Morrison	94]	Morrison,	Norman	(1994).	Introduction	to	Fourier	Analysis.	John	Wiley	and	Sons.
[Proakis	 and	 Manolakis	 06]	 John,	 G.	 .	 Proakis	 and	 Dimitris	 K	 Manolakis.	 Digital	 Signal	 Processing:

Prentice	Hall,	2006.
[Smith	97]	Steven,	W.	.	Smith.	The	Scientist	 ty	Engineer’s	Guide	 to	Digital	Signal	Processing:	California

Technical	Publishing,	1997.
[Spiegel	74]	Murray	Spiegel.	Schaum’s	Outline	of	Fourier	Analysis	with	Applications	 to	Boundary	Value

Problems.	Mcgraw	Hill,	1974.
[Stein	and	Shakarchi	03]	Elias,	M.Stein	and	Rami	Shakarchi.	Fourier	Analysis:	An	Introduction.	Princeton

University	Press,	2003.
[Tolstov	76]	Tolstov,	Georgio	P.	.	Fourier	Series	(Dover	Books	on	Mathematics).	Prentice	Hall,	1976.

Summary:	Do	you	know	these	concepts?

Discrete	Fourier	Transform
Frequency	Domain	Response
Spatial/Time	Domain	Response
Aliasing
Complex	Conjugate
Sampling	and	Reconstruction
Periodicity	of	the	Fourier	Transform

Exercises
1.	 Consider	 an	one	dimensional	 signal	x	 of	 length	16	where	 sample	 i	 is

given	by	x	[i]	=	2	s	i	n	(π	i	4)	+	3	c	o	s	(π	i	2)	+	4	c	o	s	(π	i)	+	5	.
a.	 What	is	the	length	of	each	of	the	arrays	x	c	and	x	s	?
b.	 Write	out	the	arrays	x	c	and	x	s	.
c.	 Convert	the	x	c	and	x	 s	 representation	 to	 that	of	magnitude	M

and	phase	θ.	Write	out	the	arrays	M	and	θ.

2.	 Consider	the	box	filter	in	spatial	domain	for	a	low	pass	filter.
a.	 What	is	its	frequency	domain	response?
b.	 Is	the	box	filter	an	ideal	low	pass	filter?	Justify	your	answer.
c.	 Is	 a	 box	 filter	 in	 the	 frequency	 domain	 an	 ideal	 low	 pass

filter?	Justify	your	answer.
d.	 What	is	the	frequency	domain	response	of	a	Gaussian	filter	in

the	spatial	domain?
e.	 How	does	it	compare	to	a	box	filter	in	the	spatial	domain	for

low	pass	filtering?	Justify	your	answer.
f.	 (f)	 A	 multiplication	 of	 Gaussian	 and	 Sinc	 in	 the	 spatial
domain	 is	 considered	 an	 ideal	 low	 pass	 filter.	 Express
analytically	the	frequency	domain	response	of	this	filter.

g.	 How	does	 this	 filter	 compare	with	 the	Gaussian	 filter	 in	 the
spatial	domain?	Justify	your	answer.	(Hint:	Use	pictures	of	the
frequency	domain	response	to	identify	pros	and	cons)

3.	 (a)	 shows	 you	 a	 picture	 of	 Goofy.	 This	 was	 smoothed	 only	 in	 the
horizontal	direction	to	create	the	image	(b).	Consider	the	two	amplitude
responses	 in	 (c)	 and	 (d).	One	of	 them	belongs	 to	 (a)	 and	 the	other	 to
(b).	Match	them	and	justify	your	answer.

4.	 You	 want	 to	 digitize	 an	 analog	 signal	 of	 bandwidth	 120Hz.	 The
sampling	frequency	of	your	display	is	100	Hz.	The	bandwidth	of	your
reconstruction	kernel	is	80	Hz.

a.	 Why	wont	you	be	able	 to	 sample	and	 reconstruct	 this	 signal
without	artifacts	using	this	display?

b.	 How	would	 you	 process	 the	 image	 to	 reconstruct	 it	without
any	artifacts?

c.	 What	 kind	 of	 artifacts	 would	 the	 reconstruction	 kernel
generate?

d.	 How	would	 you	 change	 the	 reconstruction	 kernel	 to	 correct
it?

5.	 (a)	and	(b)	show	two	images.	Consider	the	two	amplitude	responses	in
(c)	and	(d).	One	of	them	belongs	to	(a)	and	the	other	to	(b).	Match	them
and	justify	your	answer.

6.	 Match	 the	 images	 on	 the	 left	 with	 their	 amplitude	 responses	 on	 the
right.	Justify	your	answers.

7.	 How	would	you	get	rid	of	the	shadows	of	the	bars	in	the	left	image	to
get	the	right	image	below?

8.	 The	amplitude	 response	of	 the	 left	 image	below	 is	given	by	 the	 right
image	which	 does	 not	 seem	 to	 suffer	 from	 the	 effects	 of	 periodicity.
Justify	this	phenomenon.

9.	 (a)	and	(b)	show	two	images.	Consider	the	two	amplitude	responses	in
(c)	and	(d).	One	of	them	belongs	to	(a)	and	the	other	to	(b).	Match	them
and	justify	your	answer.

10.	 Consider	a	filter	in	the	spatial	domain	formed	by	the	multiplication	of	a
Gaussian	 and	 a	 box	 filter.	What	 is	 the	 frequency	domain	 response	 of
this	filter?	Is	this	response	sharper	or	smoother	than	a	sinc?	Justify	your
answer.

5.1

5

Feature	Detection
Features	of	an	image	are	defined	as	regions	where	some	unusual	action	happens.
For	example,	the	brightness	changes	drastically	to	form	an	edge;	or,	gradients	of
edges	change	drastically	to	form	corner.	In	this	chapter,	we	will	see	how	some	of
these	 features	 can	 be	 detected	 using	 convolution,	 which	 is	 a	 linear	 filtering
process.	 Therefore,	 the	 properties	 of	 scale,	 shift	 invariance,	 and	 additivity	 are
true	for	these	filters.	However,	later	in	the	chapter	we	will	see	that	some	features
can	only	be	detected	via	more	complex	non-linear	filters.

Figure	5.1	.	This	figure	shows	the	salient	features	(right)	detected	by	humans	from	an	image	of	an	object
(left).	We	will	 see	 in	 this	 chapter	 that	 such	 clean	 and	 crisp	 detection	 of	 features	 is	 still	 not	 possible	 by
computers.

Edge	Detection
Edges	have	a	 special	 importance	 in	our	perception.	Several	cells	 in	 the	human
cortex	 have	 been	 found	 to	 be	 specialized	 for	 edge	 detection.	 Edges	 help	 us
understand	several	aspects	of	an	object	including	texture,	lighting	and	shape.	In
this	section,	we	will	see	how	we	can	detect	edges	in	an	image	using	computers.
Figure	5.1	shows	the	kind	of	edge	detection	we	would	like	to	have.	In	the	rest

of	this	section	we	will	explore	algorithms	to	achieve	this	goal	and	see	how	close
we	can	get	to	it.	As	humans	it	is	very	easy	for	us	to	perform	this	task.	However,

5.1.1

we	will	see	in	the	following	sections	that	the	job	is	not	that	easy	for	computers
and	 developing	 algorithms	 that	 can	 achieve	 similar	 performance	 is	 rather
difficult.
Edges	 can	 have	 multiple	 origins	 (Figure	 5.2).	 They	 can	 be	 caused	 by

discontinuity	in	depth	or	surface	normals.	They	can	be	caused	by	a	stark	change
in	 color	 or	 illumination.	We	 will	 perform	 edge	 detection	 using	 the	 following
steps.	(a)	Find	all	the	pixels	that	are	part	of	an	edge.	These	are	called	edgels.	We
would	take	an	image	as	input	and	create	a	binary	image	as	output	where	all	the
edgels	will	be	marked	as	white	and	the	non-edgels	as	black.	We	may	also	output
a	gray	 scale	 image	where	 the	color	value	will	denote	 the	 strength	of	 the	edge.
Black	would	indicate	no	edge	at	all.	(b)Next,	we	will	use	methods	to	aggregate
this	 edgels	 into	 longer	 edges,	 sometimes	 using	 a	 compact	 parametric
representation.

Figure	5.2	.	This	shows	the	different	kinds	of	edges	and	the	causes	of	their	origin	for	a	simple	figure	of	a
bottle.

Edgel	Detectors
In	 this	 section,	 we	 will	 discuss	 different	 methods	 to	 detect	 edgels,	 their
advantages	and	disadvantages.	Finally,	we	will	explore	methods	to	detect	edges
at	different	levels	of	details.

Gradient	Based	Detectors	Let	 us	 now	 take	 a	 close	 look	 at	 the	 edges	 in	Figure
5.2.	Despite	having	different	origins	they	have	one	feature	in	common.	Edges	are
formed	when	there	is	a	drastic	change	in	the	brightness	over	one	or	more	pixels
as	 shown	 in	 Figure	 5.3	 creating	 a	 roof,	 ramp	 or	 step	 edge.	 Therefore,	 if	 we
consider	the	image	to	be	a	function,	a	sharp	change	in	its	value	causes	an	edgel.
Change	is	measured	by	the	first	derivative.	Therefore,	a	pixel	is	an	edgel	if	the
magnitude	of	the	first	derivative	of	the	image	at	that	pixel	is	large.	Let	us	denote
the	 image	 by	 a	 2D	 function	 f.	 So,	 the	 gradient	 of	 f	 has	 a	 direction.	 We	 can
compute	 gradient	 at	 a	 pixel	 in	 x-direction	 and	 y-direction	 separately	 and	 then
combine	them	to	get	the	gradient	of	the	image	at	that	point	as	follows.

Figure	5.3	.	This	shows	edges	in	1D	functions.	There	can	be	three	types	of	edges:	step	edge,	ramp	edge	and
roof	edge.

Figure	5.4	.	This	figure	shows	how	the	partial	derivatives	relate	to	the	kind	of	edges	we	see	in	an	Image.

(5.1)
∇	f	=	∂	f	∂	x	,	∂	f	∂	y	=	(g	x	,	g	y)
The	gradient	points	in	the	direction	of	most	rapid	change	as	shown	in	Figure

5.4.	In	fact,	we	can	quantify	the	direction	and	strength	of	the	edge	respectively
by

(5.2)
θ	=	tan	-	1	g	y	g	x

(5.3)
|	|	∇	f	|	|	=	g	x	2	+	g	y	2
Therefore,	now	that	we	know	how	to	detect	edges,	 the	next	question	 is	how

we	 evaluate	 the	 partial	 derivatives	 in	 the	 digital	 domain.	 For	 this,	we	 use	 the
method	of	 finite	differences.	The	 difference	 between	 the	 pixel’s	 function	 value
and	 that	 of	 its	 right	 (or	 left)	 neighbor	 gives	 g	 x	 at	 that	 pixel.	 Similarly,	 the
difference	between	its	value	and	that	of	its	top	(or	bottom)	neighbor	gives	g	y	.

(5.4)
g	x	=	f	(x	+	1	,	y)	-	f	(x	,	y)

(5.5)
g	y	=	f	(x	,	y	+	1)	-	f	(x	,	y)

Figure	5.5	.	This	shows	the	gradient	function	represented	as	kernels	or	filters	which	are	then	convolved	with
the	image	to	give	two	images—	the	gradient	in	x‐direction	(top)	and	y‐direction	(bottom)	at	any	pixel.

Figure	5.6	.	Left:	The	top	row	shows	the	same	image	with	noise	increased	as	we	go	from	left	to	right.	The
bottom	row	shows	the	effect	of	applying	a	finite	different	xgradient	filter	 to	the	corresponding	images	on
the	 top	 row.	These	 images	 get	 grainier	 and	 grainier	 as	 the	 noise	 increases.	Right:	 This	 shows	 the	 Sobel
gradient	operator	for	x	and	y	direction.

In	fact,	we	can	express	this	as	a	kernel	or	filter	as	shown	in	Figure	5.5	and	when
an	image	is	convolved	with	each	of	these	filters,	we	get	two	gradient	imagesone
each	for	x	and	y	directions.	Once	the	gradient	is	detected	we	identify	a	pixel	as
an	edgel	if	the	strength	of	the	edge	(Equation	5.3)	is	above	a	certain	value.	The
value	we	choose	is	called	a	 threshold	and	is	a	parameter	 to	 the	edgel	detection
process.	This	 process	 of	 generating	 a	 binary	 image	by	 choosing	 a	 threshold	 is
called	 thresholding.	 Following	 the	 thresholding,	 instead	of	 generating	 a	 binary
image,	 one	 can	 also	 generate	 an	 image	 in	 which	 the	 egdes	 are	 marked	 by
different	gray	levels	based	on	the	direction	or	strength	of	 the	edges.	Therefore,
the	gray	value	would	encode	θ	or	|| f||.

Figure	5.7	 .	From	 left	 to	 right:	The	original	 image,	 the	gradient	 image	obtained	after	 applying	 the	Sobel
detector	where	the	gray	values	denote	the	strength	of	the	edges,	the	edgel	binary	image	after	thresholding
with	gray	value	of	64	and	96.	Note	fewer	edges	exist	for	larger	thresholding	value.

Figure	5.8	.	This	figure	shows	the	effect	of	noise	on	edge	detection	using	the	Sobel	operator	followed	by
thresholding	with	gray	value	of	150.	From	left	 to	right:	The	original	 image,	 the	edge	detected	image,	 the
original	image	after	noise	is	removed,	the	edge	detected	image.

The	above	finite	difference	gradients	are	the	simplest	operator	possible	and	do
not	 take	 noise	 in	 the	 image	 into	 account.	 Noise	 has	 its	 origin	 in	 the	 physical
device	and	can	be	modeled	by	a	random	value	added	to	every	pixel	of	an	image.
Noise	shows	up	as	graininess	in	the	image	and	if	sufficiently	high,	it	can	increase
error	of	most	image	processing	algorithms	including	edge	detection.	Figure	5.6
shows	the	effect	of	noise	in	finding	the	finite	difference	to	generate	the	gradient
images.	The	image	becomes	more	and	more	grainy	as	the	noise	increases	which
indicates	 that	 the	 thresholding	 will	 start	 responding	 to	 noise	 rather	 than	 the
content	of	the	image.	One	way	to	make	these	filters	more	robust	to	noise	would
be	to	consider	a	bigger	neighborhood.	Several	such	filters	exist	and	the	one	that
is	found	to	be	very	robust	is	the	Sobel	operator	(Figure	5.6).	The	scale	value	of	1
8	does	not	make	any	difference	in	the	edgel	detection	since	the	threshold	can	be
adjusted	to	accommodate	for	it.	It	is	there	to	normalize	the	gradient	value.	Figure
5.7	shows	the	results	of	the	Sobel	operator	on	an	image	where	the	gray	values	at
the	pixels	indicate	magnitude	of	the	gradient	at	that	pixel.

Figure	5.9	.	This	shows	the	noisy	function	(f)	first	smoothed	using	a	Gaussian	filter	(h)	to	give	h	⋆	f	which
is	then	convolved	with	g	x	=	∂	∂	x	giving	∂	∂	x	(h	⋆	f)	.

Nevertheless,	 noise	 poses	 a	 serious	 issue	 in	 edge	 detection	 and	 if	 it	 goes
beyond	a	certain	level,	no	operator	can	really	achieve	an	accurate	edgel	detection
(Figure	5.8).	So,	it	is	important	to	handle	noise.	The	most	common	way	to	do	it
is	to	low	pass	filter	the	image	first	so	that	the	noise	is	smoothed	out.	A	Gaussian
filter	 is	 usually	 used	 for	 this	 purpose	 due	 to	 the	 property	 of	 reducing	 high
frequency	 leaks.	 The	 edge	 operator	 is	 then	 applied	 on	 the	 smoothed	 signal	 to
achieve	the	edgel	detection.	This	concept	is	explain	pictorially	using	1D	signals
in	Figure	5.9.
However,	the	operation	of	smoothing	and	the	gradient	filter	can	be	achieved	in

one	filter.	It	can	be	showed	that

(5.6)
∂	∂	x	(h	⋆	f)	=	∂	h	∂	x	⋆	f	.
This	means	 that	 the	effect	of	applying	a	gradient	filter	 (∂	∂	x)	 to	a	 function	 f
convolved	with	a	low	pass	filter	h	is	the	same	as	convolving	f	with	a	new	filter
formed	 by	 applying	 the	 gradient	 filter	 to	 the	 low	 pass	 filter	 (∂	 h	 ∂	 x)	 .
Therefore,	we	can	take	the	derivative	of	the	Gaussian	low	pass	filter	to	create	a
single	filter	which	can	then	be	convolved	with	the	image	to	provide	our	gradient
images.	This	is	explained	in	the	Figure	5.10.

Figure	5.10	 .	This	 shows	 the	noisy	 function	 (f)	 convolved	with	 the	derivative	of	 the	Gaussian,	∂	 h	 ∂	 x	 ,
providing	g	x	=	∂	h	∂	x	⋆	f	.

Curvature	 Based	 Detectors	 The	 gradient	 based	 operators	 work	 well	 but	 they
suffer	from	two	problems.	First,	for	step	or	ramp	edges	(brightness	that	smoothly
changes	from	one	level	to	another	to	create	the	edge	rather	than	a	sharp	change
from	 one	 level	 to	 another	 and	 back	 to	 the	 previous	 level),	 they	 have	 poor
10calization	(i.e.	precise	location	of	the	edge)	after	thresholding	which	becomes
especially	evident	at	thicker	edges.
This	 is	 due	 to	 the	 fact	 that	 a	 step	 or	 ramp	 edge	 can	 trigger	 response	 on

multiple	adjacent	pixels	based	on	how	smooth	the	step	or	ramp	is.	Second,	 the
response	of	the	gradient	based	operators	is	different	for	different	direction	edges.
As	 a	 result,	 the	 gradient	 based	 operators	 can	 miss	 edges	 based	 on	 the	 thresh
olding	value	since	the	value	favors	some	directions	over	others.
Curvature	 based	 edge	 detectors	 alleviate	 these	 problems.	 The	 basic	 idea

behind	 these	 operators	 lies	 in	 the	 realization	 that	 edges	 occur	 when	 the	 first
derivative	(or	gradient)	of	an	image	reaches	a	maxima	or	a	minima.	This	means
at	 these	 points	 the	 second	 derivative	 or	 curvature	 should	 have	 a	 zero-crossing
(Figure	5.11).	The	goal	of	 the	curvature	based	operators	 is	 to	detect	 these	zero
crossings	 to	 find	 the	 precise	 location	 of	 the	 edge	 and	mark	 these	 pixels.	 This
edge	detector	is	often	called	the	Marr-Hildreth	edge	detector	based	on	the	name
of	 scientists	 who	 first	 proposed	 it.	 The	 advantage	 of	 this	 detector	 is	 that	 it
responds	similarly	to	all	different	direction	edges	and	finds	the	correct	positions
of	the	edges.

Figure	5.11	.	This	shows	the	zero	crossing	in	the	2nd	derivative	for	a	feature	edge	in	1D.

The	 curvature	 of	 any	 2D	 function	 is	 given	 by	 the	 sum	 of	 the	 directional
curvatures	in	two	orthogonal	directions	as

(5.7)
∇	2	f	=	∂	2	f	∂	x	2	+	∂	2	f	∂	y	2
The	curvature	at	a	pixel	can	be	computed	using	finite	differences	for	digital	data.
Curvature	at	a	pixel	only	four	perpendicular	(x	,	y)	in	x-direction	 is	computed
by	the	difference	between	the	gradient	g	x	and	g	x+1	at	(x	,	y)	and	(x	+	1	 ,	y)
respectively.	Therefore,	curvature	in	this	direction	is	given	by

Figure	5.12	.	The	Laplacian	operator	considering	only	four	perpendicular	neighbors	(left)	and	considering
all	eight	neighbors	(right).

(5.8)
g	x	-	g	x	-	1	=	f	(x	+	1	,	y)	-	f	(x)	-	(f	(x	-	1	,	y)	-	f	(x	,	y))

(5.9)
=	f	(x	+	1	,	y)	-	2	f	(x)	+	f	(x	-	1	,	y)

If	we	consider	 the	same	finite	differences	gradient	 in	 the	vertical	direction	and
add	 it	 to	 the	above	 formula,	 the	curvature	operator	will	 involve	 the	pixel	 itself
and	its	4-connected	neighbors	to	the	left,	right,	top	and	bottom.	Similarly,	if	the
diagonal	 neighbors	 are	 also	 considered,	 the	 finite	 difference	 formula	 for
curvature	 involves	 all	 the	 eight	 neighbors	 around	 a	 pixel,	 referred	 to	 as	 the
8connected	neighbors.	The	filters	thus	formed	as	shown	in	Figure	5.12	are	called
the	 Laplacian	 operators.	 Once	 the	 image	 is	 convolved	 for	 Laplacian	 operator,
pixels	 at	which	 a	 zero	 crossing	 occurs	 are	marked	 as	 edge	 pixels.	 In	 order	 to
detect	 the	 zero	 crossings,	 first	 the	 convolved	 image	 is	 thresholded	 to	 retain
values	near	the	zero.	Then	the	neighborhood	of	every	marked	pixel	is	examined

to	see	if	both	positive	and	negative	values	exist	to	indicate	a	zero	crossing.

Figure	5.13	.	This	figure	shows	a	2D	Gaussian	filter,	its	derivative	and	a	LoG	filter	along	with	their	analog
equations.	Sampling	these	functions	would	generate	the	filters	we	have	been	discussing	for	edge	detection.

Figure	5.14	.	The	original	image	(left)	and	the	edges	detected	by	the	curvature	based	detector	(middle)	and
canny	edge	detector	(right).

However,	 in	 this	 case	 also,	 before	 the	 Laplacian	 operator	 is	 applied	 to	 the
image,	a	convolution	with	a	Gaussian	is	required	to	reduce	the	noise	level.	The
effect	 of	 a	 convolution	 with	 a	 Gaussian	 followed	 by	 a	 convolution	 with	 a
Laplacian	 operator	 on	 an	 image	 is	 equivalent	 to	 a	 single	 convolution	 of	 the
image	 with	 a	 kernel	 that	 is	 a	 Gaussian	 function	 convolved	 with	 a	 Laplacian
operator.	This	is	called	the	Laplacian	of	Gaussian	or	LoG	operator	(Figure	5.13).
However,	this	removes	the	option	of	two	different	sized	operators	for	Gaussian
and	Laplacian.
Often	the	same	effect	of	a	LoG	operator	can	be	achieved	by	subtracting	a	delta

function	from	a	Gaussian	filter	(this	is	different	than	a	high	pass	filter	which	is	a
Gaussian	subtracted	from	delta).	This	is	because	the	shape	of	this	filter,	as	you

can	 probably	 intuitively	 visualize,	 is	 very	 close	 to	 the	LoG	 filter.	 Figure	 5.14
shows	 the	 result	 of	 the	 curvature	 based	 detector	 on	 an	 image.	 However,	 the
apparent	advantage	of	a	curvature	based	detector	in	finding	the	exact	location	of
the	edge	becomes	its	undoing	for	feature	edges	(Figure	5.15).	Feature	edges	are
caused	by	the	intensity	moving	from	one	level	to	another	and	then	coming	back
close	to	 the	original	(instead	of	a	ramp	edge	where	intensity	changes	just	from
one	level	to	another).	For	feature	edges,	two	zero	crossings	are	detected	for	the
same	edge	as	shown	in	Figure	5.15.	This	phenomenon	can	often	lead	to	spurious
edges.	 Thresholding	 parameters	 can	 also	 allow	 some	 edges	 to	 get	 undetected.
These	are	called	missed	edges.	You	can	see	this	easily	in	5.14	where	most	edges
have	a	ghost	and	there	are	several	spurious	edges.

Canny	Edge	Detector	The	Canny	edge	detector	 tries	 to	alleviate	all	 the	various
problems	of	the	gradient	and	curvature	based	detectors.	Canny	first	formalized	a
set	of	properties	an	optimal	edge	detector	should	have	and	then	worked	towards
a	method	 that	 satisfies	 these	 properties.	According	 to	Canny,	 an	 optimal	 edge
detector	 should	 have	 the	 properties	 of	 good	 detection,	 good	 localization	 and
minimal	response.	Good	 detection	 says	 that	 the	 filter	 should	 respond	 to	 edges
only	 and	 not	 noise.	 Therefore,	 edges	 should	 be	 found	 with	 the	 minimum	 of
spurious	edges.	Good	localization	means	that	the	detected	edge	is	near	the	true
edge.	 Finally,	minimal	 response	 says	 that	 the	 edge’s	 exact	 location	 is	marked
with	 a	 single	point	 response.	There	 is	 a	 tradeoff	 to	be	 achieved	between	 these
different	goals.	In	any	real	image,	noise	will	play	a	role.	Smoothing	or	low	pass
filtering	 will	 improve	 the	 detection	 at	 the	 cost	 of	 localization	 and	 minimal
response.	In	fact,	we	see	that	both	the	methods	we	have	discussed	so	far	suffer
from	both	inaccurate	detection	and	localization.
Based	on	 the	 above	goals,	Canny	proposed	a	 four	 step	method:	 (a)Suppress

noise	 using	 low	 pass	 filtering;	 (b)	 Compute	 gradient	 magnitude	 and	 direction
images;	(c)	Apply	non-maxima	suppression	to	the	gradient	magnitude	image;	(d)
Use	hysteresis	and	connectivity	analysis	to	detect	edges.
In	the	first	stage,	the	image	is	low	pass	filtered	using	a	Gaussian	filter.	Next,

the	 gradient	 strength	 and	 direction	 are	 calculated	 using	 the	 standard	 Sobel
operator.	 At	 this	 point,	 we	 have	 achieved	 the	 property	 of	 good	 detection	 and
localization,	but	the	property	of	minimal	response	is	still	not	ensured.	In	order	to
ensure	minimal	 response,	we	 apply	 the	 technique	 of	 non-maxima	 suppression.
The	exact	location	of	the	edge	occurs	wherever	the	gradient	reaches	a	maxima.
This	implies	that	if	the	strength	of	the	gradient	does	not	achieve	a	maxima	at	any
of	the	marked	pixels,	it	should	be	suppressed.	Every	marked	pixel	p	can	be	part
of	an	edge	which	can	have	one	of	four	or	eight	orientations	depending	on	4	or	8

connectedness	 of	 the	 neighborhoods	 considered.	 The	 computed	 gradient	 p	 is
binned	to	one	of	these	values.	Next	the	two	neighbors	with	gradients	in	the	same
bin	are	considered.	If	the	magnitude	of	their	gradient	is	larger	than	that	of	p,	the
gradient	at	p	is	suppressed	(made	zero).	Applying	this	operation	to	every	marked
pixel	achieves	the	minimal	response	with	each	edge	being	detected	by	a	single
pixel.

Figure	5.15	.	This	shows	that	the	zero	crossing	may	not	happen	at	a	single	pixel	location	to	provide	a	good
edge	localization.

Put	a	Face	to	the	Name

David	 Courtney	 Marr	 (1945-1980)	 was	 a	 British	 neuroscientist	 and
psychologist	who	was	considered	instrumental	in	the	resurgence	of	interest
in	the	discipline	of	computational	neuroscience.	He	integrated	results	from
psychology,	artifical	 intelligence	and	neurophysiology	to	build	new	visual
processing	models.	One	of	the	great	examples	of	his	visionary	contributions
is	 the	 Marr-Heldrith	 edge	 detector	 which	 was	 designed	 with	 his	 student
Ellen	Heldrith.	Marr	and	Heldrith	modeled	the	edge	detection	operation	in
the	human	brain	to	be	carried	on	by	adjacently	located	minima	and	maxima
detector	 cells	 whose	 response	 is	 then	 combined	 with	 a	 logical	 AND
operation	by	closely	located	zero	detector	cells.	The	Marr-Heldrith	operator
that	 performs	 edge	 detection	 following	 this	 model	 was	 first	 proposed	 in
1980.	 Interestingly,	 scientists	Hubel	 and	Weisl	 found	 the	 existence	 of	 all
these	 predicted	 cells	 in	 our	 visual	 pathways,	 though	 this	 happened	 after
Marr’s	 death.	 A	 process	 called	 lateral	 inhibition	 in	 the	 ganglion	 cells
performs	the	convolution.	Cells	called	simple	cells	in	the	cortex	respond	to

maxima	and	minima	of	 the	signals	sent	 from	ganglion	cells.	Finally,	cells
called	 the	 complex	 cells	 have	been	 found	near	 these	 simple	 cells	 that	 act
like	zero	detectors.	Therefore,	this	edge	detector	is	one	that	behaves	closest
to	our	human	brain.	Marr’s	life	was	ended	prematurely	at	the	age	of	35	due
to	leukemia.	His	findings	are	collected	in	the	book	Vision:	A	Computational
Investigation	 into	 the	 Human	 Representation	 and	 Processing	 of	 Visual
Information,	which	was	finished	mainly	on	1979	summer,	was	published	in
1982	after	his	death	and	 re-printed	 in	2010	by	The	MIT	Press.	The	Marr
Prize,	one	of	the	most	prestigious	awards	in	computer	vision,	 is	named	in
his	honor.	Ellen	Hildreth	is	currently	a	professor	in	Wellesley	College	and
continues	to	study	computer	modeling	of	human	vision.

Finally,	hysteresis	is	used	to	avoid	streaking,	a	phenomenon	of	breaking	of	the
edge	contour	when	the	output	of	the	previous	step	fluctuates	above	and	below	a
single	threshold.	In	hysteresis,	two	thresholds	are	defined,	L	and	H	where	L	<	H.
The	 gradient	 at	 any	 pixel	 being	 higher	 than	H	 is	 detected	 to	 be	 a	 strong	 edge
pixel	and	hence	marked.	The	gradient	being	 lower	 than	L	 assumes	a	non-edge
pixel	 and	 is	 not	marked.	Any	 pixel	with	 a	 gradient	 value	 between	L	 and	H	 is
considered	 to	 be	 a	 weak	 edge	 pixel	 and	 its	 candidacy	 to	 the	 set	 of	 edgels	 is
additionally	 evaluated	 using	 connectivity	 analysis.	 If	 a	 weak	 edge	 pixel	 is
connected	 to	 at	 least	 one	 strong	 edge	 pixel,	 then	 it	 is	 considered	 to	 be
continuation	 of	 a	 strong	 edge	 and	 hence	marked.	This	 removes	 spurious	 short
edges	 under	 the	 assumption	 that	 edges	 are	 long	 lines.	 Figure	 5.16	 shows	 the
different	 steps	 of	 this	 process.	 Figure	 5.14	 compares	 the	Canny	 edge	 detector
with	the	Marr-Heldrith	curvature	based	edge	detector.

Figure	5.16	.	The	figure	shows	the	different	steps	of	Canny	edge	detector.	From	left	to	right:	The	original
image,	 the	 gradient	 magnitude	 image,	 the	 image	 after	 non-maximum	 suppression,	 the	 final	 image	 after
applying	hysteresis.

Put	a	Face	to	the	Name

John	F.	Canny	is	an	Australian	scientist	who	currently	is	a	professor	in	the
EECS	 department	 of	 UC-Berkeley.	 He	 is	 known	 for	 designing	 the	 most
effective	 edge	 detector	 for	 which	 he	 received	 the	 ACM	 Doctoral
Dissertation	 and	 Machtey	 award	 in	 1987.	 He	 also	 received	 the	 2002
American	 Association	 for	 Artificial	 Intelligence	 Classic	 Paper	 award	 for
the	 most	 influential	 paper	 from	 a	 1983	 national	 conference	 on	 artificial
intelligence.	 He	 is	 known	 for	 his	 seminal	 contributions	 in	 robotics	 and
human	perception.

However,	 as	 a	 note	 of	 caution,	 every	 edge	 detector	 is	 dependent	 on	 several
parameters	starting	from	the	size	of	the	Gaussian	filter	used	(determined	often	by
the	amount	of	noise),	 the	 thresholds	 chosen	and	 the	4	or	8	 connectivity	of	 the
neighborhood	 considered.	 Changing	 these	 parameters	 differently	 can	 lead	 to
very	different	results.	This	 is	 illustrated	in	Figure	5.18.	That	 is	 the	reason,	 it	 is
important	 to	 take	 the	 results	 shown	 in	 this	 chapter	 with	 a	 pinch	 of	 salt.	 The
results	have	been	generated	with	efforts	to	get	the	parameters	as	comparable	as
possible	 and	yet	 to	 extract	 the	best	out	of	 each	method.	Therefore,	we	believe
they	 do	 highlight	 the	 pros	 and	 cons	 of	 the	methods	 fairly,	 but	 one	 can	 indeed
tweak	the	parameters	to	achieve	results	close	to	what	they	specifically	desire.

5.1.2

Figure	5.17	.	The	figure	shows	the	effect	of	multi-resolution	edge	detection	on	two	different	 images.	The
images	are	low	pass	filtered	using	wider	and	wider	Gaussian	kernels	(in	a	clockwise	fashion	for	the	wheel
image	and	from	left	to	right	for	the	sculpture	image)	and	the	edge	detection	performed	following	that.	As
the	kernel	gets	wider,	finer	edges	disappear	while	the	larger	ones	remain.

Multi-Resolution	Edge	Detection
Edges	 in	 an	 image	can	have	different	 resolution,	 i.e.	 how	sharp	or	 smooth	 the
edge	 is.	 Changes	 in	 intensity	 that	 occur	 over	 a	 larger	 space	 (i.e.	 smoother
changes	 in	 the	 image	 intensity)	 form	 low-resolution	 edges,	 while	 intensity
changes	over	a	smaller	space	constitute	low	resolution	edges.	Perceptually,	lower
resolution	edges	are	more	important	than	the	higher	resolution	ones	in	detecting
objects,	 illumination	 and	 their	 interaction.	 However,	 a	 low	 resolution	 edge
formed	by	a	very	gradual	and	slow	ramp	will	be	not	be	detected	unless	the	image
is	 low	pass	 filtered	 to	 remove	higher	 frequencies	 to	enable	 resampling	using	a
much	 smaller	 number	 of	 pixels	where	 the	 same	 edge	 shows	 up	 as	 a	 step	 or	 a
much	sharper	ramp	and	gets	easily	detected.	This	effect	is	shown	in	Figure	5.17.
The	 image	 is	 low	 pass	 filtered	with	widening	 kernel	 indicating	 lower	 band	 of
frequencies	passed	and	 the	edge	detection	 is	applied	on	 these	 low	pass	 filtered
images.	This	is	what	we	call	multi-resolution	edge	detection.
Incidentally,	when	discussing	different	edge	detectors,	we	have	discussed	the

role	 of	 low	 pass	 filtering	 for	 noise	 removal.	 However,	 this	 is	 not	 the	 only
motivation	behind	using	 low	pass	 filtering	or	smoothing.	 Its	greater	use	 lies	 in
multi-resolution	 edge	 detection	 where	 a	 pyramid	 of	 edge	 images	 is	 created
where	each	level	of	the	pyramid	provided	edges	of	a	particular	resolution.	As	the
levels	 increase,	 the	 low	 pass	 filter	 kernel	 is	 increased	 in	 size	 to	 create
progressively	 low	 pass	 images	 (as	 in	 a	Gaussian	 pyramid).	As	 the	 images	 get
more	and	more	blurry	higher	up	 in	 the	pyramid,	higher	 resolution	edges	 (finer
scale	edges)	disappear.

Figure	5.18	.	The	figure	shows	the	effect	scale	versus	threshold.	The	images	on	the	top	right	and	bottom	left
are	the	results	of	applying	edge	detection	applied	on	top	left	image	at	finer	and	coarser	scale	respectively.
However,	 the	 two	 images	on	 the	bottom	are	at	 the	 same	scale	but	 the	 right	one	 is	 the	 result	of	having	a
higher	thresholding	parameter.

The	lower	resolution	(i.e.	coarser	scale)	edges	remain	across	all	 the	different
levels.	 These	 are	 the	 edges	 that	 are	 perceptually	 most	 salient	 and	 contributes
more	significantly	 to	our	perception.	However,	different	kinds	of	edges	can	be
detected	by	changing	the	parameters	of	resolution	and	thresholding	as	shown	in
Figure	5.18.
The	next	question	is	how	easy	is	it	to	find	the	corresponding	edges	across	the

different	 levels	 of	 the	 multi-resolution	 edge	 pyramid?	 As	 it	 turns	 out,	 this	 is
more	complex	than	you	think	primarily	due	to	the	fact	that	the	same	edge	can	be
localized	at	slightly	different	places	in	different	levels	of	the	pyramids.	However,
we	humans	achieve	it	with	rather	uncanny	accuracy.	You	can	convince	yourself
by	 staring	 at	 the	 images	 for	 a	 few	 seconds	 and	 you	 can	 easily	 detect	 this
correspondence	 at	 least	 for	 the	 larger	 scale	 edges.	 A	 seminal	work	 by	Witkin
shows	 that	 the	multi-resolution	operation	of	edge	detection	occurs	 in	our	brain
with	 continuous	 levels	 rather	 than	 discrete	 levels.	 The	 characteristics	 of	 edges
across	these	continuous	levels	follow	some	very	predictable	patterns.	The	most
important	 of	 these	 patterns	 are:	 (a)	 The	 edge	 position	 may	 shift	 as	 the	 scale
becomes	coarser	but	the	shift	will	not	be	drastic	or	discontinuous;	(b)	two	edges
can	merge	with	coarser	scales	but	can	never	split.	These	patterns	are	exploited	to
find	the	correspondences	by	humans.	Since	generating	close	to	continuous	scales

5.1.3

of	 edges	 is	 almost	 impossible	 in	 computers,	 this	 automatic	 detecting	 of
corresponding	edges	across	different	levels	still	remains	as	a	challenge.

Figure	5.19	 .	The	figure	shows	the	effect	of	 local	edge	aggregation.	Left:	The	original	 image;	Right:	The
image	with	edgels	detected	by	Canny	edge	detector	which	are	then	linked	by	local	aggregation.	Each	linked
edge	is	colored	with	a	different	color,	not	necessarily	unique.

Aggregating	Edgels
Edge	detectors	produce	edgels	which	 lie	on	a	edge.	The	next	 step	 is	 to	collect
this	edgels	together	to	create	a	set	of	longer	edges.	This	may	seem	to	be	trivially
achieved	by	just	tracing	the	edges	starting	from	a	pixel.	But	this	is	only	true	in
an	ideal	case.	As	you	see	in	the	examples	shown	in	the	previous	section,	edgels
are	not	perfectly	detected.	Some	parts	of	an	edge	may	be	missing	or	some	small
edges	may	appear	 to	be	present	 in	a	place	where	 there	are	no	edges	 in	 reality.
Therefore	aggregating	edgels	turn	out	to	be	more	complex	than	naive.	There	are
two	types	of	aggregation	method.	The	first	applies	local	edge	linkers	to	trace	out
longer	edges	while	the	latter	uses	global	edge	linkers	to	classify	multiple	edgels
to	belong	to	a	single	edge.
Path	Tracing	Via	Local	Aggregation
Almost	all	edge	detectors	yield	information	about	the	magnitude	and	direction

at	an	edgel	during	the	process	of	detecting	the	edgel.	Local	edge	linking	methods
usually	start	at	some	arbitrary	edge	point	and	consider	and	add	those	pixels	from
a	 local	neighborhoods	 to	 the	edge	set	whose	edge	direction	and	magnitude	are
similar	to	each	other.	The	basic	premise	is	that	neighboring	edgels	with	similar
properties	are	likely	to	lie	on	the	same	edge.	The	neighbourhoods	based	around
the	recently	added	edgels	are	then	considered	in	turn	and	so	on.	If	the	edgels	do
not	satisfy	the	constraint	then	we	conclude	we	are	at	the	end	of	the	edge,	and	so
the	process	stops.	A	new	starting	edge	point	is	found	which	does	not	belong	to

any	edge	set	found	so	far,	and	the	process	is	repeated.	The	algorithm	terminates
when	all	edgels	have	been	 linked	 to	one	edge	or	at	 least	have	been	considered
for	linking	once.
Thus	 the	 basic	 process	 used	 by	 local	 edge	 linkers	 is	 that	 of	 tracking	 and

traversing	a	sequence	of	edgels.	Branching	edges	are	considered	in	a	breadth	or
depth	 first	 fashion	 just	 as	 in	 tree	 traversal.	An	 advantage	 of	 local	 aggregation
methods	 is	 that	 they	 can	 readily	 be	used	 to	 find	 arbitrary	 curves.	Probabilistic
methods	 can	 also	 be	 applied	 to	 achieve	 better	 estimates	 by	 global	 relaxation
labeling	techniques.	An	example	of	linked	edges	is	shown	in	Figure	5.19	where
each	linked	image	is	shown	with	a	different,	but	not	always	unique,	color.

Global	Aggregation	Via	Hough	Transform	A	complementary	approach	 to	edge
linking	 is	 to	 identify	 parametric	 edges	 (e.g.	 lines	 and	 parametric	 curves	 like
circles,	parabolas)	in	an	image	so	that	we	not	only	identify	edges	but	also	have	a
more	compact	representation	of	them	which	can	be	used	for	other	purposes	such
as	finding	how	an	image	was	scaled	or	rotated	to	create	another	image).	Such	a
representation	 is	also	called	a	vector	 representation	of	edges/images.	The	most
popular	 way	 to	 compute	 this	 vector	 representation	 is	 using	 a	 voting	 based
method	called	Hough	transform.
To	understand	this,	let	us	assume	that	we	would	like	to	find	lines	in	the	edgel

image.	Let	us	now	consider	the	set	of	all	the	different	lines	that	can	be	present	in
the	image.	Only	small	subset	of	these	lines,	some	of	which	are	shown	in	blue	in
Figure	5.20	can	pass	through	the	point	(x	,	y)	 .	Also,	a	much	 larger	subset	of
lines,	some	of	which	are	shown	in	red	in	Figure	5.20	will	not	pass	through	(x	,	y
)	.	The	first	step	of	the	Hough	transform	is	to	find	the	set	of	lines	that	would	pass
through	(x	,	y)	 .	A	 line	passing	 through	(x	 ,	y)	has	 the	equation	y	=	mx	+	b
where	m	is	the	slope	and	b	is	the	y-intercept	of	the	line.	The	set	of	all	values	of	m
and	b	that	satisfy	this	equation	for	a	given	coordinate	(x	,	y)	defines	the	set	of
all	lines	that	pass	through	(x	,	y)	.
Let	us	now	consider	an	alternate	2D	space	spanned	by	m	and	b.	Each	line	in

the	image	space	that	passes	through	(x	,	y)	will	be	defined	by	a	specific	slope
and	offset	and	therefore	will	be	denoted	by	the	point	in	the	space	spanned	by	(m
,	b)	.	For	example,	the	x-axis	is	a	line	with	slope	and	offset	both	zero.	Therefore,
in	the	(m	,	b)	space,	 it	will	be	 represented	by	 the	origin,	 (0,	0).	Now	the	 line
equation	can	be	written	as

Figure	5.20	.	These	plots	explain	the	dual	spaces.	Left:	An	image	space	(x	,	y)	with	different	lines	detected
as	edgels.	Right:	The	corresponding	Hough	space	after	voting.	Note	 that	 the	number	of	maximas	are	 the
same	as	the	number	of	lines	present	in	the	Image.

(5.10)
b	=	y	-	m	x

Therefore,	for	a	known	(x	,	y)	this	will	span	a	straight	line	in	the	(m	,	b)	space
defining	the	set	of	all	lines	that	pass	through	the	point	(x	,	y)	.	In	other	words,
the	(m	,	b)	space,	called	the	Hough	space	based	on	its	inventor,	is	a	dual	of	the	(
x	,	y)	space	because	a	point	in	the	(x	,	y)	space	denotes	a	line	in	the	(m	,	b)
space	and	vice	versa.
To	 identify	 a	 parametric	 edge	 we	 will	 do	 the	 following.	 For	 each	 detected

edgel	(x	,	y)	,	we	will	vote	on	all	the	lines	that	would	pass	through	that	edgel	(
m	,	b)	space-—	this	will	be	just	a	line	given	by	-	b	=	mx	-	y.	If	a	line	y	=	mx	+	b
is	actually	present	in	the	edge	image,	all	the	edgels	on	it	will	vote	for	the	same
point	(m	,	b)	in	the	(m,b)	space.	Therefore,	presence	of	an	edge	corresponds	to
a	high	number	of	votes	for	that	(m	,	b)	location.	Once	all	the	edgels	have	voted,
we	can	detect	the	maximas	in	the	(m	,	b)	space	to	find	the	slope	and	offset	and
therefore	 the	 parametric	 equation	 of	 the	 detected	 lines.	 However	 the	 vertical
lines	have	infinite	m	which	makes	it	difficult	to	handle	them	in	(m	,	b)	space.
Therefore,	we	use	a	polar	notation	for	the	lines	where	the	lines	are	represented
defined	based	on	their	distance	from	the	origin	(d)	and	the	angle	made	with	the
x-axis	(θ)	.	Therefore,	the	Hough	space	is	defined	by	(d	,	θ)	rather	than	(m	,	b)
.	The	image	space	and	its	dual	Hough	space	are	shown	for	a	simple	edgel	image
in	Figure	5.21.	We	visualize	 the	Hough	space	using	a	gray	scale	 image.	There
are	five	maximas	(shown	by	the	white	bright	spots)	denoting	the	five	lines	in	the
image.	We	also	show	the	results	of	finding	lines	using	Hough	transform.
Similar	techniques	can	be	used	to	detect	other	parametric	entities	like	circles

and	parabolas.	Lets	us	consider	briefly	one	such	case.	Let	us	consider	the	circle

5.2

whose	equation	is	given	by	(x	-	c	x)2	+	(y	-	c	y)2	=	r	2	where	(c	x	 ,	c	y)	 is	 its
center	and	r	its	radius.	Therefore,	the	Hough	space	is	a	3D	space	spanned	by	(c
x	,	c	y	,	r)	.	Therefore,	binning	and	counting	of	the	votes	cast	and	maximas	have
to	be	detected	in	this	3D	space	to	find	the	circles	in	the	image.	Also	r	=	(x	-	c	x)
2	+	(y	-	c	y)	2	is	a	conic.	Therefore,	a	point	in	the	image	space	corresponds	to	a
conic	in	the	Hough	space.

Figure	5.21	.	This	figure	shows	the	straight	lines	detected	(right)	in	an	image	(left)	using	Hough	transform
after	 edge	 detection.	 Note	 that	 some	 spurious	 edges	 can	 also	 be	 detected	 (as	 shown	 in	 the	 left)	 due	 to
inaccuracies	resulting	from	thresholding.

Figure	5.22	.	This	shows	an	edgel	(x;	y).	The	blue	lines	denote	some	of	the	possible	circles	that	can	pass
through	(x;	y).	Some	of	the	circles	that	do	not	pass	through	(x;	y)	are	shown	in	red.

Feature	Detection
Feature,	 in	general,	 refers	 to	a	pixel	or	a	set	of	pixels	 that	stand	out	from	their
surrounding.	 So	 far	 in	 this	 chapter,	we	 have	 focused	 on	 the	 special	 feature	 of
edges.	Though	features	can	often	be	formed	by	intersection	of	multiple	lines	that
can	 be	 identified	 via	 edge	 detectors,	 in	 this	 section	 we	 will	 explore	 some
nonlinear	 operators	 for	 feature	 detection	 in	 general.	 The	 first	 of	 these	we	will
discuss	is	called	the	Morovac	operator	and	it	measures	the	self-similarity	of	an
image	near	a	point.	So,	what	does	self	similarity	mean?	If	you	consider	a	pixel	(
x	 ,	 y)	 ,	 self-similarity	 defines	 how	 similar	 are	 the	 patches	 that	 are	 largely

overlapping	(x	,	y)	 .	Most	of	 the	pixels	 in	an	 image	have	high	self-similarity.
Pixels	at	an	edge	are	not	similar	in	the	direction	perpendicular	to	the	edge.	And
corners	 are	not	 similar	 in	 any	direction.	 In	 fact,	 a	general	 feature	 is	 a	point	of
interest	where	neighboring	patches	overlapping	the	pixel	have	a	high	degree	of
variance.
The	 next	 question	 is	 how	 do	 we	 compute	 self-similarity.	 Let	 us	 show	 an

example	in	Figure	5.23.	Here	we	are	computing	the	self	similarity	of	A5.	Let	us
call	the	3	×	3	neighborhood	around	the	pixel	A5,	which	includes	pixels	A	1…A	9,
as	patch	A.	Let	us	also	consider	other	patches	of	size	3	×	3	that	overlap	with	A.
Let	 one	 such	 overlapping	 neighboring	 patch	 be	 B.	 Nine	 such	 neighboring
patches	exist,	another	one	of	which	is	shown	in	green.	The	similarity	of	A	with	B
is	defined	as

(5.11)
S	AB	=	∑	i	=	1	(A	i	-	B	i)	2

If	we	add	up	the	similarity	of	all	the	nine	neighboring	patches	of	A	and	sum
them	 together,	 it	 will	 provide	 an	 estimate	 of	 how	 similar	 A	 is	 to	 all	 its
neighboring	 patches.	 If	we	 likewise	 calculate	 the	 self-similarity	 sure	 for	 every
pixel	in	an	image,	a	maxima	in	this	self	similarity	image	is	a	corner.

Figure	5.23	.	This	shows	the	self-similarity	operator.	A5	belongs	to	a	3	×	3patch	shown	in	red.	Two	other
neighboring	 patches	 are	 shown	 in	 blue	 and	 green.	 The	 corresponding	 pixels	 in	A	 and	B	whose	 squared
differences	measure	self-similarity	is	also	indicated.

However,	 the	Morovac	operator	has	some	limitations.	 If	a	one	pixel	noise	 is
present,	 the	Morovac	filter	will	 respond	 to	 that.	 It	will	also	be	 triggered	for	an
edge.	Further,	this	filter	is	not	isotropic.	What	this	means	is	that	the	classification
of	 pixels	 will	 change	 if	 the	 image	 is	 rotated.	 Therefore,	 this	 operator	 is	 not
rotationally	invariant	as	shown	in	Figure	5.24.
To	alleviate	this	problem,	the	Harris	and	Stephens-Plessey	corner	detector	was

proposed.	This	starts	with	first	generating	the	gradient	images	g	x	and	g	y	.	Next,
for	every	pixel	(u	,	v)	the	geometry	of	the	surface	near	the	pixel	is	defined	by
the	matrix

5.3

(5.12)
A	=	∑	u	∑	v	w	(u	,	v)	g	x	(u	,	v)	2	g	x	(u	,	v)	g	y	(u	,	v)	g	x	(u	,	v)	g	y	(u	,	v
)	g	y	(u	,	v)	2

where	w	(u	,	v)	is	a	weight	that	decreases	with	distance	from	(u	,	v)	.	The	two
eigenvalues,	 λ	 1	 and	 λ	 2	 ,	 of	 this	 matrix	 are	 proportional	 to	 the	 principal
curvatures	at	(u	,	v)	.	If	the	magnitude	of	both	are	small,	no	feature	exists	at	(u
,	v)	.	If	one	of	them	has	a	large	magnitude,	an	edge	exists	at	(u	,	v)	.	And	only
if	both	eigenvalues	are	large	a	corner	is	detected	at	(u	,	v)	.	This	is	illustrated	in
Figure	5.26.	Interestingly,	 it	can	be	 theoretically	proved	that	 if	w	 is	a	Gaussian
then	this	corner	detector	is	isotropic-i.e.	rotationally	invariant.	Figure	5.25	shows
the	results	of	this	corner	detector.

Figure	5.24	 .	This	 shows	 the	 features	 detected	by	 the	Morovac	 filter	 (in	 red)	 as	 the	 image	orientation	 is
changed	by	rotating	it	by	30	degrees.	Vastly	different	pixels	are	now	detected	as	corners.

Figure	5.25	.	This	shows	the	results	of	the	Harris	Stephens	and	Plessey	corner	detector.

Other	Non-Linear	Filters
Let	 us	 now	 discuss	 a	 few	 non-linear	 filters	 which	 are	 not	 used	 for	 feature
detection.	This	will	give	you	an	 idea	of	how	such	filters	can	be	used	for	other

domains	as	well.
For	this	we	will	first	explore	a	filter	called	the	median	filter.	This	filter	is	very

similar	to	the	linear	filter	which	is	the	mean	or	box	filter.	In	a	box	filter,	the	mean
of	all	the	values	in	the	neighborhood	of	a	pixel	is	used	to	replace	the	value	of	the
pixel.	This	effectively	achieves	a	smoothing	of	the	function	and	is	often	used	for
reducing	noise.	In	a	median	filter,	the	pixel	is	replaced	by	the	median	(instead	of
mean)	of	all	the	values	in	its	neighborhood.	Using	the	median	makes	the	filter	a
non-linear	filter.
A	 median	 filter	 is	 used	 to	 remove	 outliers,	 i.e.	 values	 that	 are	 drastically

different	 from	 their	 neighbor	 hood.	 They	 can	 be	 due	 to	 different	 device
limitations	in	different	applications.	For	example,	a	dead	pixel	 in	a	camera	can
cause	the	value	of	that	pixel	to	be	a	one	or	a	zero	at	all	times	which	will	turn	out
to	be	an	outlier.	In	the	case	of	images,	such	outliers	define	a	noise	which	is	often
called	 the	 salt	 and	 pepper	 noise—pixels	 turned	 either	 black	 or	 white	 due	 to
system	 issues.	 Unlike	 a	 median	 filter,	 a	 mean	 filter	 reduces	 a	 Gaussian	 noise
effectively,	but	does	not	work	well	for	salt	and	pepper	noise	since	the	mean	tends
to	 spread	 the	 contribution	 from	 the	very	 localized	 salt	 and	pepper	 locations	 to
their	 neighborhood.	 However,	 a	 median	 filter	 works	 much	 better	 since	 the
median	 is	 usually	 unaffected	 by	 variation	 in	 the	 values	 in	 the	 neighborhood.
Figure	5.27	shows	an	example.

Figure	 5.26	 .	 This	 shows	 how	 a	 corner	 is	 detected	 at	 a	 pixel	 in	 a	 Harris	 and	 Stephens-Plessey	 corner
detector	based	on	the	magnitude	of	the	two	eigenvalues	λ	1	and	λ	2	.

Figure	5.27	.	This	figure	illustrates	the	effect	of	a	median	filter.	From	left	to	right:	the	original	image;	the
original	image	with	salt	and	pepper	noise	added	to	it;	the	noisy	image	processed	using	a	box	or	mean	filter;
the	 noisy	 image	 processed	 using	 the	 median	 filter	 to	 provide	 an	 image	 almost	 identical	 to	 the	 original
image.

5.4

The	median	filter	is	in	fact	a	specific	type	of	a	more	general	type	of	nonlinear
filters	called	order	statistics	filters.	For	example,	instead	of	the	median,	we	can
replace	 the	 pixel	 with	 the	 value	 of	 the	 minimum	 or	 maximum	 value	 in	 its
neighborhood.	These	are	called	minimum	and	maximum	filter	 the	respectively.
For	regular	images	(not	having	salt	and	pepper	noise),	these	achieve	the	results
of	 morphological	 operators	 of	 erosion	 and	 dilation.	 Erosion	 is	 the	 process	 of
suppressing	 higher	 values	 thereby	 darkening	 the	 image,	 while	 dilation	 is	 the
process	 of	 growing	 regions	 of	 higher	 values	 thereby	 brightening	 the	 image.
These	are	 illustrated	 in	Figure	5.28.	They	 form	 the	building	blocks	of	 a	 set	of
image	processing	operations	called	morphological	operators.

Figure	5.28	 .	This	figure	 illustrates	 the	effect	of	 the	minimum	(middle)	and	maximum	(right)	 filter	on	an
image	(left)	to	achieve	the	effects	of	erosion	and	dilation	respectively.

Conclusion
Feature	 detection	 is	 considered	 to	 be	 part	 of	 low	 level	 processing	 in	 human
vision.	In	this	chapter	we	have	discussed	the	basic	techniques	to	simulate	human
vision	which	have	been	combined	to	provide	a	much	more	sophisticated	feature
detector,	 relatively	more	popular	of	which	 is	called	 the	Scale	 Invariant	Feature
Transform	 (SIFT)	 [Lowe	 04].	 Such	 low	 level	 feature	 detection	 processes	 then
become	 important	 for	 image	 segmentation	 and	 identifying	 objects	 often	 aided
heavily	by	prior	knowledge	learned.	To	learn	more	about	these	advanced	steps	of
computer	vision,	please	refer	to	[Forsyth	and	Ponce	11,	Prince	12].

Bibliography
[Forsyth	and	Ponce	11]	David	A.Forsyth	and	Jean	Ponce.	Computer	Vision:	A	Modern	Approach.	Pearson,

2011.
[Lowe	 04]	 David	 G.Lowe.	 “Distinctive	 Image	 Features	 from	 Scale-Invariant	 KeypointsInternational

Journal	Computer	Vision	60:2	(2004),	91-110.
[Prince	12]	Simon	J.	D.Prince.	Computer	Vision:	Models,	Learning,	and	Inference.	Cambridge	University

Press,	2012.

Summary:	Do	you	know	these	concepts?

Edge	Detection
Sobel	Operator
Laplacian	Operator
Canny	Edge	Detector
Multi-resolution	Edge	Detection	Morovac	Operator
Corner	Detection
Median	Filter
Erosion	and	Dilation

Exercises
1.	 You	would	 like	 to	detect	edges	 in	an	 image.	You	can	use	a	curvature

based	method	C	or	a	gradient	based	method	G.
a.	 Would	using	C	require	using	a	single	or	multiple	convolution

operations?	Justify	your	answer.
b.	 Would	using	G	require	using	a	single	or	multiple	convolution

operations?	Justify	your	answer.
c.	 Edge	detector	filters	usually	combine	a	low	pass	filter	with	a

curvature	or	gradient	filter.	Why?
d.	 How	does	the	width	of	this	low	pass	filter	affect	the	resolution

of	the	edges	you	would	detect?

2.	 In	gradient-based	edge	detection	algorithms,	a	gradient	is	approximated
by	 a	 difference.	 Three	 such	 difference	 operations	 are	 shown	 below.
This	difference	can	be	viewed	as	a	convolution	of	f	(x	,	y)	with	some
impulse	response	of	a	filter	h	(x	,	y)	.	Determine	h	(x	,	y)	for	each	of
the	following	difference	operators.

a.	 f	(x	,	y)	-	f	(x	-	1	,	y)

b.	 f	(x	+	1	,	y)	-	f	(x	,	y)

c.	 f	(x	+	1	,	y	+	1)	-	f	(x	-	1	,	y	+	1)	+	2	[f	(x	+	1	,	y)	-	f	(x	-

1	,	y)]	+	f	(x	+	1	,	y	-	1)	-	f	(x	-	1	,	y	-	1)

3.	 Consider	 a	 binary	 image	 created	 by	 an	 edge	 detection	 method	 that
marks	all	the	edge	pixels.	I	would	like	to	use	a	Hough	transform	to	see
if	this	image	has	any	circles.	The	equation	of	a	circle	with	center	(a,b)
and	radius	c	is	given	by	(x	-	a)2	+	(y	-	b)2	=	c	2.

a.	 What	is	the	dimension	of	the	Hough	space?
b.	 Write	 the	 equation	 of	 the	 corresponding	Hough	 space	 entity

for	each	pixel	(x	,	y)	?
c.	 Infer	 from	 this	 equation	 the	 shape	 in	 the	 Hough	 space	 that

corresponds	to	each	pixel	(x	,	y)	?

4.	 The	 Harris	 corner	 detector	 is	 invariant	 to	 which	 of	 the	 following
transformations:	Scaling,	Translation	and	Rotation.	Justify	your	answer.

5.	 Consider	a	parabola	given	by	equation	y	=	ax	2	+	bx	+	c.
a.	 What	is	the	dimension	of	the	Hough	space?
b.	 What	 is	 the	 entity	 in	 Hough	 space	 to	 which	 the	 parabola

corresponds	to?
c.	 What	is	the	equation	of	the	entity	in	Hough	space?

6.	 Consider	the	Harris	corner	detector	where	M	(x	,	y)	is	the	Hessian	of
at	pixel	(x	,	y)	.

a.	 Is	 a	 pixel	 at	 location	 (x	 ,	 y)	 a	 corner	 when	 the	 largest
eigenvalue	 of	M	 (x	 ,	 y)	 is	 much	 larger	 than	 the	 smallest
eigenvalue	of	M	(x	,	y)	?	Justify	your	answer.

b.	 Are	all	eigenvalues	of	M	(x	,	y)	positive?	Does	the	criterion
of	 selecting	 corners	 that	 you	 specied	 above	 work	 for	 a
negative	eigenvalue?

7.	 Explain	from	properties	of	convolution	why
f	⋆	∂	h	∂	x	=	∂	f	∂	x	⋆	h	.

Part	III

Geometric	Visual	Computing

6.1

6

Geometric	Transformations
Geometric	 transformation,	 in	 general,	 means	 transforming	 a	 geometric	 entity
(e.g.	 point,	 line,	 object)	 to	 another.	 This	 can	 happen	 in	 any	 dimension.	 For
example,	a	2D	image	can	be	transformed	to	another	by	translating	it	or	scaling	it
or	applying	a	unique	transformation	to	each	of	its	pixels.	Or,	a	3D	object	like	a
cube	 can	 be	 transformed	 into	 a	 parallelepiped	 or	 sphere.	 All	 of	 these	 will	 be
considered	 as	 geometric	 transformations.	 Often	 a	 2D	 image	 transformation	 is
also	called	an	image	warp.

Homogeneous	Coordinates
Before	we	 start	with	 geometric	 transformations,	we	will	 first	 introduce	 a	 very
important	concept	of	homogeneous	coordinates.	Let	us	consider	the	very	simple
case	of	the	1D	world	(see	the	red	line	in	Figure	6.11eft).	Let	us	consider	a	point
P	’	on	this	line.	The	coordinate	of	this	point	will	be	one	dimensional.	Let	it	be	(p)
.	Now	consider	a	higher	dimensional	2D	world	in	which	this	line	is	embedded	at
y	=	1.	Draw	a	ray	from	the	origin	of	this	world	through	the	point	P	’.	Consider	a
point	P	(x	,	y)	on	this	line.	Now,	find	out	what	would	be	the	coordinate	of	P	’	in
the	 1D	 world	 of	 the	 red	 line	 when	 expressed	 using	 x	 and	 y.	 Using	 similar
triangles	you	can	see	that	p	=	x	y	.	Further,	any	point	on	this	ray	from	the	origin
can	be	expressed	as	(kx,	ky)	where	k	≠	0,	and	the	value	of	p	 is	 invariant	 to	 the
location	of	P	on	this	ray.

Figure	6.1	.	Homogeneous	coordinates	in	1D	(left)	and	in	2D	(right).

Therefore,	a	point	in	the	1D	world,	such	as	P	’,	when	embedded	in	2D,	can	be
thought	of	as	 the	projection	of	all	points	on	a	 ray	 in	 the	2D	world	and	 the	2D
coordinate	of	the	projection	is	given	by	(x	y	,	1)	.	Thus,	any	point	in	1D	can	be
considered	as	the	projection	of	a	ray	in	the	2D	world	on	to	a	specific	1D	world,
in	 this	 case,	 the	 world	 of	 y	 =	 1.	 This	 is	 called	 the	 (n	 +	 1)D	 homogeneous
coordinate	of	a	n	dimensional	point.	Therefore,	(x	y	,	1)	is	the	2D	homogeneous
coordinate	of	the	1D	point	P	’.	Also,	(k	x	y	,	k)	refers	 to	 the	same	ray	but	 the
projection	is	now	on	the	y	=	k	plane.	Since,	they	refer	to	the	same	ray,	these	two
homogeneous	coordinates	are	considered	equivalent.
Let	us	now	extend	this	concept	to	the	next	dimension	using	the	right	figure	of

Figure	6.1).	Consider	the	2D	world	of	the	red	plane	and	consider	the	point	P	’	on
this	plane.	This	point	can	be	considered	 to	be	 the	projection	of	a	 ray	 from	 the
origin	through	P	’	in	the	3D	world.	Therefore,	we	will	have	a	3D	homogeneous
coordinate	for	the	2D	point	P	’.
Extending	 this	 idea	 to	 the	 3D	 world,	 it	 is	 evident	 that	 we	 will	 get	 4D

homogeneous	 coordinates	 for	 3D	 points.	 In	 homogeneous	 coordinate
representation,	 the	 last	coordinate	denotes	 the	 lower	dimensional	hyperplane	 in
which	 the	 point	 resides	 and	 therefore	 need	 not	 be	 1.	However,	when	we	 deal
with	 objects,	 it	 is	 important	 for	 us	 to	 consider	 them	 residing	 in	 the	 same
hyperplane.	The	easiest	way	to	achieve	this	is	by	normalizing	the	homogeneous
coordinates	i.e.	when	considering	the	4D	homogeneous	coordinate	(x	,	y	,	z	,	w)
where	w	≠	1,	we	convert	it	to	(x	w	,	y	w	,	z	w	,	1)	.
Though	at	this	point	it	may	seem	strange	to	look	at	points	as	rays	in	a	higher

dimension	 space,	 it	 is	 not	 as	 ad-hoc	 as	 it	may	 seem.	 Intuitively,	 it	 stems	 from
considerations	in	computer	vision,	which	is	the	science	of	recovering	3D	 scene
from	2D	images.	In	our	visual	system,	the	3D	scene	is	projected	as	an	image	on
the	retina	of	the	eye.	Our	brain	identifies	each	point	of	the	image	in	the	retina	as
a	 ray	 into	 the	 3D	 world.	 From	 only	 one	 eye	 and	 its	 retinal	 image,	we	 cannot
recover	any	information	beyond	the	ray-i.e.	we	can	only	tell	which	ray	contains
the	 point	 but	 not	 where	 on	 the	 ray	 the	 point	 lies.	 In	 other	 words,	 we	 cannot
decipher	the	depth	of	the	point.	But,	when	two	eyes	see	the	same	point	in	3D,	we
get	two	different	rays	from	the	two	image	projections	on	the	retinas.	Intersection
of	 these	 two	 rays	 gives	 the	 exact	 position	 (depth)	 of	 the	 point	 in	 3D.	 This	 is
called	stereo	vision.	Hopefully	this	will	convince	you	of	the	importance	of	rays
in	computer	vision	and	visual	perception	to	motivate	this	ray	representation.
There	 are	 several	 other	 practical	 advantages	 of	 this	 representation.	 In	 this

chapter	we	will	consider	the	3D	world	with	4D	homogeneous	points	for	all	our

6.2

discussions.	 First,	 let	 us	 consider	 how	 you	 would	 represent	 points	 at	 infinity
using	 3D	 coordinates?	 The	 only	 option	we	 have	 is	 (∞	 ,	 ∞	 ,	 ∞)	 .	 Now,	 this
representation	is	pretty	useless	since	it	is	the	same	for	all	points	in	infinity,	even
if	 they	 are	 in	 different	 directions	 from	 the	 origin.	 However,	 using	 a	 4D
homogeneous	coordinate,	points	at	infinity	can	be	represented	as	(x	,	y	,	z	,	0)	,
where	 (x	 ,	 y	 ,	 z)	 is	 the	 direction	 of	 the	 point	 from	 the	 origin.	 When	 we
normalize	this	to	get	the	3D	point	back,	we	get	(∞	,	∞	,	∞)	as	expected.	As	a
consequence,	 homogeneous	 coordinates	 provides	 a	way	 to	 represent	 directions
(vectors)	and	distinguish	them	from	the	representation	of	points.	w	≠	0	signifies
a	point	and	w	=	0	signifies	a	direction.
In	the	rest	of	the	chapter	we	are	going	to	represent	points	or	vectors	as	4	×	1

column	vectors.	Therefore	a	point	P	=	(x	,	y	,	z	,	1)	will	be	written	as

(6.1)
P	=	x	y	z	1

If	P	is	a	vector	instead	of	a	point,	then	the	last	coordinate	will	be	0.

Linear	Transformations
Linear	 transformation	 is	 a	 special	 kind	 of	 transformation.	Given	 two	 points	P
and	Q,	the	transformation	L	is	considered	a	linear	transformation	if

(6.2)
L	(a	P	+	b	Q)	=	a	L	(P)	+	b	L	(Q)

where	 a,	 	 b	 are	 scalars.	 In	 other	 words,	 the	 transformation	 of	 the	 linear
combination	of	points	is	the	linear	combination	of	transformation	of	points.	This
holds	true	for	multiple	points	and	not	just	two.
The	 implications	 of	 linear	 transformations	 are	 quite	 important.	 aP	 +	 bQ

defines	 a	 plane	 and	 a	 line	 if	a	 +	 b	 =	 1.	 Linear	 transformation	 implies	 that	 to
transform	a	line	or	a	plane,	we	do	not	need	to	sample	multiple	points	inside	it,
transform	them	and	then	connect	 them	to	get	 the	 transformed	entity.	Instead,	 it
says	 that	 the	 same	 result	 will	 be	 achieved	 if	 the	 points	 are	 transformed	 and
connected	via	a	 straight	 line	or	plane	passing	 through	 it.	Computationally,	 this
has	 a	 huge	 impact	 since	 now,	we	 save	 on	 computing	 the	 transformations	 of	 a
bunch	 of	 points	 on	 the	 line	 and	 instead	 need	 to	 compute	 only	 two
transformations.	Second,	linear	transformation	also	implies	that	a	line	transforms
to	 a	 line	 and	 a	 plane	 transforms	 to	 a	 plane.	 In	 fact,	 this	 can	 be	 generalized	 to
higher	orders	of	 functions.	 If	you	consider	 a	 curve	of	degree	n	 (e.g.	 a	 straight

line	 is	 a	 function	 of	 degree	 1,	 circle	 is	 of	 degree	 2	 and	 so	 on),	 a	 linear
transformation	 will	 not	 change	 the	 degree	 of	 the	 curve.	 Finally,	 a	 linear
transformation	 can	 be	 represented	 as	 a	 matrix	 multiplication	 where
a(n	 +	 1)	 ×	 (n	 +	 1)	 matrix	 representing	 the	 transformation	 converts	 a
homogeneous	coordinate	represented	as	a(n	+	1)	×	1	column	vector	to	another.
Therefore,	 linear	 transformations	 are	 represented	by	3	×	3	matrices	 in	 2D	and
4	×	4	matrices	in	3D.

Figure	6.2	.	Left:	This	figure	illustrates	different	kinds	of	linear	transformation.	Consider	the	square	object
in	(a).	(b)	is	a	Euclidean	transformation	(angles	and	lengths	preserved),	(c)	is	an	affine	transformation	(ratio
of	angles	and	lengths	preserved)	and	(d)	is	a	projective	transformation	(parallel	lines	became	non-parallel).
Right:	 This	 shows	 the	 projective	 transformation	 of	 a	 camera	 captured	 image	 and	 the	 relevant	 vanishing
points.

Next	we	will	 discuss	 three	 type	 of	 linear	 transformations:	Euclidean,	 affine
and	 projective.	 Euclidean	 transformations	 preserve	 lengths	 and	 angles.	 For
example,	 a	 square	 will	 not	 be	 changed	 to	 a	 rectangle	 by	 an	 Euclidean
transformation.	 Translation	 and	 rotation	 are	 Euclidean	 transformations.	 Affine
transformation	preserves	the	ratios	of	lengths	and	angles.	Therefore,	a	square	can
be	converted	to	rectangle	or	a	rhombus	by	an	affine	transformation,	but	cannot
be	transformed	to	a	general	quadrilateral.	Examples	of	affine	transformations	are
shear	 and	 scaling	which	will	 still	 retain	 the	parallel	 sides	of	 a	 rectangle	 and	 it
will	 still	 remain	 a	 parallelogram.	 Both	 Euclidean	 and	 affine	 transformations
cannot	 transform	points	within	 finite	 range	 to	points	at	 infinity	and	vice	versa.
This	can	only	be	achieved	by	projective	transformations.	What	does	this	mean?
This	 means	 that	 parallel	 lines	 will	 remain	 parallel	 and	 intersecting	 lines	 will
remain	 intersecting	 with	 Euclidean	 or	 affine	 transformations.	 However,	 with
projective	transformation,	parallel	lines	can	become	intersecting	and	vice	versa.
This	is	the	kind	of	transformation	we	see	in	a	camera	image	where	parallel	lines
bounding	 rectangular	 sides	 of	 buildings	 become	 non-parallel	 and	 tend	 to	meet
somewhere	 within	 or	 outside	 the	 image	 called	 the	 vanishing	 point.	 This	 is
illustrated	in	Figure	6.2.

Put	a	Face	to	the	Name

6.3

6.3.1

Euclid	 is	 known	 as	 Father	 of	 Geometry.	 He	was	 a	 Greek	mathematician
from	Alexandria,	Egypt	who	lived	in	300	B.C.	(yes!	more	than	2000	years
back).	 He	 is	 best	 known	 for	 his	 work,	 Elements,	 where	 he	 collected	 the
work	of	many	mathematicians	who	preceded	him.	The	whole	new	stream
of	geometry	established	by	him	is	known	as	Euclidean	Geometry.	Basically
the	 modern	 2D	 geometry	 is	 actually	 adopted	 from	 Euclidean	 Geometry.
Elements,	a	set	of	13	books,	 is	one	of	 the	most	 influential	and	successful
textbooks	 ever	 written.	 Euclid	 proved	 that	 it	 is	 impossible	 to	 find	 the
“largest	 prime	 number,”	 because	 if	 you	 take	 the	 largest	 known	 prime
number,	add	1	to	the	product	of	all	 the	primes	up	to	and	including	it,	you
will	get	another	prime	number.	Euclid’s	proof	for	this	theorem	is	generally
accepted	 as	 one	 of	 the	 “classic”	 proofs	 because	 of	 its	 conciseness	 and
clarity.	Millions	of	prime	numbers	are	known	to	exist,	and	more	are	being
added	by	mathematicians	and	computer	scientists	even	today.

Euclidean	and	Affine	Transformations
In	this	section	we	will	explore	the	different	Euclidean	and	affine	transformations
in	 detail.	 For	 each	 of	 these,	 we	 will	 start	 with	 the	 simpler	 case	 of	 2D
transformations	and	then	extend	them	to	3D.

Translation
Translation	 is	 as	 simple	 as	 it	 sounds.	 Translate	 a	 point	 from	 one	 location	 to
another.	Let	us	consider	the	2D	point	P	=	(x	,	y)	transformed	to	P	’	=	(x	’,	y’),	
such	that

(6.3)
x	′	=	x	+	t	x

(6.4)
y	′	=	y	+	t	y

6.3.2

The	matrix	 form	 of	 this	 transformation	 of	 a	 2D	 point	P	 represented	 as	 3	 ×	 1
homogeneous	coordinates	is	given	by

(6.5)
P	′	=	x	′	y	′	1	=	x	+	t	x	y	+	t	y	1	=	1	0	t	x	0	1	t	y	0	0	1	x	y	1	=	T	(t	x	,	t	y)	P
Note	that	since	the	last	element	of	P	’	is	1,	the	last	row	of	the	matrix	should	be
(0,	 0,	 1).	We	denote	 this	 translation	matrix	 by	T	 .	Any	 translation	matrix	will
have	the	same	format	where	the	last	column	will	have	the	translation	parameters.
Therefore,	we	denote	this	with	T	(t	x	,	t	y)	.	Anytime	we	use	this	notation	we
will	refer	to	a	matrix	where	the	top	left	sub-matrix	is	identity	and	the	translation
parameters	go	to	the	last	column.
Every	transformation	has	an	inverse.	This	is	defined	as	the	transformation	that

takes	 the	 transformed	 point	P	 ’	 back	 to	P.	 It	 is	 intuitive	 that	 the	 inverse	 of	 a
translation	would	 be	 another	 translation	whose	 parameters	 are	 negated.	 Or,	 in
other	words,

(6.6)
T	-	1	(t	x	,	t	y)	=	T	(-	t	x	,	-	t	y)

This	is	consistent	with	the	math,	since	x	=	x	’	-	t	x	and	y	=	y	-	t	y	.	We	can	extend
this	to	3D	as

Figure	6.3	.	This	shows	a	point	(x	,	y)	being	rotated	by	an	angle	θ	to	be	transformed	to	the	point	(x	’,	y’).

(6.7)
T	(t	x	,	t	y	,	t	z)	=	1	0	0	t	x	0	1	0	t	y	0	0	1	t	z	0	0	0	1

and

(6.8)
T	-	1	=	T	(-	t	x	,	t	y	,	-	t	z)

You	can	verify	this	by	finding	the	inverse	of	T	using	standard	matrix	algebra.

Rotation
Next,	 we	 will	 consider	 the	 case	 of	 another	 Euclidean	 transformation,	 the

rotation.	Here	also	we	will	first	consider	the	easier	case	of	2D	rotation.	For	this,
please	take	a	look	at	Figure	6.3.	This	shows	a	point	P	=	(x	,	y)	being	rotated	by
an	angle	θ	to	be	transformed	to	the	point	P	’	=	(x	’,	y’).
Consider	the	point	P	in	polar	coordinates	given	by	the	length	r	and	angle	φ.	P

is	then	expressed	as

(6.9)
x	=	r	c	o	s	(ϕ)

(6.10)
y	=	r	s	i	n	(ϕ)
The	rotation	can	be	expressed	using	the	equations

(6.11)
x	′	=	r	c	o	s	(θ	+	ϕ)

(6.12)
=	r	c	o	s	(θ)	c	o	s	(ϕ)	-	r	s	i	n	(θ)	s	i	n	(ϕ)

(6.13)
=	x	c	o	s	(θ)	-	y	s	i	n	(θ)

(6.14)
y	′	=	r	s	i	n	(θ	+	ϕ)

(6.15)
=	r	s	i	n	(θ)	c	o	s	(ϕ)	+	r	c	o	s	(θ)	s	i	n	(ϕ)

(6.16)
=	x	s	i	n	(θ)	+	y	c	o	s	(θ)
Therefore,	using	the	same	technique	as	we	used	before,	we	can	find	the	rotation
matrix	R	as

(6.17)
P	′	=	x	′	y	′	1	=	c	o	s	(θ)	-	s	i	n	(θ)	0	s	i	n	(θ)	c	o	s	(θ)	0	0	0	1	x	y	1	=	R	(θ)
P

Clearly,	the	inverse	transformation	of	R	is	a	rotation	by	-	θ.	Therefore,

(6.18)
R	(θ)	-	1	=	R	(-	θ)
Now	plug	in	-	θ	in	R	and	you	will	see	that	the	matrix	is	a	transpose	of	R	,	i.e.

(6.19)

R	(θ)	-	1	=	R	(-	θ)	=	R	(θ)	T
This	property	of	 inverse	of	rotation	matrix	being	its	 transpose	is	a	very	special
and	useful	one	and	is	true	for	all	rotation	matrices,	even	in	higher	dimensions!
Now,	let	us	extend	this	concept	to	3D.	While	a	rotation	about	a	plane	occurs

around	a	point,	a	3D	rotation	occurs	about	an	axis.	Figure	6.4	shows	a	 rotation
about	the	z-axis.	For	a	rotation	about	the	z-axis,	 the	z-coordinates	of	 the	points
remain	unchanged.	The	rotation	still	affects	the	x	and	y	coordinates	just	the	same
way	 as	 it	 would	 in	 a	 2D	 the	 xy	 plane.	 Therefore	 the	 3D	 rotation	 can	 on	 be
represented	by	the	following	equations.

Figure	6.4	.	This	shows	the	3D	rotation	of	a	point	(x	,	y	,	z)	about	the	z-axis	resulting	in	the	point	(x	′	,	y	′	,
z)

(6.20)
x	′	=	x	c	o	s	(θ)	-	y	s	i	n	(θ)

(6.21)
y	′	=	x	s	i	n	(θ)	+	y	c	o	s	(θ)

(6.22)
z	′	=	z
In	3D	we	distinguish	the	rotations	with	their	axes.	Therefore,	the	3D	rotation

about	z-axis,	R	z	is	given	by

(6.23)
R	z	(θ)	=	c	o	s	(θ)	-	s	i	n	(θ)	0	0	s	i	n	(θ)	c	o	s	(θ)	0	0	0	0	1	0	0	0	0	1
Also,	in	this	case	of	3D	rotation,

(6.24)
R	z	(θ)	-	1	=	R	z	(-	θ)	=	R	z	(θ)	T
Similarly,	a	3D	rotation	about	Y	axis	keeps	the	y-coordinate	unchanged	while	the
rotation	happens	in	the	xz	plane	giving	us	the	matrix

(6.25)

6.3.3

R	y	(θ)	=	c	o	s	(θ)	0	-	s	i	n	(θ)	0	0	1	0	0	s	i	n	(θ)	0	c	o	s	(θ)	0	0	0	0	1
Try	to	write	out	the	matrix	for	rotation	about	X-axis.

Scaling
Scaling	 is	 the	 transformation	by	which	a	point	 is	 scaled	along	one	of	 the	axes
directions.	Figure	6.5	shows	an	example.	In	this	case,	we	will	go	directly	to	3D
scaling.	The	equations	defining	a	scaling	of	s	x	,		s	y	and	s	z	along	the	X,		Y	and	Z
axes	respectively	to	transform	P	to	P	’	are	given	by

(6.26)
x	′	=	s	x	x

(6.27)
y	′	=	s	y	y

(6.28)
z	′	=	s	z	z
The	matrix	for	this	is	given	by

(6.29)
P	′	=	x	′	y	′	z	′	1	=	s	x	0	0	0	0	s	y	0	0	0	0	s	z	0	0	0	0	1	x	y	z	1	=	S	(s	x	,	s	y	,	s	z)
P

Clearly,	the	scale	factors	form	the	parameters	of	the	scaling	matrix.	If	s	x		=	s	y		=	
s	z	,	then	we	call	this	a	uniform	scaling,	otherwise	nonuniform.	Also,	intuitively,
the	 inverse	 matrix	 of	 scaling	 would	 be	 a	 scaling	 with	 reciprocal	 of	 the	 scale
factors.	You	can	verify	that

Figure	 6.5	 .	 This	 shows	 an	 example	 of	 scaling.	A	 square	 (a)	 is	 scaled	 along	X	 and	Y	 axes	 to	 create	 the
rectangles	in	(b)	and	(c)	respectively.

(6.30)
S	(s	x	,	s	y	,	s	z)	-	1	=	S	(1	s	x	,	1	s	y	,	1	s	z)

6.3.4

Figure	 6.6	 .	 Left:	 This	 shows	 an	 example	 of	 2D	 shear.	 A	 square	 (a)	 undergoes	 a	 Y-shear	 to	 create	 the
rhombus	 in	 (b).	 In	 Y-shear	 the	 y-coordinate	 remains	 unchanged	 while	 the	 x-coordinate	 gets	 translated
proportional	to	the	value	of	the	y-coordinate.	Therefore,	all	the	points	on	the	X-axis	whose	y-coordinate	is	0
remain	unchanged.	But	as	the	y-coordinate	increases,	the	x-coordinate	moves,	in	this	example,	towards	the
right,	creating	 the	shear.	Similarly,	 (c)	shows	an	X-shear.	 (d)	 shows	 the	 result	of	 first	 applying	a	X	shear
followed	by	a	Y	shear.	Therefore,	the	only	unchanged	point	is	the	origin	where	both	x	and	y	coordinates	are
0.	Note	that	if	the	proportionality	constant	for	the	shear	is	negative,	then	the	Y-shear	will	move	the	square	to
the	left	instead	of	right.	Right:	This	shows	an	example	of	Z-shear	in	3D	where	Z	is	the	axis	of	the	cylinder.

Shear
Shear	is	a	transformation	where	one	coordinate	gets	translated	by	an	amount	that
is	proportional	to	the	other	coordinate.	Figure	6.6	shows	an	example	of	2D	shear.
The	 shear	 is	 identified	 by	 the	 coordinate	 that	 remains	 unchanged	 due	 to	 the
shear.	 So,	 a	 Y-shear	 keeps	 the	 y-coordinate	 unchanged	 and	 translates	 the	 x-
coordinate	proportional	to	the	y-coordinate.
The	equations	 that	describe	 the	 transformation	of	point	P	 to	P	 ’	 due	 to	 a	Y-

shear	is	given	by

(6.31)
x	′	=	x	+	a	y

(6.32)
y	′	=	y
where	a	is	the	parameter	of	the	shear.	Therefore,	the	shear	matrix	is	given	by

(6.33)
P	′	=	x	′	y	′	1	=	1	a	0	0	1	0	0	0	1	x	y	1	=	H	y	(a)	P
When	extending	this	to	3D,	two	coordinates	should	be	translated	proportional	to
the	 third	one.	So,	 for	Z	 shear,	 the	 z-coordinate	 remains	 unchanged	while	 the	x
and	 y	 coordinates	 are	 translated	 proportional	 to	 z.	 However,	 the	 constant	 of
proportionality	can	be	different	and	 therefore	 the	shear	matrix	would	have	 two
parameters.	The	matrix	for	a	3D	Z-shear	is	given	by

(6.34)
P	′	=	x	′	y	′	z	′	1	=	1	0	a	0	0	1	b	0	0	0	1	0	0	0	0	1	x	y	z	1	=	H	z	(a	,	b)	P
where	a	and	b	are	the	two	parameters	of	the	shear	matrix.	It	can	be	verified	that
the	inverse	of	a	shear	matrix	is

6.3.5

6.4

(6.35)
H	z	(a	,	b)	-	1	=	H	z	(-	a	,	-	b)	.

Some	Observations
This	 brings	 us	 to	 the	 end	 of	 the	 discussion	 on	 basic	 Euclidean	 and	 affine
transformations.	Here	 are	 a	 few	observations	 from	 this	 discussion.	 First,	 since
Euclidean	 transformations	preserve	 lengths	 and	angles,	 they	will	 automatically
preserve	 the	 ratio	 of	 lengths	 and	 angles.	Therefore,	Euclidean	 transformations
are	a	subset	of	affine	transformations.	Euclidean	transformations	are	often	called
rigid	body	 transformation	 since	 the	 shape	 of	 the	 object	 cannot	 be	 changed	 by
these	transformations.
Next,	all	affine	transformations	of	3D	space	we	have	discussed	have	the	 last

row	predefined	to	be	(0,	0,	0,	1).	This	is	not	a	coincidence.	Affine	transformation
in	3D	can	be	represented	as	a	linear	transformation	in	4D,	and	is	a	subspace	of
all	4D	 linear	transformations.	In	other	words,	in	affine	transformation,	we	have
the	liberty	to	change	only	12	parameters	of	the	4	×	4	matrix	and	still	be	in	this
subspace.	 This	 is	 often	 described	 as	 the	 degrees	 of	 freedom	 of	 a	 class	 of
transformations.	In	other	words,	affine	transformations	in	3D	have	12	degrees	of
freedom.	However,	it	is	a	coincidence	that	for	affine	transformations	the	number
of	degrees	of	freedom	is	the	same	as	the	number	of	entries	that	can	be	changed
in	the	matrix.	We	will	have	an	in-depth	discussion	on	the	degrees	of	freedom	at
the	end	of	this	chapter.
Next,	some	points	or	lines	are	fixed	under	certain	transformations	i.e.	they	do

not	 change	 position	 with	 the	 transformation.	 For	 example,	 the	 origin	 is	 fixed
under	 scaling	and	shear	 in	3D.	The	axis	of	 rotation	 is	 fixed	under	3D	 rotation
and	 the	 origin	 is	 fixed	 under	 2D	 rotation.	 These	 are	 called	 fixed	 points	 of
mappings.	It	can	be	seen	that	there	are	fixed	points	under	translation.
Finally,	 the	 translation	matrix	 cannot	 be	 expressed	 as	 a	 3	 ×	 3	matrix	while

scaling	 or	 rotation	 or	 shear	 can	 be.	Homogeneous	 coordinates	 are	 essential	 to
express	 translation	 in	 3D	 as	 a	 linear	 transformation	 in	 4D.	 This	 is	 another
practical	importance	of	having	homogeneous	coordinates.

Concatenation	of	Transformations
You	now	know	all	the	basic	affine	transformations.	The	next	step	is	how	to	use
this	basic	knowledge	to	find	the	matrices	for	more	complex	transformations	like
scaling	or	rotation	about	an	arbitrary	axes.	To	achieve	this,	we	need	to	learn	how
to	concatenate	transformations.

6.4.1

Let	us	consider	a	case	where	a	point	P	is	first	translated	and	then	rotated.	Now
let	 us	 see	 how	 to	 find	 the	 final	 point.	 Let	 the	 translated	 point	 be	P	 ’	 and	 it	 is
given	by

(6.36)
P	′	=	T	P
P	’	is	then	rotated	to	produce	P“	given	by

(6.37)
P	″	=	R	P	′	=	R	T	P
Therefore,	 to	 concatenate	 the	 effect	 of	 a	 translation	 followed	 by	 rotation,	 we
have	 to	 premultiply	 the	 respective	 matrices	 based	 on	 the	 order	 of
transformations.	Of	 course,	 the	 order	 of	 this	multiplication	 is	 critical	 since	we
know	matrix	multiplication	is	not	commutative,	i.e.

(6.38)
R	T	P	≠	T	R	P

Therefore,	you	will	end	up	with	grossly	inaccurate	transformations	if	you	do	not
pay	special	attention	to	the	order.	Further,	the	inverse	of	the	transformation	to	get
to	P	 back	 from	P“	 is	 given	 by	multiplying	 the	 inverse	matrices	 in	 the	 reverse
order	due.

(6.39)
P	=	T	-	1	R	-	1	P	′
Let	 us	 now	 try	 to	 find	 the	 matrices	 for	 more	 complex	 transformations.	 The
algorithm	to	achieve	this	is	as	follows.

1.	 Step	1:	Apply	one	or	more	transformations	to	get	to	a	case	where	you
can	 apply	 basic	 known	 affine	 transformations.	 Let	 this	 set	 of
transformations	be	denoted	by	F	.

2.	 Step	2:	Apply	the	basic	affine	transformation	B.
3.	 Step	3:	Apply	the	inverse	of	F	to	undo	the	effect	of	F	-	1	.
4.	 Step	 4:	 Since	 they	 are	 applied	 in	 order,	 the	 matrix	 that	 needs	 to	 be

premultiplied	with	the	point	is	given	by	F	-	1	B	F	.

Let	 us	 illustrate	 the	 use	 of	 concatenation	 of	 transformations	 to	 design	more
complex	transformations.

Scaling	About	the	Center
Let	us	consider	the	2D	transformation	where	we	want	to	scale	a	square	of	size	2

6.4.2

units	with	its	bottom	left	corner	coincident	with	the	origin	by	a	factor	2	about	its
center	(1,	1)	as	shown	in	Figure	6.7.	It	 is	pretty	intuitive	to	figure	out	 the	final
transformed	 square.	But	we	will	 learn	 here	 how	 to	 find	 the	matrix	 that	would
achieve	this	transformation.

1.	 	Step	1:	We	know	that	scaling	keeps	the	origin	fixed.	Therefore,	if	we
want	to	keep	the	center	of	the	square	fixed,	the	first	transformation	we
need	to	apply	should	bring	this	point	at	the	origin.	Now,	the	center	of
the	square	is	(1,	1).	So,	the	transformation	to	achieve	this	would	be	T	(
-	1	,	-	1)	.	So,	our	F	is	T	(-	1	,	-	1)	.

2.	 Step	 2:	 Now	 with	 the	 center	 at	 origin,	 you	 can	 apply	 the	 basic
transformation	asked	of	you,	i.e.	scaling	with	factor	2	along	both	X	and
Y	directions.	Therefore	B	=	S(2,	2)	.

3.	 Step	3:	Now	we	need	to	apply	F	-	1	=	T	(-	1	,	-	1)	-	1	=	T	(1	,	1)	to
undo	the	effect	of	F	.

4.	 Step	4:	Therefore	the	final	concatenated	transformation	is	given	by	T	(
1	,	1)	S	(2	,	2)	T	(-	1	,	-	1)	.	 If	you	write	 these	out	completely,	 the
3	×	3	matrix	for	this	transformation	is	given	by

Figure	6.7	 .	Left:	This	shows	a	square	of	size	2	units	with	 its	bottom	 left	corner	aligned	with	 the	origin.
Right:	This	shows	the	same	square	after	transformation	by	a	factor	of	2	about	its	origin.

(6.40)
1	0	1	0	1	1	0	0	1	2	0	0	0	2	0	0	0	1	1	0	-	1	0	1	-	1	0	0	1

All	these	steps	are	illustrated	in	Figure	6.8.

Rotation	About	an	Arbitrary	Axis
Now,	 let	 us	 consider	 a	more	 complex	 case	 of	 rotation	 by	 an	 angle	θ	 about	 an
arbitrary	axis	instead	of	one	of	the	three	coordinate	axes.	Let	us	consider	an	axis
rooted	at	the	point	(x	,	y	,	z)	with	direction	specified	by	the	unit	vector	(a	,	b	,	c

)	 .	 It	 is	 important	 to	 normalize	 the	 axis	 to	 be	 a	 unit	 vector.	Otherwise	 a	 scale
factor	 equivalent	 to	 the	 magnitude	 of	 the	 vector	 will	 creep	 into	 the
transformation.	 When	 we	 derived	 the	 matrix	 for	 3D	 rotation	 earlier,	 we	 did
assume	unit	vectors	as	axes.

Figure	 6.8	 .	 This	 shows	 the	 different	 steps	 of	 using	 the	 concatenation	 of	 transformation	 to	 achieve	 the
scaling	about	the	center.	First	is	the	original	square	which	is	then	translated	by	(-	1	,	-	1)	to	get	the	center
coincident	with	the	origin.	Next	it	is	scaled	by	2	and	then	translated	back	by	(1,	1)	to	undo	the	effect	of	the
earlier	translation.

The	arbitrary	axes	are	illustrated	in	Figure	6.9.	The	goal	here	would	be	to	first
take	 this	 arbitrary	 axis	 to	 a	 position	 where	 the	 desired	 transformation	 can	 be
related	 to	 the	basic	 transformations	we	know.	Since	we	know	 the	matrices	 for
transformation	along	one	of	the	coordinate	axes,	the	first	step	would	be	to	design
F	such	that	the	arbitrary	axis	is	aligned	with	one	of	the	coordinate	axes.	Without
loss	of	generality,	we	will	try	to	align	it	with	the	Z	axis.	Once	this	is	achieved,
we	will	apply	the	rotation	about	the	Z	axis	by	an	angle	θ.	Therefore,	B	=	R	z	(θ)
.	Next,	we	will	apply	F	-	1	to	undo	the	effect	of	F	.
Now,	 let	 us	 focus	 on	 finding	 F	 .	 Let	 us	 see	what	we	 need	 to	 do	 to	 get	 the

arbitrary	axis	aligned	with	Z-axis,	as	illustrated	in	Figure	6.9.	First	we	translate
the	scene	by	(-	x	,	-	y	,	-	z)	so	that	the	base	point	of	the	vector	moves	to	origin.
This	 transformation	 is	 therefore	 T	 (-	 x	 ,	 -	 y	 ,	 -	 z)	 .	 The	 arbitrary	 axis	 now
becomes	the	unit	vector	(a	,	b	,	c)	.	We	will	align	this	vector	with	the	Z	axis	in
two	steps-first	we	will	 rotate	 the	vector	about	X	axis	 so	as	 to	get	 it	 coincident

with	the	XZ	plane.	Next	we	will	rotate	this	vector	on	the	XZ	plane	about	the	Y
axis	to	get	it	coincident	with	the	Z	axis.	Let	us	now	compute	the	angles	we	have
to	rotateα	about	X	and	β	about	Y—to	achieve	this.	Once	we	figure	this	out,	the
former	rotation	will	be	given	by	R	x	(α)	and	the	latter	by	R	y	(β)	.	Thus,

Figure	6.9	.	This	shows	an	arbitrary	axis	of	rotation	rooted	at	(x	,	y	,	z)	and	directed	towards	the	unit	vector
(a	,	b	,	c)	and	the	transformations	it	undergoes	to	get	aligned	with	the	Z	axis.	First,	the	vector	is	translated
to	be	rooted	at	the	origin.	Next	it	is	rotated	by	α	about	X	axis	to	lie	on	the	XZ	plane.	Next	it	is	rotated	by	β
about	Y	axis	to	be	coincident	with	the	Z	axis.

(6.41)
F	=	R	y	(β)	R	x	(α)	T	(-	x	,	-	y	,	-	z)
From	this	we	can	find	F	-	1	as

(6.42)
F	-	1	=	T	(x	,	y	,	z)	R	x	(-	α)	R	y	(-	β)
Therefore	the	complete	transformation,	F	-	1	B	F	,	will	be	given	by

(6.43)
T	(x	,	y	,	z)	R	x	(-	α)	R	y	(-	β)	R	z	(θ)	R	y	(β)	R	x	(α)	T	(-	x	,	-	y	,	-	z)

6.5

(6.44)
=	T	(x	,	y	,	z)	R	x	(α)	T	R	y	(β)	T	R	z	(θ)	R	y	(β)	R	x	(α)	T	(-	x	,	-	y	,	-	z
)

Now	that	we	have	deciphered	 the	complete	 transformations,	 let	us	 find	out	 the
matrices	R	x	(α)	and	R	y	(β)	.	Please	refer	to	Figure	6.9.	We	first	consider	the
projection	 of	 u	 on	 the	 YZ	 plane,	 u	 p	 ,	 denoted	 by	 the	 blue	 vector.	 This	 is
computed	by	setting	the	x	coordinate	of	u	as	0.	Therefore,	u	p	=	(0	,	b	,	c)	.	The
angle	α	that	u	has	to	rotate	about	X	to	get	to	u	’	is	the	same	that	u	p	has	to	rotate
to	be	coincident	with	the	XZ	plane.	Therefore,	if	we	consider	c	2	+	b	2	=	d	,	then
s	i	n	(α)	=	b	d	and	c	o	s	(α)	=	c	d	.	Therefore,

(6.45)
R	x	(α)	=	1	0	0	0	0	b	d	-	c	d	0	0	c	d	b	d	0	0	0	0	1
Premultiplying	u	with	R	x	(α)	gives	us	u	′	=	(a	,	0	,	d)	.	Next,	we	need	to	find
the	matrix	R	x	(β)	.	This	is	pretty	straightforward	since	u	’	is	already	in	the	XZ
plane.	So,	s	i	n	(β)	=	a	a	2	+	d	2	and	c	o	s	(β)	=	d	a	2	+	d	2	where	a	2	+	d	2	=	a
2	+	b	2	+	c	2	=	1	since	u	is	an	unit	vector.	Therefore,

(6.46)
R	y	(β)	=	d	0	-	a	0	0	1	0	0	a	0	d	0	0	0	0	1
Using	 the	 values	 of	 the	 transformations	 from	 Equations	 6.45	 and	 6.46	 in
Equation	6.44	we	can	get	the	complete	transformation.

Coordinate	Systems
Throughout	all	the	discussions	in	this	chapter,	we	have	assumed	that	we	have	a
reference—an	 orthogonal	 coordinate	 system.	 For	 n	 dimensional	 world,	 this	 is
made	 of	 n	 orthogonal	 unit	 vectors,	 u	 1,	 u	 2,	 .	 .	 .,u	 n	 and	 an	 origin	 R.	 When
considering	the	3D	world,	we	would	have	three	vectors	u	1,		u	2	and	u	3.	Let	each
vector	u	i	in	homogeneous	coordinates	be	given	by	(u	ix	,	u	iy	,	u	iz	,	0)	and	the
origin	R	be	given	by	(R	x	,	R	y	,	R	z	,	1)	.	The	coordinates	of	a	point	P	in	the
standard	coordinate	system	X	=	(1,	0,	0,	0),	Y	=	(0,	1,	0,	0),	and	Z	=	(0,	0,	1,	0)	is
expressed	by	 its	coordinates	 (a	1	 ,	a	2	 ,	a	3)	 in	 the	u	 1,	 	u	 2,	 	u	 3	 coordinates
system	as	linear	combination	of	its	axes	and	the	origin	as

(6.47)
P	=	a	1	u	1	+	a	2	u	2	+	a	3	u	3	+	R

This	can	further	be	expressed	as	a	matrix	as

6.5.1

(6.48)
P	=	(u	1	u	2	u	3	R)	a	1	a	2	a	3	1	=	u	1	x	u	2	x	u	3	x	R	x	u	1	y	u	2	y	u	3	y	R	y	u	1
z	u	2	z	u	3	z	R	z	0	0	0	1	a	1	a	2	a	3	1	=	M	u	C	u	.

where	M	u	denotes	the	matrix	that	defines	the	coordinate	system	and	C	u	defines
the	coordinates	of	P	 in	 the	 coordinate	 system	denoted	 by	M	 u	 .	 This	 is	 a	 very
important	relationship	since	now	you	can	see	that	even	coordinate	systems	can
be	 defined	 using	 matrices.	 For	 the	 X,	 Y,	 and	 Z	 axes	 respectively	 defined	 by
vectors	(1	,	0	,	0	,	0)	,	(0,	1,	0,	0)	and	(0,	0,	1,	0)	and	origin	is	R	=	(0,	0,	0,	1),
and	 the	 matrix	 representing	 this	 coordinate	 system	 is	 essentially	 an	 identity
matrix,	i.e.	M	u		=	I.

Change	of	Coordinate	Systems
Coordinate	systems	are	reference	frames.	Think	of	them	as	reference	points	that
you	use	when	you	tell	someone	your	home	address.	You	may	say	that	from	the
University	High	School	take	a	left	and	then	immediate	right	to	get	to	our	house.
However,	you	may	want	to	use	a	completely	different	reference	point,	say	Trader
Joes,	and	say	from	Trader	Joes	take	an	immediate	right	and	then	the	second	left.
As	 your	 reference	 changes,	 the	 coordinates	 of	 your	 house	with	 respect	 to	 that
reference	 also	 changes.	 This	 does	 not	mean	 that	 your	 house	 has	moved—it	 is
still	 in	 the	same	location	—	just	 the	way	your	address	 the	house	differs	due	 to
the	change	in	reference.
Something	similar	happens	when	you	work	with	multiple	coordinate	systems.

A	point	P	will	have	different	coordinates	in	different	coordinate	systems	though
its	 actual	 location	 remains	 the	 same.	Let	us	now	consider	 a	 second	coordinate
system	made	of	vectors	v	1,		v	2,		v	3	and	origin	Q.	Let	the	coordinate	of	the	same
point	P	in	this	coordinate	system	be	(b	1	,	b	2	,	b	3)	which	means

(6.49)
P	=	(v	1	v	2	v	3	Q)	b	1	b	2	b	3	1	=	v	1	x	v	1	y	v	1	z	Q	x	v	2	x	v	2	y	v	2	z	Q	y	v	3
x	v	3	y	v	3	z	Q	z	0	0	0	1	b	1	b	2	b	3	1	=	M	v	C	v	.

From	Equations	6.48	and	6.49,	we	see	 that	M	 u	C	 u	 	=	M	 v	C	 v	 .	 Therefore,	 the
coordinate	 C	 v	 of	 the	 same	 point	 P	 in	 a	 new	 coordinate	 system	 when	 the
coordinate	C	u	in	the	first	coordinate	system	is	known,	is	given	by

(6.50)
C	v	=	M	v	-	1	M	u	C	u

Now	let	us	ponder	a	little	bit	on	the	matrix	M	=	M	v	-	1	M	u	 that	achieves	 the
change	of	coordinates.	What	kind	of	transformation	does	this	matrix	represent?

Let	us	say	a	point	P	is	at	the	origin	in	one	coordinate	system	and	the	same	point
has	 the	 coordinate	 (5	 ,	0	 ,	 0)	 in	 another	 coordinate	 system.	Going	 from	 one
‘version’	of	P	to	another,	i.e.	to	get	a	point	from	(0,	0,	0)	to	(5	,	0	,	0)	,	we	need
to	translate	it	by	5	units.	From	the	perspective	of	the	point	P	(if	it	did	not	move),
but	 the	same	change	in	coordinates	can	be	achieved	by	moving	one	coordinate
system	 by	 -	 5	 units	 along	 the	 X	 direction.	 This	 can	 be	 viewed	 as	 the
transformation	that	takes	one	coordinate	system	and	transforms	it	in	such	a	way
so	as	to	coincide	with	the	second	coordinate	system.
Using	 the	 same	 concept,	 the	matrix	M	 that	 transforms	 the	 coordinates	 from

one	system	to	another	can	also	be	viewed	as	a	transformation	that	transforms	one
coordinate	 system	 to	 another.	 So,	 now	 let	 us	 explore,	 what	 kind	 of
transformation	would	 it	 take	 to	 align	one	 coordinate	 system	 to	 another.	 Please
refer	 to	 the	 illustration	 in	Figure	6.10.	This	 shows	 the	 two	 coordinate	 systems
represented	 by	 M	 u	 and	M	 v	 .	 The	 transformation	 needed	 to	 align	 the	 two
orthogonal	 coordinate	 systems	 is	 given	 by	 a	 translation	 to	 align	 the	 origin,
followed	by	a	rotation	to	align	the	axes.	Let	us	consider	a	rotation	matrix	R	c	and
a	translation	matrix	T	c	such	that

Figure	6.10	.	This	shows	example	of	two	different	coordinate	systems	that	can	represent	M	u	and	M	v	.

(6.51)
R	c	=	r	11	r	12	r	13	0	r	21	r	22	r	23	0	r	31	r	32	r	33	0	0	0	0	1	T	c	=	1	0	0	t	1	0	1	0
t	2	0	0	1	t	3	0	0	0	1

then	the	coordinate	transformation	matrix	M	=	M	v	-	1	M	u	in	Equation	6.50
is	given	from	the	above	two	equations	as

(6.52)
M	=	R	c	T	c	.

Let	 us	 take	 a	 closer	 look	 at	 the	 matrices	 R	 c	 and	 T	 c	 and	 compute	 their
multiplication.	At	 this	 juncture,	we	would	 like	 to	 introduce	 a	different	 kind	of
matrix	notation.	Let	us	consider	R	to	be	the	top	left	3	×	3	matrix	of	R	c	,	T	to	be
the	translation	vector	given	by	the	3	×	1	column	vector	(t	x	,	t	y	,	t	z)	T	,	I	be	a
3	 ×	 3	 identity	matrix,	 and	O	 to	 be	 the	 1	 ×	 3	 row	 vector	 given	 by	 (0,	 0,	 0)	 .

Therefore	R	c	and	T	c	can	now	be	expressed	as

(6.53)
R	c	=	(R	O	|	o	T	1)	T	c	=	(I	O	|	T	1)	.

This	 is	 a	 notation	 using	 sub-matrices	 to	 write	 a	 matrix.	 The	 sizes	 of	 the
submatrices	 should	 be	 consistent	 to	 yield	 the	 correct	 dimension	 of	 the	matrix.
For	example,	the	size	of	R	is	3	×	3,		O	T	is	3	×	1,	size	of	O	is	1	×	3	and	1	is	just	a
scaler	 of	 dimension	 1	 ×	 1	 leading	 to	 the	 dimension	 of	 R	 c	 to	 be	 4	 ×	 4	 as	 is
consistent	for	a	3D	rotation	matrix.
Now	let	us	consider	the	multiplication	of	these	two	matrices	which	can	also	be

represented	in	terms	of	sub-matrices	as

(6.54)
M	=	R	c	T	c	=	R	I	+	O	T	O	O	I	+	O	|	R	T	+	O	T	O	T	+	1	=	R	O	|	RT	1

Verify	 that	 all	 the	 sub-matrix	multiplications	 are	 consistent	 in	 their	 dimension.
Coming	back	to	the	composition	of	M,	you	can	see	that	it	is	created	by	a	rotation
and	a	translation	matrix.	Later	in	this	book,	we	will	make	use	of	this	sub-matrix
representation	 to	 learn	 about	 decomposition	 of	 this	 matrix	M	 during	 camera
calibration.
Next,	 let	 us	 look	 at	 one	 more	 issue.	 How	 can	 we	 create	 an	 orthogonal

coordinate	system	from	as	minimal	information	as	possible?	Let	us	consider	the
origin	to	be	at	(0,	0,	0).	Suppose	we	are	given	one	vector	unit	u	1.	Is	there	are	a
simple	way	to	find	two	other	orthogonal	unit	vectors	u	2	and	u	3	which	can	form
a	coordinate	system	together	with	u	 1.	As	 it	 turns	out,	 it	 is	pretty	simple.	First,
find	u	2	via	a	cross	product	of	u	1	and	any	of	the	X,	Y	or	Z	axes.	Therefore	u	2	=	u
1	×	u	x	where	u	x	is	the	unit	vector	in	the	direction	of	X	axis.	By	design,	u	1	and	u	2
are	orthogonal.	Next,	find	the	third	vector	u	3	=	u	1	×	u	2.	Also,	by	design,	u	3	is
orthogonal	to	both	u	1	and	u	2	and	therefore	they	form	a	coordinate	system.	This
is	illustrated	in	Figure	6.11.
Finally,	consider	the	matrix	M	=	M	v	-	1	M	u	one	more	time.	Let	us	consider

these	two	coordinate	systems	(shown	in	Figure	6.10	to	have	the	same	origin.	In
that	case,	M	 v	and	M	 u	are	each	a	 rotation	matrix	and	M	v	-	1	 is	M	v	T	 .	Now
consider	v	1,		v	2	and	v	3	to	be	the	standard	X,	Y,		Z	coordinate	axes.	Therefore	M
v	 	=	 	M	v	T	=	I	 .	Now	consider	 this	 situation	of	having	one	coordinate	 system
which	 is	our	standard	XYZ	coordinate	system	and	we	have	another	coordinate
system	 rooted	 at	 the	 same	 origin	 defined	 by	 u	 1,	 	 u	 2	 and	 u	 3.	 Therefore,	 the
transformation	to	make	this	coordinate	system	coincident	with	XYZ	coordinates
is	given	by
M	=	IM	 u	 	 =	M	 u	 .	 Interestingly,	 if	u	 1,	 	u	 2	 and	 u	 3	 are	 known,	 this	 rotation

6.6

matrix	is	simply	given	by	plugging	in	these	vectors	as

(6.55)
M	u	=	u	1	u	2	u	3	0	0	0	1

Let	us	 relate	 this	back	 to	another	situation	we	face	when	finding	 the	matrix	of
rotation	about	an	arbitrary	axes.	After	we	rooted	the	arbitrary	axes	to	the	origin,
we	could	have	used	an	alternate	way	to	find	the	matrix	that	would	align	u	with
one	 of	 the	 coordinate	 axes.	We	 could	 have	 considered	 u	 =	 u	 3	 and	 created	 a
coordinate	system	using	u	2	=	u	3	×	(1,	0,	0)	and	u	1	=	u	3	×	u	1.	Then	we	could
have	 put	 these	 vectors	 in	 the	 Equation	 6.55	 to	 generate	 the	 rotation	matrix	 to
align	u	with	Z-axis.	This	matrix	would	be	equivalent	to	what	you	achieved	by	R
y	(β)	R	x	(α)	in	Equation	6.41	and	its	inverse	given	by	M	u	T	will	be	exactly
what	you	would	achieve	by	R	x	(α)	-	1	R	y	(β)	-	1	in	Equation	6.42.	In	other
words,	we	can	 just	define	a	 coordinate	 system	using	 the	arbitrary	axis	 and	 the
vectors	 of	 this	 coordinate	 system	will	 define	 the	 rotation	matrix	 as	 one	 of	 the
orthogonal	axes	computing	α	and	β.

Figure	6.11	.	This	shows	how	to	create	a	3D	coordinate	system	using	a	single	vector	u	1

Properties	of	Concatenation
Now	that	we	have	 learned	about	both	coordinate	systems	and	concatenation	of
transformations,	we	will	now	explore	some	relationships	between	them.	We	have
already	seen	before	that	since	concatenation	of	transformation	is	represented	by
matrix	 multiplication	 and	 since	 matrix	 multiplication	 is	 not	 commutative,	 the
order	in	which	we	concatenate	transformations	is	critical	to	arrive	at	the	desired
transformation.
However,	 though	matrix	multiplication	 is	 not	 commutative,	 it	 is	 associative.

To	 understand	 the	 implication	 of	 this	 associative	 law,	 let	 us	 consider	 two
different	transformations	-	T	1	,	T	2	,	and	a	point	P.	These	 transformations	can
be	any	linear	transformation	and	so	can	be	represented	by	a	matrix.	Now,	due	to
the	associative	law,	we	can	say	that

(6.56)

6.6.1

6.7

T	1	T	2	P	=	(T	1	(T	2	P))	=	((T	1	T	2)	P)

The	above	equation	says	that	it	really	does	not	matter	if	 the	multiplications	are
performed	from	the	left	to	right	or	right	to	left	i.e.	T	1	and	T	2	can	be	multiplied
first	and	then	the	result	post-multiplied	by	P	or	T	2	and	P	can	be	multiplied	first
and	the	result	pre-multiplied	by	T	1	to	get	the	same	answer.	Therefore,	whether
the	multiplications	are	performed	as	a	post	or	pre-multiplication	does	not	really
matter	as	long	as	their	order	is	preserved.	Though	this	may	seem	to	be	of	trivial
consideration,	it	has	a	rather	deep	geometric	interpretation.

Global	vs	Local	Coordinate	System
The	transformation	T	1	T	2	P	transforms	the	point	P	and	whether	it	is	done	using
pre-multiplication	or	post-multiplication,	 the	 result	will	be	 the	 same.	However,
the	geometric	interpretation	of	the	intermediate	steps	are	dependent	on	the	pre	or
post	multiplication.
So	 far,	 in	 this	 chapter,	 we	 have	 been	 doing	 concatenation	 as	 a	 pre-

multiplication,	i.e.	pre-multiply	T	2	with	P	first	and	then	pre-multiply	the	result
with	 T	 1	 .	When	 we	 perform	 each	 of	 these	 steps	 we	 consider	 the	 coordinate
system	 to	be	constant.	Hence,	 the	coordinate	systems	 remain	global	 across	 the
different	 transformations.	This	 is	usually	easy	 to	understand	since	we	 typically
work	with	a	standard	frame	of	reference.
However,	 the	 post	multiplication	 also	 has	 a	 interpretation.	 It	means	 that	 the

coordinate	system	itself	is	being	transformed.	Therefore	when	you	post	multiply
T	1	with	T	2	,	it	means	that	you	have	first	applied	the	transformation	T	1	to	the
coordinate	 system	 followed	 by	 T	 2	 to	 the	 transformed	 coordinate	 system	 and
then	placed	P	in	this	transformed	coordinate	system.	Here,	the	coordinate	system
remains	 local	 to	 each	 transformation	 and	 changes	 from	 one	 transformation	 to
another.
However,	the	result	of	implementing	the	transformation	both	in	global	or	local

coordinates	 achieves	 the	 same	 result.	To	 illustrate	 this,	 please	 see	Figure	6.12.
We	consider	the	transformation	R	T	P	in	2D	for	this	object	and	perform	it	in	both
global	and	local	coordinate	systems	to	achieve	the	same	result.

Projective	Transformation
This	 brings	 us	 to	 the	 end	 of	 affine	 transformation.	 Now,	 we	 will	 explore
projective	 transformation.	 Projective	 transformations	 are	 most	 general	 linear
transformations	which	take	points	P	=	(x	,	y	,	z	,	w)	to	points	P	’	=	(x	’,		y	’,	 	z

’,	w’)	Projective	transform	P	is	expressed	as

(6.57)
x	′	y	′	z	′	w	′	=	p	11	p	12	p	13	p	14	p	21	p	22	p	23	p	24	p	31	p	32	p	33	p	34	p	41	p
42	p	43	p	44	x	y	z	w

Figure	 6.12	 .	 We	 consider	 the	 transformation	 R	 T	 P	 in	 2D	 for	 this	 object.	 Top:	 This	 shows	 the
transformation	performed	in	a	global	coordinate	system,	i.e.	using	pre-multiplication.	Therefore,	the	object
is	first	translated	and	then	rotated.	Bottom:	This	shows	the	transformation	performed	in	a	local	coordinate
system	 i.e.	 using	 post-multiplication.	 Therefore,	 the	 coordinate	 system	 is	 first	 rotated	 relative	 to	 its	 own
coordinate	system.	The	object	will	also	change	position	due	to	this	since	its	coordinates	with	respect	to	the
local	coordinate	system	have	not	changed.	Next	 the	coordinate	system	 is	 translated	 relative	 to	 itself.	The
changing	coordinates	are	shown	in	red.	Note	the	final	location	of	the	object	is	the	same	which	is	due	to	the
associative	nature	of	matrix	multiplication.

The	most	 important	 difference	 of	 projective	 transformation	 is	 that	 it	 can	 take
finite	points	to	points	at	infinity.	The	implication	of	this	is	that	non-parallel	lines
can	become	parallel	and	vice	versa.	However,	it	still	does	not	change	the	degree
of	 a	 curve.	 So,	 a	 line	 cannot	 become	 a	 curve.	A	 circle	 can	 become	 an	 ellipse
(none	of	its	points	go	to	infinity)	or	even	a	parabola	(where	some	of	its	points	go
to	 infinity)	 but	 it	 cannot	 become	 a	 degree-3	 polynomial.	 Please	 see	 exercise
problems	to	check	it	for	yourselves.
The	most	common	projective	transformation	we	face	is	when	we	deal	with	a

camera.	A	camera	projects	the	3D	objects	in	the	world	on	a	2D	 image	plane	to
create	 an	 image.	 The	most	 basic	 camera	model	 is	 called	 the	 pin-hole	 camera
where	the	camera	is	considered	to	be	a	simple	pin-hole.	Think	of	a	box	with	a
hole	 in	 one	 of	 its	 face	 and	 the	 opposite	 face	 acting	 as	 an	 imaging	 plane	 and
voila!	 There	we	 have	 a	 pin-hole	 camera	 as	 illustrated	 in	 Figure	 6.13.	Here	O
denotes	the	pinhole.	Rays	of	light	from	3D	points	A,	 	B	and	C	come	through	O

6.8

and	intersect	the	image	plane	behind	it	to	form	their	2D	image	at	A	’,		B	’	and	C	’
respectively	under	a	projective	transformation.	It	is	important	to	note	that	such	a
projective	 transformation	 changes	 the	 size	 of	 the	 image	 based	 on	 the	 distance
from	the	pinhole.	For	example,	objects	B	and	C	appear	to	be	of	the	same	height
in	 the	 image	B	 ’	 and	C	 ’.	However,	B	 is	 double	 the	 size	 of	C	 in	 3D,	 but	 it	 is
double	 distance	 away.	 Further,	 multiple	 points	 on	 the	 same	 ray	 will	 have	 the
same	image	on	the	image	plane	therefore	losing	their	depth	information.	We	will
explore	the	camera	projective	transformation	in	more	details	in	the	next	chapter.

Figure	6.13	.	This	shows	a	pinhole	camera	where	O	is	the	pinhole.	Rays	of	light	from	3D	points	A,		B	and	C
come	through	O	and	intersect	the	image	plane	behind	it	form	their	2D	image	at	A	’,		B	’	and	C	’	respectively.

Degrees	of	Freedom
Degrees	 of	 freedom	 defines	 the	 number	 of	 parameters	 that	 can	 be	 changed
during	a	transformation.	Let	us	consider	for	example,	a	2D	rigid	body	transform.
This	 will	 be	 represented	 by	 a	 3	 ×	 3	 matrix	 when	 considering	 homogeneous
coordinates.	This	is	often	referred	to	as	the	3	×	3	homogeneous	transformation.
As	 you	 know,	 for	 rigid	 body	 transformation,	 the	 object	 can	 undergo	 only
translation	 (2	 parameters)	 or	 rotation	 (1	 parameter).	Therefore,	 this	matrix	 has
three	degrees	of	freedom.	This	matrix	will	have	the	translation	parameters	on	the
last	 column	 and	 the	 rotation	 parameters	will	 be	 used	 to	 fill	 the	 top	 left	 2	 ×	 2
submatrix.	Therefore,	though	six	entries	of	this	matrix	can	be	changed,	they	are
not	completely	 independent.	Therefore,	 the	degree	of	 freedom	of	 this	matrix	 is
three	although	the	number	of	matrix	entries	that	can	be	changed	is	six.

6.9

Figure	6.14	 .	Left	 two	 images	show	non-linear	 lens	distortion	 that	changes	straight	 lines	 to	curves.	Right
two	 images	 show	 the	 non-linear	 transformation	 (right)	 of	 a	 cubical	 3D	 color	 gamut	 (left)	 during	 color
management.

However,	the	degrees	of	freedom	cannot	be	greater	than	the	number	of	matrix
elements	 that	 get	 affected	 by	 the	 transformation.	 Let	 us	 consider	 a	 2D	 affine
transformation	 represented	 using	 a	 3	 ×	 3	 matrix.	 Since	 affine	 transformation
allows	 scaling	 and	 shear,	 it	 may	 seem	 that	 we	 will	 have	 an	 additional	 four
parameters	we	can	control	(2	each	for	scaling	and	shear)	in	addition	to	the	three
parameters	 for	 rigid-body	 transformation.	 Therefore,	 this	 transformation	 has	 7
degrees	 of	 freedom.	 However,	 since	 only	 six	 entries	 of	 the	 matrix	 have	 been
affected,	 it	has	6	degrees	of	 freedom.	On	deeper	analysis,	you	can	see	 that	 the
rotation	can	be	expressed	as	a	combination	of	scaling	and	shear.	For	example,	x
coordinate	will	be	transformed	as	ax	+	by	where	a	is	considered	the	scale	factor
and	b,	the	shear	factor.	But,	they	will	be	similar	to	cosine	and	sine	of	the	angle	of
rotation.	Therefore,	the	rotational	degree	of	freedom	in	absorbed	by	the	scaling
and	shear	parameters,	thereby	providing	the	transformation	with	only	six	degrees
of	freedom.
From	a	matrix	computations	perspective,	any	constraint	imposed	on	a	matrix

reduces	its	degrees	of	freedom.	So,	for	example,	if	you	had	a	matrix	of	degree	7
with	 the	 special	 constraint	 that	 the	matrix	 is	 rank	deficient	 (i.e.	determinant	of
the	matrix	 is	 0),	 each	deficiency	 in	 rank	would	be	 translated	 to	 a	 reduction	of
degree	of	freedom	by	one.	As	we	go	into	the	next	chapters	on	geometric	visual
computing,	 we	 will	 be	 discussing	 degrees	 of	 freedom	 in	 several	 occasions	 to
provide	a	more	comprehensive	understanding.

Non-Linear	Transformations
The	 discussion	 in	 this	 chapter	 is	 incomplete	 without	 discussing	 non-linear
transformations.	Any	 transformation	 that	 changes	 the	degree	of	a	 curve	 (e.g.	 a
line	to	a	curve)	is	called	a	non-linear	transformation.	Distortion	due	to	the	lens	of
a	 camera	 is	 a	 good	 example	 of	 a	 non-linear	 distortion.	 This	 is	 the	 distortion
introduced	by	the	camera	lens	following	the	projective	transformation	from	3D

to	2D.	Such	a	distortion	is	shown	in	Figure	6.14	for	a	checkerboard	pattern	and
of	an	architectural	site.
Non-linear	 transformations	 cannot	 be	 achieved	 as	 simple	 as	 a	 matrix

multiplication.	Typically,	points	on	the	objects	should	be	sampled;	each	of	them
should	 be	 transformed	 and	 then	 another	 surface	 should	 be	 found	 via	 surface
fitting	 to	 find	 the	 transformed	 object.	 Such	 transformations	 are	 common	 is
applications	like	modeling,	surface	design,	color	management	and	simulation.	In
this	book,	we	will	focus	mostly	on	linear	transformations.

Fun	Facts

The	word	geometry	comes	from	the	Greek	words	geo,	meaning	earth,	and
metria,	 meaning	 measure.	 Geometry	 was	 one	 of	 the	 two	 fields	 of	 pre-
modern	 mathematics,	 the	 other	 being	 the	 study	 of	 numbers	 (arithmetic).
The	 earliest	 recorded	 beginnings	 of	 geometry	 can	 be	 traced	 to	 early
peoples,	 who	 discovered	 obtuse	 triangles	 in	 the	 ancient	 Indus	 Valley
Civilization	 (now	 in	 India	 and	 Pakistan)	 and	 ancient	 Babylonia	 (now	 in
Iran)	 from	around	3000	BC.	Ancient	Egyptians	used	geometric	principles
as	far	back	as	3000	BC,	using	equations	to	approximate	the	area	of	circles
among	other	formulas.	The	Babylonians	may	have	known	the	general	rules
for	measuring	 areas	 and	 volumes.	They	measured	 the	 circumference	 of	 a
circle	as	three	times	the	diameter	and	the	area	as	one-twelfth	the	square	of
the	 circumference,	 which	would	 be	 correct	 if	 π	 is	 estimated	 as	 3.	 Greek
philosopher	 and	mathematician	Pythagoras	 lived	 around	 the	year	500	BC
and	 is	known	for	his	Pythagorean	 theorem	relating	 to	 the	 three	sides	of	a
right	angle	triangle:	a	2	+	b	2	=	c	2.	Archimedes	of	Syracuse	lived	around	the
year	250	BC	and	played	a	large	role	in	the	history	of	geometry	including	a
method	for	determining	the	volume	of	objects	with	irregular	shapes.
When	 Europe	 began	 to	 emerge	 from	 its	 Dark	 Ages,	 the	 Hellenistic	 and
Islamic	 texts	on	geometry	 found	 in	 Islamic	 libraries	were	 translated	 from
Arabic	 into	Latin.	The	 rigorous	 deductive	methods	 of	 geometry	 found	 in
Euclids	Elements	of	Geometry	were	relearned,	and	further	development	of
geometry	in	the	styles	of	both	Euclid	(Euclidean	geometry)	and	Khayyam
(algebraic	geometry)	was	continued	by	Rene	Descartes	(1596	-	1650)	and
Pierre	 de	 Fermat	 (1601	 -	 1665)	 in	 analytical	 geometry	 and	 by	 Girard
Desargues	(1591	-	1661)	in	projective	geometry.

6.10 Conclusion
In	this	chapter	we	covered	geometric	transformation	that	forms	the	fundamental
of	 computer	 vision	 and	 graphics.	Matrices	 provide	 us	 a	 formal	 framework	 to
work	with	difficult	geometric	problems	in	these	domains.	Advanced	concepts	in
these	directions	can	be	explored	in	computer	vision	books	like	[Faugeras	93]	or
computer	graphics	books	like	[Hughes	et	al.	13,	Shirley	and	Marschner	09].

Bibliography
[Faugeras	93]	Faugeras,	Olivier	.	Three-dimensional	Computer	Vision:	A	Geometric	Viewpoint.	MIT	Press,

1993.
[Hughes	13]	John	F.	Hughes,	Andries	van	Dam,	Morgan	McGuire,	David	F.	Sklar,	James	D.	Foley,	Steven

K.	Feiner,	 and	Kurt	Akeley.	Computer	Graphics:	Principles	 and	Practice	 (3rd	 ed	 Addison-Wesley
Professional,	2013.

[Shirley	and	Marschner	09]	Peter	Shirley	and	Steve	Marschner.	Fundamentals	of	Computer	Graphics,	Third
edition.	A.	K.	Peters,	Ltd.,	2009.

Summary:	Do	you	know	these	concepts?

Homogeneous	Coordinates
Linear	Transformations
Euclidean	Transformations
Rigid	Body	Transformations
Affine	Transformations
Projective	Transformations
Degrees	of	Freedom
Concatenation	of	Transformations
Coordinate	Systems
Changing	Coordinate	Systems
Creating	Coordinate	Systems
Global	vs	Local	Coordinate	Systems
Non-Linear	Transformation

Exercises

1.	 Consider	the	following	matrix	[Note:	1/2	=	0.707].

(6.58)
0.707	0	0.707	0	0	2	0	0	-	0.707	0	0.707	0	0	0	0	1

What	 transformation	 does	 the	 matrix	 achieve?	 What	 is	 the	 order	 of	 this
transformation	in	the	local	coordinate	system?

2.	 Consider	 the	 figure	 below.	 Give	 a	 matrix,	 or	 a	 product	 of	 matrices,
which	 will	 transform	 the	 square	 ABCD	 to	 the	 square	 ABCD.	 Show
what	 happens	 if	 the	 same	 transformation	 is	 applied	 to	 the	 square
ABCD.

3.	 Consider	a	2D	rectangle	ABCD	where	A	=	(0,	0),	B	=	(2,	0),	C	=	(2,	1)
and	D	=	(0,	1)	.	We	want	to	apply	a	2D	transformation	to	this	rectangle
which	makes	it	a	parallelopiped	ABEF	where	E	=	(4,	1)	and	F	=	(2,	1).
a.	 What	 kind	 of	 transformation	 is	 this?	 What	 is	 the	 3x3	 matrix	M
achieving	 this	 transformation?	 c.	 What	 additional	 transformation	 N
would	we	need	to	apply	to	ABEF	to	get	the	parallelopiped	A	’	B	’	E	’	F	’
where	A	’	=	(1,	2),	B	’	=	(3,	2),	E	’	=	(5,	3),	and	F	′	=	(3	,	3)	?	d	.	What
is	the	final	concatenated	matrix	in	terms	of	M	and	N	that	will	transform
ABCD	to	A	’	B	’	E	’	F	’?

4.	 Derive	the	scaling	matrix	for	scaling	an	object	by	a	scale	factor	3	along
an	arbitrary	direction	given	by	vector	u	=	(1,	2,	1)	rooted	at	(5,	5,	5).

5.	 Explain	 what	 transformation	 is	 produced	 by	 each	 of	 the	 following
matrices	when	applied	on	a	4x1	homogeneous	coordinate.

(6.59)
1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	0	p	-	p	(1	+	r)	0	1	q	-	q	(1	+	r)	0	0	1	+	r	-	r	(1	+
r)	0	0	1	-	r

6.	 	Consider	the	3	×	3	transformation

(6.60)
T	=	2	a	a	a	a	a	0	2	a	a	a

Is	 this	 a	 euclidean,	 affine	 or	 projective	 transformation?	 Prove	 or	 justify	 your

answer.

7.	 Consider	the	house	given	above.	Assume	the	Z	axis	to	be	coming	out	of
the	page	assuming	the	page	to	be	the	XY	plane.	Draw	the	house	after
the	 following	 transformations	 performed	 in	 the	 local	 coordinate
system:	T	(1	,	0	,	0)	,	R	z	(90)	,	T	(0	,	2	,	0)	.

8.	 In	 the	 2D	 space	 above,	 consider	 the	 point	P	 and	 the	 three	 different
coordinate	axes,	A,		B	and	C.	What	is	the	coordinate	of	P	in	coordinate
system	 A,	 B	 and	 C?	 What	 is	 the	 3	 ×	 3	 matrix	 to	 convert	 from
homogeneous	coordinates	in	coordinate	system	A	to	those	in	coordinate
system	B	and	from	coordinate	system	C	 to	 those	in	coordinate	system
A?

9.	 How	 many	 degrees	 of	 freedom	 does	 a	 3D	 homogeneous	 affine
transformation	have?	Justify	your	answer.	What	do	you	think	would	be
the	degrees	of	freedom	of	a	3D	projective	transformation?

10.	 Consider	the	following	matrix

(6.61)
a	0	p	x	0	b	q	y	0	0	1	z	0	0	0	1

What	are	the	different	fundamental	 transformations	involved	in	this	matrix	and
their	parameters?

11.	 Consider	a	3	×	3	projective	transformation	M	that	transforms	a	point	(x
,	y	,	w)	to	(x	’,	y	’,	w’).	M	-1	is	given	by

(6.62)
2	1	0	1	1	0	2	1	1

a.	 Show	that	 the	circle	x	2	+	y	 2	=	1	 is	 transformed	 to	a	parabola	by	 this
projective	 transformation.	 Find	 the	 equation	 of	 this	 transformed
parabola.

b.	 Consider	two	parallel	lines	given	by	4x	+	y	=	5	and	4x	+	y	=	3.	Show
that	 these	 two	 lines	 are	 transformed	 to	 intersecting	 lines	 by	 the
projective	 transformation.	 Find	 the	 equation	 of	 these	 two	 intersecting
lines.

Hint:	Note	that	we	are	concerned	about	x	′	w	and	y	′	w	and	w	=	1.

12.	 In	3D,	show	that	R	z	(θ	1)R	z	(θ	2)	=	R	z	(θ	2)R	z	(θ	1).	What	does	this	tell
about	the	properties	of	rotation	around	coordinate	axes?	Show	that	R	z
(θ	1	+	θ	2)	=		R	z	 (θ	 1)R	 z	 (θ	 2)	 .	Using	 this	property	show	that	 rotation
about	any	arbitrary	axis	denoted	by	R	a	also	follows	the	property,	R	a	(θ
1	+	θ	2)	=	R	a	(θ	1)R	z	(θ	2)	=		R	a	(θ	2)R	z	(θ	1).

7.1

7

The	Pinhole	Camera
The	 pinhole	 camera	 model,	 introduced	 in	 the	 last	 chapter,	 is	 by	 far	 the	 most
popular	model	 for	 a	 camera.	The	 pin‐hole	 camera	 is	modeled	 as	 a	 closed	 box
with	a	tiny	hole	punched	with	a	pin	on	one	of	its	faces.	Light	rays	from	any	point
in	a	scene	enters	the	box	only	through	this	pinhole	forming	an	inverted	image	on
the	 opposite	 face	 of	 the	 box	which	 is	 therefore	 termed	 the	 image	 plane.	 This
image	is	formed	by	the	intersection	of	the	light	rays	passing	through	the	pinhole
with	the	image	plane,	as	illustrated	in	Figure	6.13.	The	advantage	of	the	pinhole
camera	 is	 that	 every	 point	 in	 the	 scene,	 irrespective	 of	 its	 distance	 from	 the
pinhole,	will	form	a	crisp	or	focused	point	image	on	the	image	plane.	Depth	of
field	of	a	camera	is	defined	as	the	range	of	depth	of	the	scene	points	which	the
camera	can	image	in	a	focused	manner	(without	blurring	it).	Therefore,	a	pinhole
camera	has	 an	 infinite	depth	of	 field.	However,	 a	pinhole	 camera	 is	very	 light
inefficient	—	very	little	light	can	enter	through	a	pin‐hole.	Therefore,	lenses	are
used	to	make	the	camera	more	light	efficient.	The	result	of	this	is	a	camera	that
no	longer	has	an	infinite	depth	of	field,	but	still	acts	like	a	pinhole	camera	for	all
the	points	within	its	depth	of	field—i.e	within	the	range	of	depth	that	the	camera
can	 image	 in	 a	 focused	 manner.	 In	 this	 chapter,	 we	 will	 first	 develop	 a
mathematical	model	for	pinhole	camera.	Then	we	will	discuss	how	the	deviation
from	 the	 pinhole	 model	 affects	 image	 capture	 or	 acquisition	 from	 practical
cameras.

The	Model
Figure	7.1	shows	a	schematic	for	the	pinhole	camera	model.	The	image	plane	is
brought	to	the	side	of	the	scene	to	avoid	inversion.	In	a	practical	camera,	this	is
confirmed	via	the	use	of	a	complex	lens	system.	O	is	the	center	of	projection	of
the	camera	and	the	principal	axis	is	parallel	to	the	Z	axis.	The	image	plane	is	at	a
distance	 f	 from	O	 and	 perpendicular	 to	 the	 principal	 axis	 (parallel	 to	 the	 XY
plane).	f	is	referred	to	as	the	focal	length	of	the	camera.	To	find	the	image	of	a
3D	point	P	=	(X	,	Y	,	Z)	on	the	camera’s	image	plane,	a	straight	line	is	drawn

from	P	to	O	and	its	point	of	intersection	with	the	image	plane	defines	the	image
of	the	point	P,	denoted	by	the	image	plane	coordinate	P	c	=	(u	,	v)	.

Figure	7.1	The	Pinhole	Camera

First,	 we	 will	 derive	 this	 function	 that	 maps	 the	 3D	 point	 P	 to	 its	 2D
projection	P	c	.	Considering	the	origin	(0,	0)	of	the	image	plane	to	be	at	the	point
on	 the	 image	plane	where	 the	principal	axis	 intersects	 it,	we	find	using	similar
triangles

(7.1)
f	Z	=	u	X	=	v	Y

which	gives	us

(7.2)
u	=	fX	Z

(7.3)
υ	=	fY	Z
Using	homogeneous	coordinates	for	P	c	,	we	can	write	this	as

(7.4)
u	υ	w	=	f	0	0	0	f	0	0	0	1	X	Y	Z

You	can	verify	that	the	above	equation	indeed	generates	the	point	P	c	=	(u	,	υ	 ,
w)	=	fx	Z	 ,	 fY	Z	 ,	1	 .	However,	note	 that	P	 is	not	expressed	 in	homogeneous
coordinates.

Fun	Facts

Figure	7.2	Left:	An	artist	in	18th	century	using	camera	obscura;	Right:	The	Brownie	of	1900.

The	 early	 cameras	 were	 called	 camera	 obscura	 which	 was	 essentially	 a
pinhole	camera	 that	was	used	extensively	by	artists	 to	create	paintings	by
tracing	out	the	image	formed	by	the	camera	obscura.	An	arab	physicist,	Ibn
al‐Haytham,	 is	 credited	 with	 inventing	 the	 first	 camera	 obscura.	 He
published	the	first	Book	of	Optics	in	1021	AD.	Before	the	invention	of	the
photographic	 film	 there	was	 no	way	 to	 preserve	 the	 image	 formed	 other
than	 tracing	 it	 out.	 Several	 people	 worked	 hard	 on	 developing	 the
photographic	process	 including	Nicphore	Nipce	 in	1810s,	Louis	Daguerre
and	Henry	Fox	Talbot	in	1830s	and	Richard	Leach	Maddox	in	1870s.	The
use	of	photographic	film	was	finally	pioneered	by	George	Eastman	in	1889.
His	first	camera,	called	“	Kodak”,	was	first	offered	for	sale	in	1889.	It	came
preloaded	with	film	to	capture	barely	100	pictures.	In	1900,	Eastman	took
mass‐market	photography	one	step	further	with	the	Brownie,	a	simple	and
very	inexpensive	box	camera	that	introduced	the	concept	of	the	‘snapshot’.
The	Brownie	was	extremely	popular	and	various	of	its	models	remained	on
sale	 until	 the	 1960s.	 Oskar	 Barnack,	 who	was	 in	 charge	 of	 research	 and
development	at	Leitz,	commercialized	the	first	35mm	camera,	the	Leica,	in
1925.	This	was	 the	 early	 form	of	 consumer	 film	cameras	 that	was	 in	use
even	in	the	late	1990s.

This	defines	an	ideal	situation	where	the	camera	image	plane	is	parallel	to	the
XY	plane	and	its	origin	is	at	the	intersection	of	the	principal	axes	with	the	image
plane.	Next,	we	will	deviate	from	this	 ideal	situation	to	add	new	parameters	 to
the	model.	Let	 the	origin	of	 the	image	plane	not	coincide	with	the	point	where
the	Z	axis	intersects	the	image	plane.	In	that	case,	we	need	to	translate	P	c	to	the

desired	origin.	Let	this	translation	be	defined	by	(t	u	,	t	υ)	.	Hence,	now	(u	,	υ)
is	given	by

(7.5)
u	=	fX	Z	+	t	u

(7.6)
υ	=	fY	Z	+	t	υ
This	can	be	expressed	in	a	similar	form	as	Equation	7.4	as

(7.7)
u	υ	w	=	f	0	t	u	0	f	t	υ	0	0	1	X	Y	Z
In	the	above	equation,	P	c	is	expressed	in	 inches.	Since	 this	 is	a	camera	 image,
we	need	to	express	it	in	pixels.	For	this	we	will	need	to	know	the	resolution	or
density	 of	 pixels	 in	 the	 camera	 (pixels/inch).	 If	 the	 pixels	 are	 square	 the
resolution	 will	 be	 identical	 in	 both	 u	 and	 v	 directions.	 However,	 for	 a	 more
general	model,	we	assume	rectangle	(and	not	square)	pixels	with	resolution	m	 u
and	m	v	pixels/inch	in	u	and	v	directions	respectively.	Therefore,	to	measure	P	c	in
pixels,	its	u	and	v	coordinates	should	be	multiplied	by	m	u	and	m	 v	 respectively.
Thus

(7.8)
u	=	m	u	fX	Z	+	m	u	t	u

(7.9)
v	=	m	v	fY	Z	+	m	v	t	v

which	are	then	expressed	as

(7.10)
u	v	w	=	m	u	f	0	m	u	t	u	0	m	v	f	m	v	t	v	0	0	1	X	Y	Z	=	α	x	0	u	o	0	α	y	v	o	0	0	1	P
=	K	P

K	in	the	above	equation	only	depends	on	the	internal	camera	parameters	like	its
focal	 length,	 principal	 axis,	 pixel	 size	 and	 resolution.	 These	 are	 called	 the
intrinsic	parameters	of	the	camera.	If	the	image	plane	is	not	a	perfect	rectangle,
i.e.	if	the	image	plane	axes	are	not	orthogonal	to	each	other,	then	K	also	includes
a	skew	parameter	s	as

(7.11)
K	=	α	x	s	u	o	0	α	y	v	o	0	0	1
Note	that	K	is	an	upper	triangular	3	×	3	matrix	and	is	usually	called	the	intrinsic

7.1.1

parameter	matrix	for	the	camera.
Now,	consider	 the	situation	where	the	camera’s	center	of	projection	is	not	at

(0,	0,	0),	the	principal	axis	is	not	coincident	with	the	Z‐axis,	and	the	image	plane
—	though	still	orthogonal	to	the	principal	axis—is	not	parallel	to	the	XY	plane.
In	 this	 case,	 we	 have	 to	 first	 use	 a	matrix	 to	 coincide	 the	 camera’s	 center	 of
projection	with	(0,	0,	0),	its	principal	axis	with	the	Z‐axis	and	u‐axis	of	the	image
plane	align	with	the	X‐axis	(or	v‐axis	of	the	image	plane	align	with	the	Y‐axis)	to
make	its	 image	plane	parallel	 to	the	XY	plane.	This	transformation	is	achieved
by	a	translation	that	moves	the	center	of	projection	to	the	origin	followed	by	a
rotation	to	align	the	principal	axis	and	the	image	plane.	Let	this	translation	be	T	(
T	x	,	T	y	,	T	z)	.	Let	the	the	rotation	applied	to	coincide	the	principal	axis	with
the	Z	axis	be	given	by	a	3	×	3	rotation	matrix	R.	Then	the	matrix	formed	by	first
applying	the	translation	followed	by	the	rotation	expressed	using	multiplication
of	sub‐matrices	is	given	by	the	3	×	4	matrix

(7.12)
E	=	(R	|	R	T)	.

E	 is	 called	 the	 extrinsic	 parameter	 matrix.	 Note	 that	 since	 translation	 is	 used
now,	 we	 have	 to	 move	 to	 homogeneous	 coordinate	 for	 P	 as	 well.	 So,	 the
complete	transformation	of	P	to	P	c	is	now	given	by

(7.13)
P	c	=	K	(R	|	R	T)	P	=	(K	R	|	K	R	T)	P	=	K	R	(I	|	T)	P	=	C	P

where	the	3	×	4	matrix	C	is	usually	called	the	camera	calibration	matrix.	Here,
P	is	in	4D	homogeneous	coordinates	(X	,	Y	,	Z	,	1)	and	P	c	derived	by	CP	is	in
3D	homogeneous	coordinates	(u	,	v	,	w)	.	Therefore,	 the	exact	2D	 location	of
the	projection	on	the	camera	image	plane	will	be	obtained	by	normalizing	the	3D
homogeneous	coordinates	u	w	,	v	w	,	1	.	The	intrinsic	parameter	matrix	has	five
degrees	of	freedom	(2	for	the	location	of	the	principal	center,	two	for	the	size	of
pixels	in	two	directions	and	one	skew	factor)	while	the	extrinsic	matrix	has	six
degrees	 of	 freedom	 (3	 each	 for	 translation	 and	 rotation).	 Therefore,	C	 has	 11
degrees	of	 freedom.	It	can	be	shown	that	 this	 implies	 that	 the	 the	bottom	right
element	of	C	will	always	be	1.

Camera	Calibration
In	this	section,	we	will	see	how	to	find	C	(i.e.	the	11	entries	of	C)	for	a	particular
camera	 and	 decompose	 it	 to	 get	 the	 intrinsic	 and	 extrinsic	 parameters.	 This
process	 is	 called	camera	calibration.	 The	 first	 step	 of	 camera	 calibration	 is	 to

find	what	is	termed	as	correspondences.	Correspondences	are	defined	by	the	3D
points	and	their	corresponding	2D	projections	on	the	camera	image	plane.	If	we
know	a	3D	point	P	1	is	corresponding	to	P	c	1	on	the	camera	image	coordinate,
then

(7.14)
P	c	1	=	C	P	1

Or,

(7.15)
u	1	v	1	w	1	=	C	X	1	Y	1	Z	1	1

The	normalized	2D	camera	image	coordinates	u	1	w	1	,	v	1	w	1	are	given	by	u	1
′	,	υ	1	′	.	This	normalization	is	critical	to	assure	that	all	the	correspondences	lie
on	the	same	2D	plane.
In	order	to	find	C	we	have	to	solve	for	its	11	unknowns.	Let	the	rows	of	C	be

given	by	r	i	,		i	=	1	,	2	,	3	.	Thus,

(7.16)
C	=	r	1	r	2	r	3	.

Since	we	know	the	correspondence	P	1	and	P	c	1	,	we	know

(7.17)
u	1	′	=	u	1	w	1	=	r	1	.	P	1	r	3	.	P	1

(7.18)
υ	1	′	=	υ	1	w	1	=	r	2	.	P	1	r	3	.	P	1	.
This	gives	us	two	linear	equations

(7.19)
u	1	′	(r	3	.	P	1)	-	r	1	.	P	1	=	0

(7.20)
υ	1	′	(r	3	.	P	1)	-	r	2	.	P	1	=	0
In	the	above	equations,	the	unknowns	are	the	elements	of	r	1,	r	2	and	r	3.	Each	3D
to	 2D	 correspondence	 thus	 generates	 two	 linear	 equations.	 To	 solve	 for	 11
unknowns,	 we	will	 need	 at	 least	 six	 such	 correspondences.	 Usually	 for	 better
accuracy,	 many	 more	 than	 six	 correspondences	 are	 used	 and	 the	 over‐
constrained	 system	 of	 linear	 equations	 thus	 formed	 is	 solved	 using	 linear
regression	methods	for	11	entries	of	C.	The	correspondences	can	be	determined
using	fiducials	or	markers.	Markers	are	placed	in	known	3D	locations	in	the	3D

7.1.2

scene.	 Their	 coordinates	 in	 the	 image	 are	 determined	 either	 manually	 or
automatically	 via	 image	 processing	 techniques	 to	 find	 the	 corresponding	 2D
locations.
Once	C	 is	 recovered,	 the	 next	 step	 is	 to	 break	 it	 up	 into	 its	 intrinsic	 and

extrinsic	component.	Since

(7.21)
C	=	(K	R	|	K	R	T)	=	(M	|	M	T)	,

where	KR	=	M,	we	can	find	M	as	the	left	3	×	3	sub	matrix	of	C.	Next,	we	use	RQ
decomposition	 to	break	M	 into	 two	3	×	3	matrices	M	 =	AB,	where	A	 is	 upper
triangular	and	B	is	an	orthogonal	matrix	(i.e.	B	T	B	=	I).	This	upper	triangular	A
corresponds	 to	K	 and	B	 corresponds	 to	 the	 rotation	R.	 Let	 c	 4	 denote	 the	 last
column	of	C.	From	the	previous	equation,	we	can	then	find	T	from

(7.22)
M	T	=	c	4

(7.23)
T	=	M	-	1	c	4

Thus,	we	recover	the	intrinsic	and	extrinsic	parameters	of	the	camera.

3D	Depth	Estimation
In	 the	previous	 section	we	 saw	how	given	3D	 to	2D	 correspondences,	we	 can
calibrate	 a	 camera.	 In	 this	 section,	 we	 will	 see	 how	 we	 can	 recover	 the	 3D
position	(depth)	of	a	scene	seen	by	more	 than	one	calibrated	cameras.	 In	other
words,	given	P	 c	and	C	 of	 each	camera,	 i.e.	using	2D	 images	of	 the	3D	 world
formed	bycalibrated	cameras,	we	will	 estimate	 the	 exact	 location	 of	 points	 in
3D.	 Let	 us	 assume	 an	 unknown	 position	 of	 a	 3D	 point	 P,	 defined	 by
homogeneous	coordinates,	(X	,	Y	,	Z	,	W)	and	 its	known	image	on	 the	 image
plane	of	a	camera	defined	by	the	matrix	C	1	given	by	homogeneous	coordinates
P	c	1	=	(u	1	,	υ	1	,	w	1)	.
Note	that	w	1	may	not	be	1.

Fun	Facts

In	 1900,	George	R.	Lawrence	 built	 a	mammoth	 900	 lb.	 camera,	 then	 the
worlds	largest,	for	$5,000	(enough	to	purchase	a	large	house	at	that	time!)
It	 took	15	men	 to	move	and	operate	 the	gigantic	camera.	A	photographer
was	 commissioned	 by	 the	Chicago	&	Alton	Railway	 to	make	 the	 largest
photograph	(the	plate	was	8	′	×	4	.	5	′	in	size!)	of	its	train	for	the	companys
pamphlet	The	Largest	Photograph	in	the	World	of	the	Handsomest	Train	in
the	World

Therefore,	we	know

(7.24)
P	c	1	=	u	1	υ	1	w	1	=	C	1	X	Y	Z	W
The	corresponding	2D	image	points	detected	in	the	camera	image	coordinates	is
given	by	u	1	w	1	 ,	v	1	w	1	=	 (u	 1	 ′	 ,	 υ	 1	 ′)	 .	 Representing	 the	 rows	 of	 the
calibration	matrix	C	1	as	 r	 i	C	1	 ,	 i	=	1,	2,	3,	 	 from	Equation	7.24,	we	get	 two
linear	equations	as	follows.

(7.25)
u	1	′	(r	3	C	1	.	P)	-	r	1	C	1	.	P	=	0

(7.25)
υ	1	′	(r	3	C	1	.	P)	-	r	1	C	1	.	P	=	0
Therefore,	 from	 each	 camera	we	 can	 generate	 two	 linear	 equations	 for	P.	We
have	4	unknowns	to	be	solved	for	P	given	by	X,		Y,		Z,		W.	Therefore,	we	need	at
least	 two	 cameras	with	 different	 calibration	matrices	 (i.e.	 two	 cameras	 at	 two
different	 positions)	 to	 find	 the	 3D	 location	 of	 P.	 This	 provides	 what	 we	 call
binocular	cues	or	disparity.	Further,	also	note	 that	 to	 recover	P,	we	do	need	 to
find	 the	 point	 on	 the	 second	 camera’s	 image	 that	 corresponds	 to	 the	 same	 3D
point	P.	Finding	the	image	of	the	same	3D	point	on	the	images	of	two	or	more
cameras	is	often	termed	as	the	correspondence	problem	and	is	considered	a	hard
problem	due	to	the	large	search	space	provided	by	an	image.	If	there	is	no	prior
knowledge,	 every	 pixel	 in	 the	 image	 of	 the	 second	 camera	 is	 a	 candidate	 for
being	the	2D	image	of	the	P.

7.1.3

You	may	feel	 that	 sometimes	humans	can	perceive	depth	even	with	a	single
eye.	How	is	 it	possible	 if	we	say	that	at	 least	 two	cameras	(eyes	in	 the	case	of
humans)	are	needed	for	this	purpose?	It	is	not	entirely	true	or	entirely	wrong	that
humans	do	have	depth	perception	even	with	a	single	eye.	Actually,	humans	have
some	 depth	perception	with	 single	 eye	due	 to	 several	 oculomotor	 (cues	due	 to
movement	of	the	muscles	holding	the	cornea)	and	monocular	cues	(cues	of	the
eyeball	moving	 inwards	 or	 outwards).	These	 are	 not	 present	 for	 a	 camera	 and
hence	 depth	 estimation	 is	 not	 possible	with	 a	 single	 camera.	However,	 try	 the
following	experiment	with	your	friend	to	realize	that	we	do	not	get	an	accurate
depth	perception	without	both	eyes.	Sit	in	front	of	each	other,	each	of	you	close
one	of	your	 eyes	 and	both	of	you	bring	your	 right	 arm	 from	 left	 to	 right	with
index	finger	pointing	to	the	left,	and	attempt	to	exactly	touch	each	other’s	index
finger	tip.	Attempt	the	same	with	both	eyes	open.	You	will	notice	the	importance
of	depth	perception	in	correctlyjudging	the	exact	position	of	your	friend’s	finger
tip.	 In	 the	 absence	 of	 monocular	 or	 oculomotor	 cues,	 often	 more	 than	 two
cameras	 are	 used	 (called	 stereo	 rigs)	 for	 greater	 accuracy	 and	 singular	 value
decomposition	 is	used	 to	solve	 the	over‐constrained	system	of	 linear	equations
that	result.

Homography
Homography	is	a	mathematical	relationship	between	the	position	and	orientation
of	two	cameras	in	a	constrained	situation	where	two	cameras	see	the	same	points
on	a	plane.	This	relationship	can	be	easily	recovered	without	going	 through	an
explicit	camera	calibration.	Figure	7.3	 illustrates	 the	situation.	Let	us	assume	a
point	P	π	on	the	plane	π.	Let	the	normal	to	the	plane	be	appropriately	defined	as
N	=	(a	,	b	,	c)	such	that	the	plane	equation	can	be	written

(7.27)
(N	1)	.	P	=	0

where	 P	 is	 any	 point	 on	 the	 plane.	 Let	 the	 two	 cameras	 be	 defined	 by
calibration	matrices	C	1	and	C	2.	Without	 the	 loss	of	generality,	we	can	assume
that	the	origin	of	the	global	coordinate	system	in	which	P	π	is	defined	coincides
with	O	1,	the	center	of	projection	of	C	1.	Let	the	image	of	P	π	on	camera	C	1	and	C
2	be	P	π	1	and	P	π	2	respectively.	Therefore,

Figure	7.3	Homography	between	two	cameras	through	a	plane.

(7.28)
P	π	1	=	u	1	v	1	w	1	=	C	1	.	P	π	,

implying	that	the	point	P	π	lies	on	the	ray	(u	1	,	υ	1	,	w	1	,	0)	T	in	3D.	Let	this
point	be	at	a	distance	τ	on	this	ray.	This	implies

(7.29)
P	π	=	u	1	v	1	w	1	τ	=	P	π	1	τ
Since	P	π	satisfies	the	plane	equation,	we	get	τ	from	Equation	7.27	as

(7.30)
τ	=	-	N	.	P	π	1
Therefore

(7.31)
P	π	=	u	1	v	1	w	1	τ	=	I	-	N	P	π	1
Note	that	I	is	a	3	×	3	matrix	and	N	is	a	1	×	3	matrix.	Hence,	(I	-	N)	T	is	a	4	×	3
matrix.
Let	C	2	=		(A	2	a	2)	,	where	A	2	is	the	3	×	3	matrix	and	a	2	is	a	3	×	1	vector.

Then,

(7.32)
P	π	2	=	C	2	.	P	π

(7.33)
=	(A	2	a	2)	I	-	N	P	π	1	.

Using	 multiplication	 of	 sub‐matrics	 we	 get	 a	 3	 ×	 3	 matrix,	 what	 we	 call	 the
homography	H,	as	follows.

(7.34)
P	π	2	=	(A	2	-	a	2	N)	P	π	1	=	H	P	π	1

a	2	is	a	3	×	1	matrix	and	N	is	a	1	×	3	matrix.	Thus,	a	2	N	would	generate	a	3	×	3
matrix	that	can	be	subtracted	from	3	×	3	matrix	A	2	to	generate	H.	Therefore,	H
is	 a	 3	 ×	 3	 matrix	 that	 relates	 one	 camera	 image	 with	 another	 called	 the
homography.	Using	 this	matrix,	 the	 image	 from	one	 camera	 can	 be	warped	 to
produce	the	image	from	another	camera.	Therefore,	for	the	special	case	when	the
scene	 observed	 by	 the	 two	 cameras	 is	 planar,	 instead	 of	 going	 through	 a	 full
camera	calibration,	we	can	relate	the	image	in	one	camera	to	another.
Homography	is	a	2D	projective	transformation	and	therefore	has	eight	degrees

of	freedom	that	is	equivalent	to	having	the	bottom	right	element	as	1.	Therefore,
when	 computing	H	 the	 number	 of	 unknowns	 is	 8.	 From	each	 correspondence,
using	 Equation	 7.33,	 we	 can	 generate	 two	 linear	 equations.	 To	 find	 the	 8
unknowns	in	H,	we	need	just	4	correspondences.	However,	it	is	always	advisable
to	 use	 more	 than	 four	 correspondences	 to	 create	 an	 over‐constrained	 system
which	would	yield	a	more	robust	estimate	of	H.
Now	 let	 us	 consider	 an	 alternate	 scenario	 where	 the	 location	 of	 the	 two

cameras	are	the	same	(i.e.	they	have	the	same	center	of	projection)	but	they	have
different	orientations.	In	this	case,	the	extrinsic	parameters	of	these	two	cameras
will	 differ	 only	 by	 a	 rotation,	 represented	 by	 a	 3	 ×	 3	 matrix.	 The	 camera
calibration	matrix	 of	 these	 two	 cameras	will	 be	 related	 by	 an	 invertible	 3	 ×	 3
matrix,	 and	 therefore	 a	 homography.	 This	 is	 the	 situation	 in	 the	 common
application	of	panoramic	 image	generation.	A	camera	 is	usually	mounted	on	a
tripod	or	held	 in	hand	and	rotated	about	a	fixed	center	of	projection	 to	capture
multiple	images.	Therefore,	each	camera	position	can	be	related	to	another	via	a
homography.	 Though	 each	 image	 covers	 a	 narrow	 field	 of	 view,	 the	 multiple
images	can	be	 stitched	 together	 to	 achieve	an	 image	with	much	 larger	 field	of
view,	more	 commonly	 called	 a	panorama.	 In	 this	 application	 usually	 adjacent
images	 have	 a	 considerable	 overlap.	 Common	 features	 in	 these	 overlaps	 are
matched	 (manually	 or	 using	 automatic	methods)	 and	 then	 used	 to	 recover	 the
homography	between	adjacent	camera	locations.	This	homography	is	then	used
to	transform	the	images	to	the	reference	coordinate	system	of	one	of	the	cameras
to	 achieve	 a	 stitched	 panorama.	 This	 is	 illustrated	 in	 Figure	 7.4.	 The	 overlap
regions	are	blended	together	(using	methods	discussed	at	length	in	Chapter	11)
to	achieve	a	smooth	color	transition.

Figure	 7.4	 Three	 images	 (together)	 stitched	 together	 using	 homographic	 transformations	 to	 create	 a
panorama	 (bottom).	 The	 red	 boundaries	 show	 the	 original	 images	 and	 the	 blue	 boundary	 shows	 a
rectangular	section	cut	off	from	the	non‐rectangular	panorama.

Put	a	Face	to	the	Name

George	 Eastman	 (July	 12,	 1854	 March	 14,	 1932)	 was	 an	 American
innovator	and	entrepreneur	who	founded	the	Eastman	Kodak	Company	and
popularized	the	use	of	roll	film	making	photography	mainstream.	Roll	film
was	also	the	basis	for	the	invention	of	motion	picture	film	in	1888.	Eastman
was	 born	 in	 Waterville,	 New	 York	 as	 the	 youngest	 child	 of	 George
Washington	 Eastman	 and	 Maria	 Eastman	 at	 the	 10‐acre	 farm	 which	 his
parents	bought	in	1849.	He	was	largely	self‐educated,	although	he	attended
a	private	school	in	Rochester	after	the	age	of	eight.	In	the	early	1840s	his
father	 had	 started	 a	 business	 school,	 the	Eastman	Commercial	College	 in
Rochester,	 New	 York,	 described	 as	 one	 of	 the	 first	 “boomtowns”	 in	 the

7.2

United	States,	based	on	rapid	industrialization.	As	his	father’s	health	started
deteriorating,	the	family	gave	up	the	farm	and	moved	to	Rochester	in	1860
where	 his	 father	 died	 of	 a	 brain	 disorder	 in	 May	 1862.	 To	 survive	 and
afford	George’s	schooling,	his	mother	took	in	boarders.	The	second	of	his
two	older	sisters	contracted	polio	when	young	and	died	in	late	1870s	when
George	was	16	years	old.	The	young	George	 left	 school	early	and	started
working	 to	 help	 support	 the	 family.	 As	 Eastman	 began	 to	 experience
success	with	his	photography	business,	he	vowed	 to	 repay	his	mother	 for
the	hardships	she	had	endured	in	raising	him.	He	was	a	major	philanthropist
contributing	to	the	establishments	of	many	institutions,	the	most	notable	of
them	 being	 the	 Eastman	 School	 of	 Music,	 schools	 of	 dentistry	 and
medicine	 at	 the	 University	 of	 Rochester,	 the	 Rochester	 Institute	 of
Technology	(RIT),	some	buildings	in	MIT’s	second	campus	on	the	Charles
River	 and	 historically	 black	 institutions	 of	 the	 South	 Tuskegee	 and
Hampton	universities.	 In	his	final	 two	years,	Eastman	was	 in	 intense	pain
caused	by	a	disorder	affecting	his	spine.	On	March	14,	1932,	Eastman	shot
himself	in	the	heart,	leaving	a	note	which	read,	((To	my	friends:	my	work	is
done.	Why	wait?”	 [2].	 The	George	Eastman	House,	 now	operated	 as	 the
International	 Museum	 of	 Photography	 and	 Film,	 has	 been	 designated	 a
National	Historic	Landmark.

Considerations	in	the	Practical	Camera
A	 pinhole	 camera	 is	 extremely	 light	 inefficient	 since	 very	 little	 light	 enters
through	 the	 pinhole.	 Therefore,	 the	 design	 of	 the	 practical	 camera	 needs	 to
deviate	from	this	ideal	pinhole	camera	model	as	shown	in	Figure	7.5.	It	consists
of	a	circular	hole	called	the	aperture	to	let	the	light	in.	This	is	usually	made	of	a
diaphragm	to	allow	changing	of	 its	size,	denoted	by	radius	a,	 thereby	allowing
control	of	the	amount	of	light	to	be	let	in	(Figure	7.7).	This	is	followed	by	a	lens
which	 allows	 the	 focusing	 of	 light	 on	 the	 sensor	 behind	 it.	 Let	 us	 denote	 the
focal	 length	 of	 the	 lens	 with	 f.	 Let	 us	 consider	 a	 point	 in	 the	 3D	 scene	 at	 a
distance	f	away	from	the	lens.	The	rays	of	light	from	this	point	are	collected	by
the	 lens	 and	 focused	on	 the	 sensor	 to	 form	a	 sharp	 image	 (shown	by	 the	 blue
rays).	For	a	focused	image,	this	camera	behaves	just	like	a	pinhole	camera	and
its	model	that	we	developed	in	the	previous	section	is	valid.	However,	we	need
to	 consider	 the	 issues	 related	 to	 the	 parts	 of	 the	 scene	which	 are	 not	 in	 focus
which	will	be	discussed	in	the	rest	of	this	section.

Figure	7.5	This	shows	a	practical	camera	with	an	opening	called	an	aperture	to	let	in	light,	a	lens	to	focus
the	light

Consider	Figure	7.6.	 Let	 the	 distance	 between	 the	 sensor	 and	 the	 lens	 be	 r.
Now,	let	us	consider	a	point	at	a	depth	z	that	is	farther	away	or	closer	than	f,	as
shown	by	the	red	and	green	rays.	Notice	that	these	rays	focus	before	or	behind
the	sensor.	Therefore,	 instead	of	having	a	sharp	focused	im	image	plane	called
the	circle	 of	 confusion.	Let	 the	 radius	 of	 the	 circle	 of	 confusion	 for	 a	 point	 at
depth	z	be	denoted
by	c	z	.	Using	thin	lens	equation,	it	can	be	shown	that

Figure	7.6	This	shows	how	the	aperture	age	they	create	a	blurry	circle	on	the	opening	is	changed	using	a
diaphragm.

Figure	7.7	Top:	This	shows	the	effect	of	reducing	the	aperture	size	on	the	circle	of	confusion.	The	bold	line
shows	the	original	aperture	in	Figure	7.5	and	the	dotted	line	shows	the	effect	of	reducing	the	aperture	size
that	reduces	the	circle	of	confusion.	Bottom:	This	shows	some	images	taken	from	a	camera	using	varying
apertures	decreasing	from	left	to	right.

(7.35)
c	z	=	a	r	1	f	-	1	z	,

where	a	is	the	aperture	of	the	lens.	If	c	z	is	 less	than	the	size	of	the	pixel	p,	 the
image	will	look	focused.	The	range	of	depth	for	which	c	z		<	p	can	be	shown	to
be	from	(f	-	d)	to	(f	+	d)	where	d	=	p	f	2	p	f	-	a	r	.	This	range	of	depth	from	f	-	d
to	f	+	d	is	called	the	depth	of	field	of	the	camera.
Next,	let	us	see	how	these	different	parameters	like	aperture	and	focus	have	an

effect	on	the	picture	captured	by	a	camera.	First	let	us	check	what	happens	when
the	aperture	of	the	camera	is	reduced	in	size.	Since	c	z	is	directly	proportional	to
aperture,	 the	 size	 of	 the	 circle	 of	 confusion	 goes	 down	with	 reduced	 aperture.
The	implication	of	this	is	that	if	the	pixel	size	remains	the	same,	points	at	greater
distance	from	f	can	now	produce	circle	of	confusion	within	p	and	 therefore	 the
depth	of	field	of	the	camera	will	increase.	This	is	also	consistent	with	the	pinhole
camera	 model	 since	 as	 the	 aperture	 goes	 towards	 0	 as	 is	 the	 case	 in	 pinhole
camera,	the	depth	of	field	goes	towards	infinity.	Usually	aperture	is	expressed	as
a	fraction	of	the	focal	length.	An	f2	aperture	means	an	aperture	size	of	f/2.	These

are	usually	specified	as	f‐numbers.	Typical	f‐numbers	are	f2,		f4,		f8,		f16,		f2.8,
f5.6,	fll	and	so	on.	Figure	7.6	shows	this	effect.

Figure	7.8	The	left	three	images	show	the	effect	of	the	focal	length	on	the	depth	of	field.	Note	that	as	the
focal	length	increases	the	depth	of	field	also	increases.	The	right	three	images	show	the	same	effect	for	a
smaller	aperture.	Note	that	for	the	same	focal	length,	the	smaller	aperture	have	larger	depth	of	field.

Now,	lets	see	what	happens	when	the	focal	length	of	the	lens	is	changed.	With
decrease	 in	 focal	 length,	 the	 1	 f	 term	 in	 Equation	 7.35	 increases	 thereby
increasing	c	z	.	Therefore,	the	depth	of	field	of	the	camera	reduces.	This	effect	is
shown	in	Figure	7.8.	 It	 also	 illustrates	 the	combined	effect	of	 focal	 length	and
aperture	on	the	depth	of	field.
The	change	of	the	focal	length	also	has	an	effect	on	the	field	of	view	captured

by	 the	camera.	The	 longer	 the	 focal	 length,	 the	smaller	 the	 field	of	ρ	view.	To
understand	this,	let	us	go	back	to	the	pinhole	camera	as	shown	in	Figure	7.9.	Let
the	image	plane	be	moved	at	different	focal	lengths,	f	1,		f	2	and	f	3	such	that	f	1	<	f
2	 <	 f	 3.	 Therefore,	 if	 the	 sensor	 size	 remains	 This	 figure	 illustrates	 the	 effect
constant,	as	the	focal	length	increases	of	focal	length	on	the	field	of	view	if	the
the	 field	 of	 view	 the	 angle	 between	 sensor	 size	 remains	 the	 same.	 the	 lines
passing	 from	 the	 center	 of	 projection	 through	 the	 extremities	 of	 the	 sensor—
decreases.	This	effect	makes	the	relative	size	of	the	flowers	in	7.8	become	bigger
as	the	focal	length	increases.

Figure	7.9	This	_gure	illustrates	the	e_ect	of	focal	length	on	the	_eld	of	view	if	the	sensor	size	remains	the
same.

7.3

Figure	7.10	This	figure	illustrates	motion	blur.	The	color	wheel	in	the	left	is	static	and	its	motion	increases
in	the	following	_gures	from	left	to	right,	the	rightmost	one	being	the	fastest.	The	picture	is	taken	with	the
same	shutter	speed	creating	more	blur	for	faster	motion.

Finally,	we	will	discuss	one	more	parameter	of	a	practical	camera,	the	shutter
speed.	The	sensor	in	the	camera	needs	to	be	exposed	for	a	limited	time	to	capture
the	 image.	 This	 exposure	 time	 is	 controlled	 by	 the	 shutter.	When	 you	 hear	 a
camera	 click’,	 the	 shutter	 opens	 and	 remains	 so	 for	 sometime	 exposing	 the
sensor	to	the	light	and	then	closes.
The	time	the	shutter	is	open	has	a	linear	effect	on	the	amount	of	light	that	is	let

in.	Usually	the	shutter	is	open	for	a	fraction	of	a	second	(e.g.	1	30	,	1	60).	If	any
object	 in	the	scene	moves	during	the	time	the	shutter	 is	open,	 the	image	of	 the
object	is	captured	at	multiple	locations	creating	an	effect	called	the	motion	blur
as	shown	in	Figure	7.10.

Conclusion
In	 this	chapter	we	covered	 the	 fundamental	model	of	a	pinhole	camera	and	 its
application	in	3D	depth	reconstruction	and	homography	based	modeling.	A	more
mathematical	 treatise	 of	 this	model	 is	 available	 in	 [Faugeras	93],	 the	 classical
book	 on	 3D	 computer	 vision.	 More	 about	 stereo	 reconstruction	 and	 camera
calibration	is	available	at	[Szeliski	10].	Details	about	the	practical	camera	can	be
explored	 further	 by	 taking	 a	 course	 on	 computational	 photography	 [Lukac	10]
offers	a	in	depth	treatise	in	this	direction.

Bibliography
[Faugeras	93]	Faugeras,	Olivier,	1993.	Three-dimensional	Computer	Vision:	A	Geometric	Viewpoint.	MIT

Press,	1993.
[Lukac	10]	Lukac,	Rastislav,	2010.	Computational	Photography:	Methods	and	Applications.	1st	ed.	CRC

Press	Inc,.	2010.
[Szeliski	 10]	 Szeliski,	 Richard,	 2010.	 Computer	 Vision:	 Algorithms	 and	 Applications.	 New	 York	 Inc:

Springer-Verlag.

Summary:	Do	you	know	these	concepts?

Pinhole	Camera
Intrinsic	and	Extrinsic	Camera	Parameters	Camera	Calibration
Depth	Estimation	or	Reconstruction
Stereo	Camera	Pair
Homography
Focal	Length
Aperture
Depth	of	Field
Shutter	Speed
Motion	Blur
Field	of	View

Exercises
1.	 Consider	the	following	3	×	4	camera	matrix

(7.36)
C	=	10	2	11	19	10	5	10	50	5	14	2	17

Consider	the	3D	point	in	homogeneous	coordinates	X	=	(0,	2,	2,	1)	T	.

a.	 What	are	the	Cartesian	coordinates	of	the	point	X	in	3D?
b.	 What	are	the	Cartesian	image	coordinates	of	the	projection	of

X?

2.	 Consider	an	ideal	pinhole	camera	with	focal	length	of	5mm.	Each	pixel
is	 0.	 02mm	 ×	 0.02mm	 and	 the	 image	 principal	 point	 is	 at	 pixel	 (500,
500).	 Pixel	 coordinates	 start	 at	 (0,	 0)	 in	 the	 upper‐left	 corner	 of	 the
image.

a.	 What	 is	 the	 3	 ×	 3	 camera	 calibration	 matrix,	 K,	 for	 this
camera	configuration?

b.	 Assuming	 the	 world	 coordinate	 frame	 is	 aligned	 with	 the
camera	coordinate	 frame	(i.e.,	 their	origins	are	 the	same	and
their	 axes	 are	 aligned),	 and	 the	 origins	 are	 at	 the	 cameras
pinhole,	what	is	the	3	×	4	matrix	that	represents	the	extrinsic,

rigid	 body	 transformation	 between	 the	 camera	 coordinate
system	and	the	world	coordinate	system?

c.	 Combining	 your	 results	 from	 the	 previous	 two	 questions,
compute	 the	 projection	 of	 scene	 point	 (100,	 150,	 800)	 into
image	coordinates.

3.	 A	 camera	 is	 rigidly	 mounted	 so	 that	 it	 views	 a	 planar	 table	 top.	 A
projector	is	also	rigidly	mounted	above	the	table	and	projects	a	narrow
beam	of	light	onto	the	table,	which	is	visible	as	a	point	in	the	image	of
the	 table	 top.	The	height	of	 the	 table	 top	 is	precisely	controllable	but
otherwise	 the	 positions	 of	 the	 camera,	 projector,	 and	 table	 are
unknown.	For	table	top	heights	of	50mm	and	100mm,	the	point	of	light
on	the	table	is	detected	at	image	pixel	coordinates	(100,	250)	and	(140,
340)	respectively.

a.	 Using	 a	 projective	 camera	 model	 specialized	 for	 this
particular	scenario,	write	a	general	formula	that	describes	the
relationship	 between	 world	 coordinates	 (x),	 specifying	 the
height	 of	 the	 table	 top,	 and	 image	 coordinates	 (u	 ,	 v)	 ,
specifying	 the	 pixel	 coordinates	 where	 the	 point	 of	 light	 is
detected.	 Give	 your	 answer	 using	 homogeneous	 coordinates
and	a	projection	matrix	containing	variables.

b.	 For	 the	 first	 table	 top	 position	 given	 above	 and	 using	 your
answer	 in	 the	 previous	 question,	 write	 out	 the	 explicit
equations	 that	 are	 generated	 by	 this	 one	 observation.	 How
many	degrees	of	freedom	does	this	transformation	have?

c.	 How	 many	 table	 top	 positions	 and	 associated	 images	 are
required	 to	 solve	 for	 all	 of	 the	 unknown	 parameters	 in	 the
projective	camera	model?

d.	 (d)	 Once	 the	 camera	 is	 calibrated,	 given	 a	 new	 unknown
height	of	the	table	and	an	associated	image,	can	the	height	of
the	 table	 be	 uniquely	 solved	 for?	 If	 so,	 give	 the	 equation(s)
that	is/are	used.	If	not,	describe	briefly	why	not.

e.	 If	 in	each	image	we	only	measured	the	u	pixel	coordinate	of
the	point	of	 light,	could	 the	camera	still	be	calibrated?	If	so,
how	many	 table	 top	 positions	 are	 required?	 If	 not,	 describe
briefly	why	not.

4.	 Assume	a	camera	with	camera	matrix	C	=	K[r	1	r	2	r	3	t],	where	K	is	the
intrinsic	parameter	matrix	and	r	1,	 	r	 2,	and	r	 3	are	 the	columns	of	 the
rotation	matrix.	Let	π	be	the	XY	plane	at	Z	=	0.	We	know	that	any	point

P	 in	 this	 plane	 can	 be	 related	 to	 the	 camera	 image	 point	 P	 by	 a
homography	H,	i.e.	P	=	HP.	Show	that	H	=	K[r	1	r	2	t].

5.	 Consider	a	panoramic	 image	generation	application	where	 the	camera
is	 placed	 on	 a	 tripod	 and	 rotated	 to	 capture	 multiple	 images	 for
panoramic	image	generation.	Can	two	adjacent	images	in	this	sequence
be	 related	 by	 a	 homography?	 If	 so,	 under	 what	 conditions	 is	 this
possible?

6.	 Four	projectors	are	tiled	in	a	2	×	2	array	to	create	a	tiled	display	on	a
flat	wall.	The	projectors	have	some	overlap	between	each	other.	What
is	 the	minimum	dimension	of	 the	matrix	 that	 relates	pixel	 (x	 ,	y)	 in
one	projector	to	a	pixel	(x	′	,	y	′)	in	another.	Justify	your	answer.

7.	 What	 are	 the	 two	 parameters	 in	 a	 practical	 camera	 that	 allow	 you	 to
control	the	amount	of	light	reaching	the	sensor?	How	does	the	elements
or	 events	 of	 a	 scene	guide	 the	 choice	of	which	parameter	 you	would
use	to	control	the	amount	of	light?

8.	 Freezing	motion	is	a	technique	to	choose	the	correct	shutter	speed	for
capturing	a	moving	object	so	that	they	appear	to	be	static	or	frozen	in
the	image.	You	are	asked	to	freeze	motion	for	a	moving	car,	a	person
jogging	 in	 the	 park,	 a	 person	 taking	 a	 stroll	 on	 the	 beach,	 and	 a	 fast
moving	train.	You	are	allowed	to	choose	between	four	shutter	speeds	of
1	125	,	1	250	,	1	500	,	and	1	1000	 .	Which	speed	will	you	choose	for
which	object?

9.	 Consider	a	parametric	line	P	0	+	α(P	1	-	P	0)	in	the	3D	scene.	Consider	a
point	 P	 moving	 on	 this	 line	 as	 α	 goes	 from	 0	 to	 1.	 Show	 that	 its
projection	 under	 the	 camera	 calibration	 matrix	 will	 converge	 to	 a
vanishing	point.

10.	 Are	 the	 intrinsic	and	extrinsic	parameter	matrices	affine,	Euclidian	or
projection?	 Justify	your	 answer.	We	know	 that	 the	camera	calibration
matrix	is	a	projective	transformation	matrix?	Which	of	the	intrinsic	and
the	 extrinsic	 parameter	 matrices	 contributes	 to	 it	 being	 a	 projective
transformation?	Justify	your	answer.

11.	 The	camera	calibration	matrix	 is	 a	3	×	4	matrix	whose	 inverse	 is	not
defined.	What	 is	 the	geometric	 interpretation	of	 this	 in	 the	context	of
reconstructing	3D	geometry	from	the	2D	image	of	a	single	camera?

12.	 Explain	why	a	portraits	eyes	appear	to	“follow	you	around	the	room”.
Give	your	answer	 in	 terms	of	a	homography	relationship	between	 the
viewer	and	the	picture.

8.1

8

Epipolar	geometry
In	 the	 previous	 chapter	 we	 learnt	 how	 we	 can	 use	 two	 or	 more	 cameras	 to
reconstruct	the	geometry	of	a	scene.	This	is	often	considered	as	one	of	the	most
important	goals	of	computer	vision.	Scene	reconstruction	is	a	fundamental	step
towards	automated	scene	understanding.	Only	when	the	basic	scene	geometry	is
reconstructed,	we	can	delve	deeper	 in	other	aspects	 like	understanding	objects,
their	movements	and	interactions	with	other	elements	of	the	scene—	all	of	which
are	related	to	much	higher	levels	of	cognition	in	humans	as	well.
Epipolar	 geometry	 defines	 geometric	 constraints	 across	 multiple	 cameras
capturing	the	same	scene.	This	enables	simplification	of	common	problems	(like
finding	correspondences)	when	dealing	with	important	vision	tasks	like	motion
estimation	 or	 3D	 depth	 reconstruction.	 It	 is	 fascinating	 to	 see	 how	 even
relatively	 simple	 constraints	 can	 make	 such	 hard	 problems	 tractable.	 In	 this
chapter	we	will	cover	 the	fundamental	concepts	of	epipolar	geometry.	We	start
this	chapter	by	defining	the	notations	we	will	be	using.

Background
Let	us	consider	a	line	defined	by	two	2D	points,	A	(x	,	y	,	t)	and	(u	,	v	,	w)	,	in
homogeneous	 coordinates,	 as	 shown	 in	 Figure	 8.1.	 Therefore,	 the	 normalized
homogeneous	coordinates	 that	provide	 the	projection	of	 these	points	 in	 the	2D
plane	defined	by	Z	=	1	is	given	by	A	’	=		(x	t	,	y	t)	and	B	’	=		(u	w	,	v	w)	.	Let
the	line	between	A	’	and	B	’	be	M	l	.	M	l	is	shown	in	red	in	Figure	8.1.	The	normal
to	the	plane	OAB	is	given	by

(8.1)
B	×	A	=	y	w	-	t	v	t	u	-	x	w	x	v	-	y	u

Any	point	lying	on	M	l	should	be	the	projection	of	a	point	P	=	(p	,	q	,	r)	that
lies	on	the	plane	OAB.	Therefore,	P	will	satisfy	the	plane	equation	defined	by	the
above	normal	as

(8.2)

p	(y	w	-	t	v)	+	q	(t	u	-	x	w)	+	r	(x	v	-	y	u)	=	0

Therefore,	B	×	A	provides	the	coefficients	of	the	equation	of	the	plane	OAB.
In	other	words,	P	would	satisfy	the	following	equation.

Figure	8.1	.This	figure	shows	two	2D	points,	A	and	B,	in	homogeneous	coordinates	and	how	a	point	P	lying
in	the	plane	OAB	relates	to	A	and	B.

(8.3)
P	T	y	w	-	t	v	t	u	-	x	w	x	v	-	y	u	=	P	T	(B	×	A)	=	0	.

Now,	 consider	 the	 line	 M	 l	 on	 the	 plane	 Z	 =	 1	 formed	 by	 the	 normalized
homogeneous	coordinates	A	 ’	=	 	 (x	 t	 ,	y	 t	 ,	1)	and	B	 ’	 =	 	 (u	w	 ,	 v	w	 ,	 1)	 .
Therefore,	the	slope	m	and	offset	c	of	this	line	M	l	is	given	by

(8.4)
m	=	t	v	-	y	w	t	u	-	x	w

(8.5)
c	=	y	u	-	x	v	t	u	-	x	w	.

Therefore,	the	equation	of	M	l	is	given	by

(8.6)
(t	v	-	y	w)	x	l	+	(x	w	-	t	u)	y	l	+	(y	u	-	z	w)	=	0

where	 (x	 l	 ,	 y	 l)	 is	 the	 2D	 point	 on	 M	 l	 denoted	 by	 the	 normalized
homogeneous	coordinates	(x	l	,	y	l	,	1)	.	Alternatively,

8.2

(8.7)
(x	l	y	l	1)	y	w	-	t	v	t	u	-	x	w	x	v	-	y	u	=	(x	l	y	l	1)	(B	×	A)	=	0	.

Therefore,	B	×	A	defines	the	coefficients	for	both	the	equation	of	the	line	M	l	or
equation	of	the	plane	OAB	based	on	whether	we	are	considering	normalized	or
un-normalized	 homogeneous	 coordinates.	 We	 will	 use	 this	 fact	 effectively	 in
many	places	when	working	with	epipolar	geometric	constraints.	Also,	we	will	be
using	the	coefficient	matrix	of	a	line	to	describe	the	line	itself	Therefore,	where
we	define	a	line	l	as

(8.8)
l	=	a	b	c	,

we	refer	to	a	line	l	with	slope	-	a	b	and	offset	-	c	b	,	as	derived	from	the	above
equations.	This	notation	will	be	used	frequently	in	the	rest	of	this	chapter.
Now	note	that

(8.9)
B	×	A	=	y	w	-	t	v	t	u	-	x	w	x	v	-	y	u	=	0	w	-	v	-	w	0	u	v	-	u	0	x	y	t	=	[B]	X	A

The	left	matrix	 is	a	special	matrix	with	only	 the	coordinates	of	B	as	 its	entries
and	hence	is	called	[B]	X	.	Note	that	[B]	X	is	a	symmetric	matrix,	i.e.	[B]	X	=	[B
]	X	T	.	Now,	since	P	satisfies	Equation	8.3,	the	following	equation	will	hold.

(8.10)
P	T	([B]	X	A)	=	0

In	fact,	it	can	also	be	shown	that

(8.11)
P	T	([B]	X	A)	=	(A	T	[B]	X	T)	P	=	0

Take	a	special	note	of	the	dimensions	of	the	matrices	and	you	will	find	the	result
to	be	a	1	×	1	 scalar.	Also,	 the	determinant	of	 [B]	X	 is	 0	 and	 all	 the	 2	×	2	 sub-
matrices	have	non-zero	determinant.	Therefore,	[B]	X	is	a	rank	2	matrix.

Correspondences	in	Multi-View	Geometry
Consider	two	cameras,	C	1	and	C	2	for	stereo	depth	reconstruction	(Figure	8.2).
Let	 their	 center	 of	 projection	 be	O	 1	 and	O	 2	 and	 image	 planes	 be	 I	 1	 and	 I	 2
respectively.	The	line	segment	O	1	O	2	is	called	the	baseline.	The	baseline	should
be	of	non-zero	length	in	order	to	perform	stereo	reconstruction	i.e.	O	1	≠	O	2.	Let

us	 consider	 a	 3D	 point	 P	 and	 let	 its	 image	 on	 C	 1	 and	C	 2	 be	 p	 1	 and	 p	 2
respectively.	Let	us	now	make	some	observations	about	this	geometric	setup.

1.	 PO	1	O	2	forms	a	plane.	As	the	location	of	the	3D	point	P	changes,	this
plane	changes	but	it	rotates	about	the	baseline	O	1	O	2.

2.	 The	 image	 of	 points	 on	 the	 ray	O	 2	 P	 falls	 on	 the	 line	 l	 1	 in	 C	 1.
Similarly,	the	image	of	any	point	on	O	1	P	falls	on	the	line	l	2	in	C	2.

3.	 The	line	joining	O	1	O	2	intersects	the	image	plane	I	1	and	I	2	at	points	e
1	 and	 e	 2	 respectively.	 These	 are	 called	 the	 epipoles.	 Note	 that	 the
epipole	need	not	be	located	on	the	physical	image	plane	of	the	camera,
but	can	be	on	the	extension	of	its	plane,	as	is	the	case	for	C	1.

4.	 The	line	l	1	and	l	2	are	given	by	e	1	p	1	and	e	2	p	 2	 respectively	and	are
called	the	epipolar	lines.	Note	that	as	the	plane	PO	1	O	2	change	with	a
change	 in	 the	 position	 of	 P,	 the	 epipoles	 do	 not	 change	 since	 the
baseline	O	 1	O	 2	 does	 not	 change.	 Therefore,	 all	 epipolar	 lines	 pass
through	the	epipole	of	the	image.

Figure	8.2	 .This	 figure	 illustrates	 the	 setting	 for	 finding	 the	epipolar	constraints	 in	a	 two	camera	 system.
These	two	cameras	are	defined	by	their	center	of	projection	O	1	and	O2	and	their	 image	planes	I	1	and	 I	 2
respectively.	Both	of	them	are	seeing	the	3D	point	P.	The	image	of	the	point	P	is	given	by	p	1	and	p	2	on	the
two	cameras.	e	1	and	e	2	define	the	epipoles	of	the	two	cameras	and	l	1	and	l	2	provide	the	epipolar	lines	for
searching	for	the	correspondences	for	the	3D	point	P.

8.3

Figure	8.3	.On	the	top	we	see	the	marked	features	in	the	left	 image	which	lie	on	the	epipolar	lines	in	the
right	image	and	these	lines	can	then	be	searched	to	find	the	corresponding	feature.	In	the	bottom,	we	show
two	images	captured	from	a	stereo	camera	pair	and	the	epipolar	lines	on	each	of	them.	Note	that	the	epipole
in	both	the	images	lie	outside	the	physical	image.

The	 question	 is,	 why	 is	 this	 important?	 The	 importance	 of	 the	 above
constraints	is	that	they	reduce	the	search	space	for	correspondence	when	using	a
calibrated	stereo	camera	pair.	Since	we	consider	calibrated	cameras,	the	position
of	 each	 of	 the	 camera	 can	 be	 projected	 on	 the	 image	 plane	 of	 the	 other	 thus
giving	us	the	epipoles	e	1	and	e	2.	Next,	if	we	detect	the	feature	p	1	(image	of	P)
in	camera	C	 1,	 then	 its	correspondence	 is	bound	 to	 lie	on	 the	 line	e	 2	p	 2	=	 l	 2.
Therefore,	instead	of	searching	the	entire	image,	we	can	now	search	on	the	line	l
2	for	the	correspondence.	Therefore,	our	search	space	for	finding	correspondence
has	 reduced	 from	 2D	 to	 1D	 which	 leads	 to	 significant	 computational	 savings
when	finding	the	depth	of	points	in	the	scene.	This	is	illustrated	in	Figure	8.3.	In
the	following	sections,	we	will	learn	the	mathematical	foundations	for	reducing
the	search	space	for	correspondences	from	2D	to	1D.	Towards	that,	we	need	to
first	learn	about	fundamental	matrix.

Fundamental	matrix
Fundamental	matrix,	F,	 is	 a	 3	 ×	 3	matrix	 that	 helps	 us	 to	 find	 the	 line	 l	 2	 on
which	a	correspondence	p	2	of	p	1	in	camera	C	1	lies	in	C	2.	We	will	show	that	l	2

is	given	by	Fp	1.
In	order	to	define	the	concept	of	fundamental	matrix	of	a	camera,	we	will	use

the	same	geometric	setup	in	Figure	8.2.	Let	p	1	=	(x	1	,	y	1	,	t	1)	and	e	1	=	(u	,
v	,	w)	.	From	derivations	in	Section	8.1	we	know	that	the	line	l	1	defined	by	its
endpoints	e	1	and	p	1	is	given	by

(8.12)
l	1	=	[e	1]	X	p	1	=	0	w	-	v	-	w	0	u	v	-	u	0	x	1	y	1	t	1	=	L	p	1	,

where	L	=	 [e	 1]	X	 .	Now	we	know	 from	 the	 concepts	presented	 in	 the	previous
chapter	that	since	l	1	and	l	2	are	coplanar,	 there	 is	a	3	×	3	homography	or	a	2D
affine	transformation	A	that	maps	l	1	to	l	2.	Therefore,

(8.13)
l	2	=	A	l	1

(8.14)
=	A	L	p	1

(8.15)
=	F	p	1

Now	let	p	2	=	(x	2	,	y	2	,	t	2)	.	Since	p	2	lies	on	the	line	l	2,	it	will	satisfy	the	line
equation

(8.16)
p	2	T	l	1	=	p	2	T	F	p	1	=	0

Here,	F	related	the	two	correspondences	p	1	and	p	2	and	is	called	the	fundamental
matrix.	Since	A	and	L	are	both	3	×	3	matrices,	the	fundamental	matrix	F	is	also	a
3	×	3	matrix.	Also	L	is	a	rank	2	matrix	and	A	is	a	rank	3	matrix.	Therefore,	F	is	a
rank	 2	 matrix.	 A	 being	 a	 homography	 has	 eight	 degrees	 of	 freedom.	 When
multiplied	 by	 rank	 2	matrix	L,	 the	 resultant	F	 has	 an	 additional	 constraint	 of
det(F)	=	0.	This	reduces	the	degrees	of	freedom	of	F	by	1	resulting	in	a	matrix
with	seven	degrees	of	freedom.

Fun	Facts
Epipolar	geometry	seems	to	have	been	first	uncovered	by	von	Guido	Hauck
in	1883.	He	wrote	several	papers	on	the	trilinear	relationships	of	points	and
lines	seen	in	three	images.	In	his	work,	Hauck	did	not	deeply	analyze	these
trilinear	 relationships	 theoretically,	 that	was	done	 later	via	 trifocal	 tensors
in	 the	 the	 1990s.	 He	 rather	 concentrated	 on	 the	 application	 of	 these
relationships	 to	generate	 a	 third	 image	 from	 two	given	ones	 (often	 called

8.3.1

trifocal	 transfer	 in	 computer	 vision).	 This	 concept	 is	 the	mainstay	 of	 the
field	of	 image	based	 rendering	 in	 computer	graphics	developed	 in	1990s.
Epipolar	 geometry	 was	 also	 explored	 by	 Hesse,	 in	 a	 limited	 manner,	 in
1863	in	response	to	a	challenging	problem	posed	by	French	mathematician,
Michel	 Chasles,	 where	 he	 challenged	 mathematicians	 to	 determine	 two
pencils	 of	 2D	 lines	 in	 homographical	 relationship	 given	 seven	 pairs	 of
matching	points	such	that	matching	lines	are	incident	with	matching	points.

Properties
We	can	summarize	the	main	properties	of	the	fundamental	matrix	F	as	follows.
1.F	is	a	rank	2	matrix	with	seven	degrees	of	freedom.
2.The	epipolar	lines	l	1	and	l	2	on	which	p	1	and	p	2	 respectively	lie	are	given

by

(8.17)
l	2	=	F	p	1

(8.18)
l	1	=	F	T	p	2

Therefore,	two	corresponding	points	p	1	and	p	2	are	related	by

(8.19)
p	2	T	F	p	1	=	0

or

(8.20)
p	1	T	F	T	p	2	=	0	.

Also,	depending	on	which	of	the	above	two	equations	is	being	used,	F	T	can	also
be	considered	a	fundamental	matrix.
4.The	epipoles	are	related	to	F	by

(8.21)
F	e	1	=	F	T	e	2	=	0

At	this	point,	you	may	be	wondering	that	both	the	homography	and	fundamental
matrix	are	3	×	3	matrices	that	define	constraints	across	two	stereo	cameras.	So,
what	 is	 the	 difference	 between	 these	 two.	Note	 that	 homography	 helps	 you	 to
find	 the	 corresponding	 point	 in	 another	 camera	 given	 a	 point	 in	 the	 first	 one.
Therefore,	 homography	 maps	 a	 point	 to	 another	 point.	 And	 this	 constraint	 is

8.3.2

imposed	due	to	a	more	restrictive	scene	composition	realized	by	either	C	1	and	C
2	having	a	common	center	of	projection	or	all	3D	points	 lying	on	a	plane.	The
fundamental	 matrix,	 on	 the	 other	 hand,	 only	 defines	 a	 line	 on	 which	 the
correspondence	 will	 lie	 in	 the	 second	 camera.	 Therefore,	 fundamental	 matrix
maps	a	point	to	a	line,	and	not	another	point	as	in	homography.

Estimating	Fundamental	Matrix
The	next	obvious	question	 is,	 how	do	we	estimate	 the	 fundamental	matrix?	 In
this	 section,	 we	 will	 explore	 estimation	 of	 fundamental	 matrix	 for	 different
camera	pair	setups.
Calibrated	Camera	 If	we	have	a	calibrated	pair	of	stereo	cameras,	 finding

the	 fundamental	 matrix	 is	 relatively	 easy.	 Let	 the	 3	 ×	 4	 calibration	matrix	 of
camera	C	1	and	C	2	be	given	by	A	1	and	A	2	respectively.	Therefore,

(8.22)
p	1	=	A	1	P

Since	A	1	is	not	a	square	matrix,	it	is	not	invertible.	But	we	can	find	its	pseudo-
inverse	A	1	+	which	is	a	4	×	3	matrix	such	that	A	1	A	1	+	=	I	where	I	is	the	3	×	3
identity	matrix.	It	can	be	shown	that	A	1	+	=	(A	1	T	A	1)	-	1	A	1	T	.	Using	this
pseudo	inverse	A	1	+	,	we	can	write	Equation	8.22	as

(8.23)
P	=	A	1	+	p	1

Now,	the	image	p	2	of	P	in	the	second	camera	can	be	expressed	as

(8.24)
p	2	=	A	2	P

(8.25)
=	A	2	A	1	+	p	1

The	line	l	2	can	be	defined	by	its	endpoints	e	2	and	p	2	and	also	by	Equation	8.18
giving

(8.26)
l	2	=	e	2	×	p	2	=	[e	2]	X	A	2	A	1	+	p	1	=	F	p	1

Therefore,	F	can	be	derived	from	the	above	equation	as

(8.27)
F	=	[e	2]	X	A	2	A	1	+	.

8.3.3

In	 fact,	 it	 can	be	 shown	 that	A	2	A	1	+	 is	 a	 full	 rank	 3	×	 3	matrix	 and	 is	 the
homography	A	defined	in	Equation	8.14.
First	 Camera	 Aligned	 with	 World	 Coordinate	 Next,	 we	 will	 simplify	 the

camera	setup	even	more.	Let	us	consider	C	1	to	be	located	at	the	origin	aligned
with	the	coordinate	axes.	Let	the	intrinsic	matrix	for	C	1	be	K	1.	Therefore,	A	1	is
given	by

(8.28)
A	1	=	K	1	(I	|	O)

where	I	is	the	3	×	3	identity	matrix	and	O	is	(0,	0,	0)	T	.	Further	A	1	+	is	given	by

(8.29)
A	1	+	=	K	1	-	1	O	.

Let	the	translation,	rotation	and	intrinsic	matrix	of	C	2	be	given	by	T,		R	and	K	2
respectively.	Therefore,	the	calibration	matrix	of	C	2,	A	2,	is	given	by

(8.30)
A	2	=	K	2	R	|	T	=	K	2	R	|	K	2	T

From	the	above	equations	we	can	find	the	homography	A	as

(8.31)
A	=	A	2	A	1	+	=	K	2	R	K	1	-	1

Let	us	now	consider	e	2,	the	image	of	O	1	on	I	2.	e	2	is	given	by

(8.32)
e	2	=	A	2	0	0	0	1	=	(K	2	R	|	K	2	T)	0	0	0	1	=	K	2	T	.

Therefore,	from	Equation	8.27,	we	can	now	derive	the	fundamental	matrix	F	as

(8.33)
F	=	[e	2]	X	A	2	A	1	+

(8.34)
=	[K	2	T]	X	K	2	R	K	1	-	1

This	shows	that	when	using	a	simplified	setup	of	calibrated	cameras	where	one
of	them	is	aligned	with	the	world	coordinate	axes,	finding	fundamental	matrix	is
even	easier.

Camera	Setup	Akin	to	Two	Frontal	Eyes
Next,	we	will	explore	a	very	specific	 type	of	camera	setup	like	 the	 two	frontal

eyes	in	animals	like	humans	(and	not	lateral	eyes	in	animals	like	rabbits).	In	this
case,	 the	 two	cameras	can	be	assumed	to	have	the	same	intrinsic	matrix,	 i.e.	K
1	=	K	2	=	K.	This	assumption	is	not	as	unlikely	as	it	may	seem.	Even	in	consumer
devices,	most	 cameras	of	 the	 same	make	often	have	 the	 same	 intrinsic	matrix.
When	considering	frontal	eyes,	the	relative	orientation	of	the	second	camera	can
be	defined	by	just	a	translation	with	respect	to	the	first	camera	and	no	rotation.
Therefore,	both	the	cameras	are	in	exactly	the	same	orientation	coincident	with
the	 coordinate	 axes,	 but	 while	 one	 is	 at	 the	 origin	 the	 other	 is	 translated	 to
another	location.	Under	these	assumptions,	Equation	8.34	becomes

(8.35)
F	=	[e	2]	X	K	K	-	1	=	[e	2]	X	.

Now	let	us	simplify	the	setup	further	by	assuming	that	the	translation	is	parallel
to	the	X	axis—	exactly	the	way	the	human	eye	is.	In	this	scenario,	the	epipole	e	2
will	be	on	the	X	axis	but	at	infinity.	Therefore,	e	2	=	(1,	0,	0)	T	and

(8.36)
F	=	[e	2]	X	=	0	0	0	0	0	-	1	0	1	0

Let	us	now	consider	two	corresponding	pixels	(x	1	,	y	1)	and	(x	2	 ,	y	2)	as
camera	C	 1	 and	C	 2	 respectively.	 Plugging	 the	 above	 fundamental	 matrix	 in
Equation	8.19	gives

(8.37)
(x	2	y	2	1)	0	0	0	0	0	-	1	0	1	0	x	1	y	1	1	=	0

(8.38)
O	r	,	(0	1	-	y	2)	x	1	y	1	1	=	0

(8.39)
O	r	,	y	1	-	y	2	=	0

Therefore,	for	this	setup,	the	epipolar	lines	are	rasterlines	(lines	parallel	to	the	X
axis)	and	the	epipoles	are	at	infinity.	Therefore,	correspondences	lie	on	the	same
raster	lines	on	the	two	images	and	hence	finding	them	is	very	easy	as	illustrated
in	Figure	8.4.

Figure	8.4	.This	figure	shows	this	case	of	the	frontal	eye	and	how	the	correspondences	lie	on	the	same	rater

8.4

lines	(shown	by	the	green	lines).

Uncalibrated	Camera	More	 often	 than	 not,	 we	 face	 a	 situation	 where	 the
cameras	 are	 not	 calibrated.	 The	 question	 is,	 how	 do	we	 find	 the	 fundamental
matrix	if	the	camera	calibration	matrices	are	unknown?
For	that,	let	us	consider	two	points	in	the	images	of	C	1	and	C	2	 respectively,

given	by	 (x	1	 ,	y	1)	 and	 (x	 2	 ,	 y	 2)	 to	 be	 corresponding	 features	 detected
manually	 or	 any	 software	 assisted	 process.	 These	 two	 points	 will	 satisfy
Equation	8.19	and	therefore

(8.40)
(x	2	y	2	1)	f	1	f	2	f	3	f	4	f	5	f	6	f	7	f	8	f	9	x	1	y	1	1	=	(x	2	y	2	1)	F	x	1	y	1	1	=	0

where	f	1,	.	.	.	f	9	denote	the	entries	of	the	fundamental	matrix	F.	From	the	above
equation	we	can	generate	the	following	linear	equation
x	1	x	2	f	1	+	x	1	y	2	f	2	+	x	1	f	3	+	y	1	x	2	f	4	+	y	1	y	2	f	5	+	y	1	f	6	+	x	2	f	7	+	y
2	f	8	+	f	9	=	0	(8.41)

Thus,	 every	 pair	 of	 correspondences	 detected	 creates	 a	 linear	 equation.
Therefore,	 with	 adequate	 correspondences	 we	 can	 estimate	 F.	 Though	 F	 has
seven	 degrees	 of	 freedom,	 it	 can	 be	 shown	 that	 it	 has	 eight	 parameters	 in	 the
matrix	that	can	be	affected	by	the	seven	degrees	of	freedom.	Therefore,	we	need
at	least	eight	correspondences	to	estimate	F	using	this	method.	In	the	subsequent
sections	we	will	see	how	F	is	used	for	different	purposes	in	different	situations.

Essential	Matrix
Essential	matrix	E	is	defined	as	the	fundamental	matrix	of	normalized	cameras.
A	 normalized	 camera	 is	 achieved	 when	 the	 coordinates	 of	 the	 camera	 are
normalized	 and	 hence	 the	 name.	 Therefore,	 the	 intrinsic	 matrix	 K	 of	 a
normalized	 camera	 is	 identity,	 i.e.	 K	 =	 I.	 Therefore,	 when	 considering	 two
normalized	correspondences	p	^	1	and	p	^	2	 ,	all	 the	properties	of	 fundamental
matrix	 described	 in	 Section	 8.3.1	 are	 now	 applicable	 to	 essential	 matrix,	 the
most	useful	of	them	being

(8.42)
l	2	=	E	p	^	1

(8.43)
l	1	=	E	T	p	^	2

8.5

(8.44)
p	^	2	T	E	p	^	1	=	0

(8.45)
p	^	1	T	E	T	p	^	2	=	0	.

The	normalization	 removes	 two	 scale	 factors	 that	 denote	 the	 size	 of	 the	 pixel.
Therefore,	two	degrees	of	freedom	are	reduced	from	F	to	yield	E.	Hence,	E	has
five	degrees	of	freedom.
Since	any	pair	of	camera	can	be	reduced	to	the	situation	where	C	1	is	aligned

with	 the	world	 coordinate	 axes	 and	C	 2	 translated	 by	T	 and	 rotated	 by	R	 with
respect	 to	C	 1,	we	 derive	 the	 essential	matrix	E	 by	 replacing	K	 1	 =	K	 2	 =	 I	 in
Equation	8.34	giving

(8.46)
E	=	[T]	X	R

Since	R	and	[T]	X	are	both	symmetric	matrices,	we	can	find	E	T	as

(8.47)
E	T	=	([T]	X	R)	T	=	R	T	[T]	X	T	=	R	[T]	X

The	 five	 degrees	 of	 freedom	of	E	 can	 also	 be	 seen	 from	 the	 above	 equations.
Since	 E	 depends	 on	 R	 and	 T	 that	 have	 two	 and	 three	 degrees	 of	 freedom
respectively,	E	has	five	degrees	of	freedom.

Rectification
Rectification	 is	 a	 process	 by	which	we	 take	 the	 images	 from	 a	 pair	 of	 stereo
cameras	and	apply	appropriate	transformations	such	that	they	simulate	the	case
of	 the	 frontal	eyes	and	 therefore	 the	correspondences	 lie	on	 the	 raster	 lines.	 In
this	 section	 we	 will	 learn	 how	 to	 rectify	 images	 from	 two	 normalized
uncalibrated	cameras.
We	 can	 assume	 without	 loss	 of	 generality	 that	 one	 of	 these	 normalized

cameras	is	aligned	with	the	world	coordinates	while	the	other	is	translated	by	T
and	 rotated	 by	 R	 with	 respect	 to	 it.	 Therefore,	 correspondences	 in	 these	 two
normalized	cameras	will	be	related	by	essential	matrix	as	explained	by	equations
in	 the	previous	 section.	However,	 since	 these	 are	uncalibrated	 cameras,	we	do
not	know	R	and	T.	But	we	can	use	a	few	normalized	correspondences	to	estimate
the	 essential	 matrix	 using	 the	 method	 to	 estimate	 fundamental	 matrix	 for
uncalibrated	cameras	explained	in	Section	8.3.3.

Now,	since	we	know	that	this	E	 is	related	to	R	and	T	by	Equations	8.46	and
8.47,	 if	 we	 can	 recover	 R	 and	 T	 from	 the	 computed	 E,	 we	 can	 apply	 the
appropriate	 transformation	 to	 the	 second	 normalized	 camera	 image	 plane	 to
convert	the	configuration	of	the	camera	pair	to	that	of	the	frontal	eye	where	the
two	cameras	only	differ	by	a	translation	along	the	X	axis.	This	process	is	called
rectification.	The	correspondences	now	lie	on	raster	lines	of	the	two	images	and
are	therefore	significantly	easier	to	locate.
Therefore,	the	next	question	is	how	do	we	find	the	rotation	and	translation	for

the	 second	 camera	 from	 the	 estimated	 essential	matrix?.	 For	 this,	we	 first	 use
SVD	decomposition	to	decompose	E	into

(8.48)
E	=	U	Σ	V	T
Note	that	U	and	V	are	orthogonal	matrices	and	therefore	their	transpose	is	equal
to	their	inverse.	Let	us	also	define	a	matrix	W	as

(8.49)
W	=	0	-	1	0	1	0	0	0	0	1

such	that	W	-1	=	W	T	.
It	can	be	shown	that	the	U,		V,		W	and	Σ	thus	defined	above	can	be	combined

to	 create	 four	 different	 sets	 of	 solutions	 for	 R	 and	 T	 that	 will	 satisfy	 the
Equations	8.46	and	8.47.	These	solutions	are	enumerated	below.

(8.50)
S	o	l	u	t	i	o	n	1	:	R	=	U	W	-	1	V	T	[T]	X	=	V	W	Σ	V	T

(8.51)
S	o	l	u	t	i	o	n	2	:	R	=	U	W	V	T	[T]	X	=	V	W	-	1	Σ	V	T

(8.52)
S	o	l	u	t	i	o	n	3	:	R	=	U	W	V	[T]	X	=	V	T	W	-	1	Σ	V	T

(8.53)
S	o	l	u	t	i	o	n	4	:	R	=	U	W	-	1	V	[T]	X	=	V	T	W	Σ	V	T
Let	us	verify	one	of	these	by	plugging	in	the	values	of	R	and	T	given	by	the
first	solution	to	Equation	8.47.

Figure	 8.5	 .This	 shows	 that	 four	 solutions	 provided	 for	 the	 location	 of	 the	 second	 (green)	 camera	when
considering	the	rectification	to	transform	it	so	that	the	red	and	green	camera	together	yield	the	frontal	eye
configuration.	Each	camera	is	depicted	by	a	“T“	where	the	bottom	of	the	“T“	is	the	center	of	projection	and
the	line	of	the	top	is	the	image	plane.

(8.54)
R	[T]	X	=	U	W	-	1	V	T	V	W	Σ	V	T

(8.55)
=	U	W	-	1	V	-	1	V	W	Σ	V	T

(8.56)
=	U	Σ	V	T

(8.57)
=	E	T

which	 is	 the	 essential	 matrix	 itself.	 Similarly,	 any	 of	 the	 four	 solutions
enumerated	above	will	satisfy	the	equations	8.47.	We	use	the	equation	for	E	T	in
this	case	since	 it	 is	 the	matrix	 that	 relates	 the	correspondence	 from	 the	second
camera	(which	we	plan	to	rectify)	to	the	line	on	the	first	camera.
The	normalized	 second	camera	depicted	by	 these	 four	 solutions	 is	 shown	 in

green	 with	 respect	 to	 the	 first	 camera	 in	 red	 (that	 is	 aligned	 with	 the	 world
coordinate	 system)	 in	 Figure	 8.5.	 Interestingly,	 though	 all	 four	 of	 these	 form
valid	 theoretical	solutions,	only	one	of	 these	 is	practically	possible.	This	 is	 the
one	 illustrated	 in	 Figure	8.5(a)	where	 the	 imaged	 point	 in	 black	 is	 in	 front	 of
both	the	red	and	green	camera.	In	(b),	the	point	is	behind	both	the	cameras.	In	(c)
and	(d),	the	imaged	point	is	behind	one	of	the	cameras.	In	fact,	in	(b)	and	(c),	the
imaged	 point	 is	 behind	 the	 baseline	which	 is	 often	 referred	 to	 as	 the	baseline
reversal.	Once	rectified	using	the	solution	thus	generated,	all	the	epipolar	lines	in
the	two	images	are	horizontal	as	illustrated	in	Figure	8.6.

8.6

8.6.1

Figure	8.6	.This	image	shows	the	rectification.	The	left	two	images	are	unrectified	and	hence	the	epipolar
lines	 corresponding	 to	 the	 features	 in	 the	 left	 image	 are	 not	 horizontal.	The	middle	 image	 is	 rectified	 to
create	the	right	image	and	the	lines	are	now	horizontal.	The	left	and	the	right	 image	together	is	called	an
rectified	pair	of	Images.

Figure	8.7	.Left:	This	shows	the	horopter—	the	circle	points	of	which	get	imaged	at	corresponding	points	in
the	left	and	right	eye.	Right:	Points	not	on	the	horopter	are	imaged	at	non-corresponding	points	in	the	left
and	right	eye.

Applying	Epipolar	Geometry
In	this	section	we	will	see	some	applications	of	epipolar	geometry.	In	particular,
when	 dealing	 with	 uncalibrated	 cameras,	 epipolar	 geometry	 provides	 some
constraints	which	can	be	used	to	derive	different	geometric	scene	parameters	like
depth.

Depth	from	Disparity
Reconstructing	depth	from	disparity	is	one	of	the	most	significant	application	of
epipolar	geometry.	In	this	section	we	are	going	to	derive	formally	the	equations
we	need	to	reconstruct	depth	from	disparity.
Let	us	consider	the	two	frontal	human	eyes	shown	by	the	two	solid	circles	in

Figure	 8.6.1.	 First,	 we	 are	 going	 to	 introduce	 the	 concept	 of	 corresponding
points	that	is	different	than	correspondences	that	we	have	been	discussing	so	far
in	 this	 chapter.	 Corresponding	 points	 are	 defined	 as	 the	 points	 that	 coincide

when	two	eyes	are	slipped	on	top	of	each	other	to	overlap	completely	with	each
other.	 Interestingly,	 3D	 points	 on	 the	 scene	 that	 lie	 on	 a	 specific	 circle	 at	 a
particular	 radius	 from	 the	 eye	 are	 imaged	 at	 corresponding	 points	 in	 the	 two
eyes.	This	is	illustrated	in	the	left	figure	of	Figure	8.6.1.	This	circle	is	called	the
horopter.Points	which	are	not	on	the	horopter	are	imaged	at	non-corresponding
points	 on	 the	 left	 and	 right	 eye	 as	 shown	 in	 the	 right	 figure	 of	 Figure	 8.6.1.
Imaging	of	such	points	are	shown	by	green	and	red	in	this	figure.	The	depth	of
these	points	can	be	deciphered	by	the	difference	of	their	distance	from	the	image
of	the	point	of	fixation	given	by	black.	This	difference	is	called	disparity.
Let	us	now	take	this	concept	of	disparity	to	rectified	images	and	see	how	we

can	reconstruct	3D	depth	of	 the	objects	seen	 in	an	 image	using	disparity	using
Figure	 8.8.	 This	 figure	 shows	 two	 normalized	 rectified	 camera	 whose	 image
planes	 and	 the	 field-of-view	 are	 shown	 by	 gray	 solid	 and	 dotted	 lines
respectively.	 Since	 these	 are	 normalized	 cameras,	 their	 focal	 lengths	 are
identical,	given	by	f.	The	center-of-projections	of	these	two	cameras	are	given	by
O	 1	 and	O	 2	 respectively.	 The	 image	 of	 the	 3D	 point	P	 is	 formed	 at	L	 and	R
respectively	in	the	two	cameras,	at	coordinates	-	l	and	r	in	the	respective	image
planes,	considering	the	principle	center	at	the	center	of	the	image	plane.	b	is	the
baseline,	i.e.	the	distance	between	O	1	and	O	2.	The	 triangle	PLR	and	PO	 1	O	 2
and	similar.	Therefore,	we	find	that

Figure	8.8	.This	shows	two	rectified	stereo	camera	pair	imaging	the	3D	point	P.

(8.58)
b	Z	=	b	+	r	-	l	Z	+	f	.

Disparity	is	formally	defined	as	(r	-	l)	.	Therefore,	from	the	above	equation	we
can	derive	that

8.6.2

(8.59)
Z	=	b	f	d	.

Figure	 8.9	 .This	 image	 shows	 two	 rectified	 images	 (on	 left)	 and	 the	 depth	 reconstructed	 from	 them	 (on
right).

Since	b	 and	 f	 are	 constants,	we	 see	 that	 the	 depths	 of	 the	 different	 points	 are
inversely	 proportional	 to	 disparity	 and	 can	 therefore	 be	 deciphered	 from	 the
image.	Note	that	even	when	the	baseline	and	focal	length	are	not	known,	we	can
decipher	 the	 depth	 up	 to	 a	 scale	 factor	 (or	 constant	 of	 proportionaility).
Therefore,	 we	 can	 recover	 the	 relative	 depth	 between	 objects	 in	 the	 scene,	 as
illustrated	in	Figure	8.9.

Depth	from	Optical	Flow
The	 next	 application	we	will	 focus	 on	 is	 depth	 from	 optical	 flow.	 Consider	 a
single	 camera	 whose	 principal	 axis	 is	 aligned	 with	 the	 Z	 axis	 and	 which	 is
moving	along	Z	direction.	Consider	two	different	locations	of	this	camera	on	the
Z	axes,	 the	first	one	being	the	origin	and	the	second	one	at	distance	 t	from	the
origin.	The	calibration	matrices	of	the	camera	for	these	two	locations,	A	1	and	A	2
respectively,	are	given	by

(8.60)
A	1	=	K	[I	|	O]

(8.61)
A	2	=	K	[I	|	T	z]

where	T	z	=	(0	,	0	,	t)	T	 .	Since	 the	 intrinsic	parameters	of	 the	camera	do	not
change	with	movement,	the	intrinsic	matrix	K	remains	the	same.	Let	the	image
of	the	same	point	in	these	two	camera	positions	be	p	1	=	(x	1	,	y	1	,	1)	T	and	p
2	=		(x	2	,	y	2	,	1)	T	.	Let	us	consider	K	as

(8.62)
K	=	f	0	0	0	f	0	0	0	1

Therefore,	for	a	3D	point	(X	,	Y	,	Z)

Figure	8.10	.This	image	shows	optical	flow	lines	as	the	camera	moves	into	the	corridor	from	the	left	to	the
right	image.	Note	that	the	frames	on	the	wall	closer	to	the	camera	and	the	letters	on	the	floor	closer	to	the
camera	undergo	more	displacement	than	more	distant	ones.

(8.63)
(x	1	,	y	1)	=	K	[I	|	O]	X	Y	Z	1

Similarly

(8.64)
(x	2	,	y	2)	=	K	[I	|	T	z]	X	Y	Z	1

If	we	plug	in	the	value	of	K	and	expand	these	equations	we	will	get

(8.65)
x	1	-	x	2	=	t	Z	x	2

(8.66)
y	1	-	y	2	=	t	Z	y	2

The	 above	 equations	 define	 the	 displacement	 of	 the	 image	 of	 the	 same	 point
from	one	camera	position	to	another	termed	as	the	optical	flow,	as	illustrated	in
Figure	8.10.	From	the	above	equations,	we	will	make	some	nice	observations	as
follows.

1.	 First,	when	z	=	∞,	 then	p	 1	=	p	 2.	Therefore,	 the	 image	of	a	3D	point
which	is	very	far	away	will	remain	unchanged	in	the	two	images.	This
point	is	called	focus	of	expansion.

2.	 As	Z	 increases,	 the	displacement	of	 the	image	of	 the	same	point	from
one	 camera	 position	 to	 another	 decreases.	 That	 means,	 images	 of

8.7

distant	points	undergo	less	displacement	than	images	of	closer	points.
3.	 As	t	increases	the	displacement	increases.	Therefore,	greater	movement

of	the	camera	causes	larger	optical	flow.

Now,	 if	 we	 are	 given	 images	 from	 these	 two	 locations	 and	 can	 find	 the
correspondences	using	epipolar	geometry,	then	we	can	decipher	the	optical	flow.
Now,	if	we	know	the	amount	of	camera	movement	t,	we	can	decipher	the	depth
of	the	points	Z	from	this	optical	flow	information.	This	technique	of	deciphering
depth	by	using	a	moving	camera	is	called	structure	from	motion.

Conclusion
Epipolar	geometry	explores	the	fundamental	geometric	constraints	applicable	for
disparity	based	geometry	 reconstruction.	 In	most	 of	 the	 treatise	 in	 this	 chapter
we	 assume	 some	 known	 parameters,	 for	 e.g.	 the	 displacement	 t	 for	 structure
from	 motion.	 It	 is	 possible	 to	 use	 all	 these	 techniques	 from	 uncalibrated
situations	where	such	parameters	are	often	not	known.	However,	 those	 involve
much	complex	optimization	which	is	beyond	the	scope	of	this	book.	Advanced
concepts	 of	 depth	 reconstruction	 with	 more	 unknowns	 (e.g.	 unknown	 camera
parameters)	are	discussed	in	details	in	[Szeliski	10].
Epipolar	 geometry	 has	 deep	 mathematical	 implications,	 even	 in	 higher

dimensions.	 In	 this	 book,	 we	 have	 strived	 to	 keep	 the	 treatise	 much	 more
practical	 and	 therefore	 simpler	 by	 considering	 2D	 cameras	 and	 practical
calibrated	scenarios.	For	readers	who	would	 like	 to	study	epipolar	geometry	 in
much	more	 depth,	 a	 deeply	mathematical	 treatise	 is	 available	 at	 [Hartley	 and
Zisserman	 03].	 Epipolar	 geometry	 is	 the	 cornerstone	 of	 the	 domain	 of	 image
based	 rendering	 in	 computer	 graphics	 first	 explored	 in	 depth	 by	 Leonard
Mcmillan	 in	 his	 seminal	 paper	 [Mcmillan	 and	 Bishop	 95]	 followed	 by	 a
multitude	of	works	in	the	last	two	decades	which	are	summarized	in	[Shum	et	al.
07].	 The	mathematical	 finesse	 to	 implement	 the	 two	 applications	 discussed	 in
this	chapter	(depth	from	disparity	and	optical	flow)	have	been	greatly	simplified
to	 get	 the	 fundamentals	 across.	 For	 a	 better	 treatise	 on	 the	 details	 of	 these
methods,	please	consult	[Hartley	and	Zisserman	03].

Bibliography
[Hartley	 and	 Zisserman	 03]	 HartleyRichard,	 ZissermanAndrew.	Multiple	 View	 Geometry	 in	 Computer

Vision.	Cambridge	University	Press;	2003.
[Mcmillan	 and	 Bishop	 95]	 Leonard	Mcmillan	 and	 Gary	 Bishop.	 “Plenoptic	Modeling:	 An	 Image-based

Rendering	 System.”	 In	 Proceedings	 of	 the	 22nd	 Annual	 Conference	 on	 Computer	 Graphics	 and
Interactive	Techniques	(SIG-GRAPH),	pp.	39-46,	1995.

[Shum	07]	Heung	Yeung	Shum.	Shing	Chow	Chan,	and	Sing	Bing	Kang.	Image	Based	Rendering:	Springer;
2007.

[Szeliski	 10]	 SzeliskiRichard.	Computer	 Vision:	 Algorithms	 and	 Applications.	 New	 York	 Inc:	 Springer-
Verlag;	2010.

Summary:	Do	you	know	these	concepts?

Epipoles	and	Epipolar	Lines
Fundamental	Matrix
Essential	Matrix
Normalized	Cameras
Rectification
Disparity	in	Binocular	Vision
Depth	from	Disparity
Optical	Flow
Structure	from	Motion

Exercises
1.	 Why	is	 the	epipolar	constraint	useful	 for	stereo	matching	(i.e.	 finding

corresponding	points	between	 the	 first	and	 the	second	 images)?	What
happens	 to	 the	 epipoles	 and	 the	 epipolar	 lines	 in	 the	 rectified	 images
after	applying	image	rectification?	What	are	the	advantages	of	applying
image	rectification	before	we	do	stereo	matching?

2.	 Given	a	point	p	=	(x	,	y)	in	image	1,	and	the	fundamental	matrix

(8.67)
F	=	0	1	0	1	0	-	1	0	1	0

a.	 Derive	the	equation	of	the	corresponding	epipolar	line	in	image	2.	Use
your	 result	 to	 compute	 the	 equations	 of	 the	 epipolar	 lines
corresponding	to	the	points	(2,	1)	and	(-	1,	-	1).

b.	 Compute	the	epipole	of	image	2	using	the	equation	of	the	two	lines	you
derived	 for	 the	previous	question.	 In	general,	how	can	you	determine
the	epipole	from	any	fundamental	matrix	F?	(Hint:	the	answer	involves

a	term	from	linear	algebra.)
c.	 The	 relationship	 between	 points	 in	 the	 second	 image	 and	 their

corresponding	 epipolar	 lines	 in	 the	 first	 image	 is	 described	 by	 the
transpose	of	the	fundamental	matrix	F	T	.	Use	this	fact	 to	compute	the
epipole	in	image	1	for	the	matrix	F.

d.	 Which	 of	 the	 following	 points	 is	 the	 epipole	 of	 the	 first	 camera?	 (i)
(0.5,	0.5);	(ii)	(1,	1);	(iii)	(1,	0)	and	(iv)	(-	1,	0).

e.	 Which	of	 the	 following	points	 is	 the	eipole	of	 the	second	camera?	 (i)
(0.5,	0.5);	(ii)	(1,	1);	(iii)	(1,	0)	and	(iv)	(-	1,	0).

f.	 Consider	 the	 point	 (0.5,	 0.5)	 in	 the	 first	 camera.	 Find	 the	 slope	 and
offset	 of	 the	 epipolar	 line	 in	 the	 second	 camera	 on	 which	 its
correspondence	will	lie.

g.	 Let	the	two	cameras	have	the	focal	lengths	of	1	and	2	respectively	with
square	pixels,	principal	center	at	the	center	of	the	image	plane	and	no
skew	factor.	Find	the	essential	matrix	that	relates	these	two	cameras.

3.	 Consider	a	pair	of	camera	stereo	rig	whose	rotation	and	translation	with
respect	to	global	coordinate	system	is	R	1,		R	2,		T	1	and	T	2	respectively.
Their	 intrinsic	matrix	 is	 identity.	 Give	 an	 expression	 of	 the	 essential
matrix	and	the	length	of	the	baseline	in	terms	of	these	matrices.

4.	 Consider	a	camera	attached	to	the	front	of	the	car	as	it	is	traversing	on	a
straight	bridge,	the	end	of	which	is	marked	with	a	conspicuous	building
and	the	sides	containing	landmark	paintings	hanging	from	the	bridge	at
equal	intervals	which	is	known.	Consider	two	pictures	taken	from	this
camera.	 Which	 3D	 scene	 location	 would	 appear	 at	 the	 focus	 of
expansion?	Assuming	 that	 you	 can	 detect	 the	 amount	 each	 landmark
painting	has	moved	from	one	picture	to	another,	how	can	you	find	the
speed	of	the	car?

5.	 Consider	a	scene	which	is	constant	being	observed	by	a	pair	of	frontal
stereo	cameras.	 If	 the	baseline	of	 the	camera	 is	 increased,	how	would
the	disparity	of	 the	3D	 points	 change	 in	 the	 images	 captured?	 Justify
your	answer.

6.	 Suppose	we	would	like	to	determine	the	size	of	a	cube	from	a	set	of	k
calibrated	cameras	whose	extrinsics	are	unknown	(but	whose	intrinsics
are	known).	Suppose	each	of	the	cameras	can	see	the	same	m	corners
of	 the	 cube,	 and	 suppose	 there	 is	 no	 correspondence	 problem.	 How
many	cameras	and	how	many	corners	do	we	need	to	determine	the	size
of	 the	 cube?	 (Notice:	 a	 cube	 has	 only	 8	 corners,	 hence	 m	 ≤	 8).	 If
mulitple	 solutions	 exist,	 give	 them	 all.	 If	 no	 solution	 exists,	 explain

why.

Part	IV

Radiometric	Visual	Computing

9.1

9

Light
In	 this	chapter	we	will	discuss	 the	science	of	 light,	more	commonly	 termed	as
radiometry.	We	will	 discuss	 different	 radiometric	 quantities	 and	 how	 they	 are
used	in	the	domain	of	visual	computing.	Then	we	will	see	how	radiometry	leads
to	photometry	which	 is	 the	 science	of	 light	 in	 the	context	of	 the	human	visual
system	and	hence	human	perception.

Radiometry
In	radiometry	light	is	considered	to	be	a	traveling	form	of	energy	and	therefore
the	 unit	 used	 to	 describe	 it	 is	 the	 SI	 unit	 of	 energy,	 joule	 (J)	 .	 This	 energy	 is
associated	with	 a	 source	 of	 origin,	which	 is	 usually	 defined	 by	 its	 position,	 a
direction	 of	 propagation	 and	 a	 wavelength	 λ	 .	 This	 conforms	 to	 the	 particle
theory	of	light	where	the	smallest	unit	of	light	is	considered	to	be	a	photon	or	a
quantum	 of	 energy.	 This	 also	 conforms	 to	 the	 wave	 theory	 of	 light,	 which
assumes	light	to	be	a	waveform	traveling	in	a	particular	direction.	λ	is	expressed
by	 units	 of	 nanometers	 (nm).	 Light	 travels	 with	 a	 speed	 c	 n	 in	 a	 medium	 of
refractive	index	n.	An	invariant	in	this	context	is	the	frequency	f	of	light	is	given
by

(9.1)
f	=	c	n	λ	,
which	does	not	change	unlike	c	n	and	λ	.	Another	invariant	is	the	energy	carried
by	a	photon,

(9.2)
q	=	hc	λ
where	h	=	6.63	×	10−34	J	is	the	Planck’s	constant.
The	spectral	energy	is	a	density	function	that	gives	the	density	of	the	quantum

energy	at	an	infinitesimal	interval	of	wavelengths	around	λ	with	a	width	of	△	λ	.
Note	that	due	to	the	particle	nature	of	light,	spectral	energy	at	a	wavelength	is	a

quantum	 value	 (either	 0	 or	 non‐zero),	 but	 its	 density	 in	 an	 interval	 of
wavelengths	 can	 be	 defined	 in	 a	 non‐quantum	 fashion.	 This	 is	 similar	 to
population	 where	 population	 at	 any	 point	 in	 space	 is	 either	 existent	 or	 non‐
existent,	 but	 the	 density	 of	 population	 over	 an	 area	 is	 always	 a	 non‐quantum
quantity.	 Just	 like	 population	 density,	 it	 is	 better	 to	 view	 the	 spectral	 energy
which	is	a	continuum	and	does	not	become	granular	even	when	the	area	is	small.
Therefore,	spectral	energy	ΔQ	is	defined	as

(9.3)
Δ	Q	=	Δ	q	Δ	λ
and	has	the	unit	of	J(nm)-1.
However,	 we	 are	 more	 interested	 in	 spectral	 power	 that	 is	 defined	 as	 the

spectral	energy	over	infinitesimal	time	Δt.	It	is	given	by	Δ	Q	Δ	t	and	has	the	unit
of	W(nm)-1.	Imagine	a	camera	that	leaves	its	shutter	open	for	Δt	 time	and	has	a
filter	of	Δ	λ	.	Such	a	sensor	would	measure	the	spectral	power.
Irradiance,	H,	is	defined	as	the	spectral	power	per	unit	area	and	is	given	by

(9.4)
H	=	Δ	q	Δ	A	Δ	t	Δ	λ
where	 ΔA	 can	 be	 considered	 as	 the	 finite	 area	 of	 the	 sensor	 measuring	 the
spectral	 power,	 assuming	 that	 the	 sensor	 is	 parallel	 to	 the	 surface	 being
measured.	 The	 unit	 of	 irradiance	 is	 therefore	Wm	 -2(nm)-1	 or	 Js	 -1	m	 -2(nm)-1
Irradiance	 is	 usually	 used	 to	 define	 the	 amount	 of	 spectral	 power	 incident	 or
hitting	a	unit	area.	When	the	same	quantity	is	used	in	the	context	of	amount	of
spectral	 power	 leaving	 or	 reflected	 off	 a	 unit	 area,	 it	 is	 often	 called	 radiant
exitance,	E.
Irradiance	only	tells	us	about	how	much	light	hits	a	point,	but	it	does	not	say

much	about	the	direction	the	light	is	coming	from.	Therefore,	irrandiance	can	be
considered	to	be	the	quantity	measured	by	the	sensor	when	a	conical	light	limiter
is	placed	on	 the	sensor	 to	 limit	 the	direction	of	 the	 light	 it	 is	measuring	 to	Δσ.
Therefore,	radiance	is	defined	as	irradiance	per	unit	direction	as

(9.5)
R	=	Δ	H	Δ	σ	=	Δ	q	Δ	A	Δ	t	Δ	λ	Δ	σ
and	 is	measured	 by	 the	 unit	Wm	 -2(nm)-1(sr)-1	 or	 Js	 -1	m	 -2(nm)-1(sr)-1	 where	 sr
stands	for	steridian,	the	SI	unit	for	a	solid	angle.	It	is	analogous	to	radians	used
to	 define	 planar	 angles.	A	 useful	 property	 of	 radiance	 is	 that	 it	 does	 not	 vary
along	a	line	in	space.	Consider	the	sensor	with	a	conical	light	limiter	of	angle	σ
measuring	 the	 light	 hitting	 a	 surface	 from	 a	 distance	 d.	 Let	 the	 circular	 area

subtended	by	this	cone	be	ΔA.	If	we	increase	the	distance	by	a	factor	of	k	to	kd,
the	area	being	measured	by	the	detector	will	increase	by	k	2	but	the	light	reaching
the	detector	will	be	attenuated	by	the	same	factor	k	2	(due	to	distance	attenuation
of	 light	 being	 inversely	 proportional	 to	 the	 distance)	 thereby	 keeping	 the
radiance	 constant.	 Here	 we	 consider	 the	 sensor	 to	 be	 parallel	 to	 the	 surface
whose	radiance	is	being	considered.	In	other	words,	the	normal	to	the	surface	is
perpendicular	 to	 the	 sensor.	 However,	 the	 more	 general	 situation	 is	 when	 the
sensor	is	titled	by	an	angle	θ.	In	this	case,	the	area	sampled	by	the	detector	will
no	 longer	be	a	circle	but	an	ellipse	with	a	 larger	area	of	ΔAcos(θ)	 .	Therefore,
radiance	will	be	defined	by

(9.6)
R	=	Δ	H	Δ	σ	=	Δ	q	Δ	A	c	o	s	θ	Δ	t	Δ	λ	Δ	σ	.	.
As	with	 irradiance,	 it	 is	 important	 to	distinguish	between	 the	 radiance	 incident
from	a	point	on	the	surface	and	radiance	exiting	from	a	point	of	the	surface.	The
former	is	called	field	radiance,	L	f	,	and	the	latter	is	called	surface	radiance,	L	s	.
Therefore,

(9.7)
L	s	=	Δ	E	Δ	σ	c	o	s	θ

(9.8)
L	f	=	Δ	H	Δ	σ	c	o	s	θ
The	 reason	 radiance	 is	 considered	 to	 be	 the	 most	 fundamental	 radiometric
quantity	 is	 that	 if	 we	 know	 R	 f	 of	 a	 surface,	 we	 can	 derive	 all	 the	 other
radiometric	quantities	from	there.	For	example,	irradiance	can	be	expressed	from
the	field	radiance	as

(9.9)
H	=	∫	∀	k	L	f	(k	i)	c	o	s	θ	d	σ
where	k	i	is	an	incident	direction	that	can	be	expressed	as	a	(θ	,	ϕ)	pair	 in	 the
spherical	 coordinate	 system	 with	 respect	 to	 the	 normal	 at	 that	 point	 on	 the
surface	and	is	associated	with	a	differential	solid	angle	dσ.	For	example,	if	L	f	is
constant	 across	 all	 directions,	 we	 can	 compute	 the	 irradiance	 by	 replacing
dσ	=	sinθdθdφ	as

9.1.1

Figure	9.1	 .	This	 figure	 shows	 the	 surface	point	P	with	normal	n	 and	 the	 incident	 light	 direction	 k	 i	 and
viewing	direction	k	o	for	the	BRDF	ρ	(k	i	,	k	o)	at	P.

(9.10)
H	=	∫	ϕ	=	0	2	π	∫	θ	=	0	π	2	L	f	c	o	s	θ	s	i	n	θ	d	θ	d	ϕ

(9.11)
=	π	L	f

Note	 the	 constant	 π	 will	 appear	 in	 many	 radiometric	 calculations	 and	 is	 the
artifact	of	how	we	measure	solid	angles.	We	consider	the	area	of	the	unit	sphere
to	be	a	multiple	of	π	rather	than	multiple	of	one.	Similarly	we	can	compute	the
spectral	power	 incident	on	a	surface	by	finding	∫	 	x	H	(x)	d	A	where	x	 is	a
point	of	the	surface	associated	with	a	differential	area	of	dA.

Bidirectional	Reflectance	Distribution	Function
Bidirectional	 Reflectance	 Distribution	 Function	 or	 BRDF	 is	 a	 formal	 way	 to
describe	what	we	humans	face	everydayobjects	look	different	when	viewed	from
different	directions	as	they	are	illuminated	from	different	directions.	Painters	and
photographers	 have	 for	 centuries	 explored	 the	 appearance	 of	 trees	 and	 urban
areas	under	a	variety	of	conditions,	accumulating	knowledge	about	“how	things
look”	—	which	is	nothing	but	BRDF	related	knowledge.
So,	let	us	now	define	BRDF	at	a	surface	point	P	 formally.	Let	us	consider	a

point	on	a	surface	P	with	a	normal	n,	 illuminated	from	a	direction	k	i	 .	This	 is
achieved	by	placing	a	light	source	in	this	direction.	Let	the	irradiance	incident	at
P	be	H.	Let	the	radiance	going	out	towards	a	viewing	direction	k	o	be	L	s	.	This
setup	is	illustrated	in	Figure	9.1.	The	BRDF	ρ	is	defined	as	the	ratio	of	L	s	to	H,
i.e.

(9.12)
ρ	(k	i	,	k	o)	=	L	s	H	.	.
Therefore,	BRDF	 gives	 us	 the	 fraction	 of	 light	 exiting	 towards	 the	 viewing

direction	k	o	when	illuminated	from	the	incident	direction	k	i	.	Note	that	both	k	o
and	k	i	are	directions	in	3D	and	can	be	represented	with	two	angles	in	spherical
coordinate.	Let	k	 i	be	given	by	(θ	 i	 ,	ϕ	 i)	and	k	o	be	given	by	(θ	o	 ,	ϕ	0)	 .
Therefore,	BRDF	is	a	four	dimensional	function	ρ	(θ	i	,	ϕ	i	,	θ	o	,	ϕ	0)	 .	Also,
note	the	ρ	is	a	ratio	of	radiance	by	irradiance.	Therefore	its	unit	is	(sr)-1
Directional	 Hemispherical	 Reflectance	 Let	 us	 consider	 a	 simple	 question,

“What	fraction	of	the	incident	light	is	reflected?”.	It	is	evident	that	this	number
should	be	between	0	to	1	purely	from	the	standpoint	of	conservation	of	energy.

Let	us	now	see	if	this	question	can	be	easily	answered	using	BRDFs.	Given	an
incident	 light	from	the	direction	k	i	 ,	 the	 fraction	 that	 is	 reflected	should	be	 the
ratio	 of	 outgoing	 irradiance	 (or	 radiance	 exitance)	 to	 the	 incoming	 irradiance.
Therefore,	the	directional	hemispherical	reflectance	for	the	D	(k	i)	is	given	by
the	ratio	of	radiance	exitance	E	to	irradiance	H	as

(9.13)
D	(k	i)	=	E	H	.	.

From	Equation	9.12	we	know	that

(9.14)
L	s	(k	o)	=	H	ρ	(k	i	,	k	o)
Also,	from	the	definition	of	radiance	in	Equation	9.8	we	know	that

(9.15)
L	s	(k	o)	=	Δ	E	Δ	σ	o	c	o	s	θ	o	.	.
Therefore,

(9.16)
H	ρ	(k	i	,	k	o)	=	Δ	E	Δ	σ	o	c	o	s	θ	o	.	.
Rearranging	terms	we	get	the	contribution	of	E/h	reflected	in	the	direction	of	k	o
as

(9.17)
Δ	E	H	=	ρ	(k	i	,	k	o)	Δ	σ	o	c	o	s	θ	o	.
Therefore,

(9.18)
D	(k	i)	=	E	H	=	∫	∀	k	o	ρ	(k	i	,	k	o)	c	o	s	θ	o	d	σ	o
An	 ideal	 diffuse	 surface	 is	 called	 Lambertian	 and	 is	 considered	 to	 have	 a
constant	BRDF	at	any	viewing	direction.	In	other	words,	the	appearance	of	the
object	is	view‐agnostic	or	view‐independent.	Though	such	surfaces	are	pratically
non‐existent,	 many	 objects	 with	 matte	 appearance	 are	 often	 modeled	 as	 a
Lambertian	surface.	Let	us	consider	such	a	Lambertian	surface	with	ρ	=	C.	Then
the	directional	hemispherical	reflectance	of	such	a	surface	is	given	by

(9.19)
D	(k	i)	=	∫	∀	k	o	C	Δ	σ	o	c	o	s	θ	o	d	σ	o

(9.20)

9.1.2

9.2

=	∫	ϕ	0	=	0	2	π	∫	θ	o	=	0	π	2	C	c	o	s	θ	o	s	i	n	θ	o	d	θ	o	d	ϕ	0
(9.21)

=	π	C

Therefore,	if	we	consider	a	perfectly	reflecting	Lambertian	surface	where	D(k	 i
)	=		1,	then	its	BRDF	is	1	π	.

Light	Transport	Equation
Using	the	aforementioned	equations,	we	can	now	write	a	simple	light	transport
equation	 that	 defines	 how	 light	 is	 transported	 via	 surfaces	 or	 objects	 in	 the
presence	 of	 lights	 from	many	 different	 directions.	 If	we	 consider	 radiance	L	 i
from	the	direction	k	 i	along	a	small	solid	angle	Δσ	 i	 ,	 the	 irradiance	due	 to	 this
light	is	given	by	L	i	cosθ	i	Δσ	i	where	θ	i	is	the	angle	between	k	i	and	n.	Therefore,
the	 outgoing	 radiance	ΔL	 o	 in	 the	 direction	 k	 o	 due	 to	 the	 radiance	 coming	 in
from	direction	k	i	is	given	by

(9.22)
Δ	L	o	=	ρ	(k	i	,	k	o)	L	i	c	o	s	θ	i	Δ	σ	i
Therefore,	to	consider	the	radiance	from	all	the	different	directions	(all	different
values	of	k	i),	the	total	irradiance	in	the	direction	of	k	o	is	given	by

(9.23)
L	s	(k	o)	=	∫	∀	k	i	ρ	(k	i	,	k	o)	L	f	(k	i)	c	o	s	θ	i	d	σ	i
This	 is	 called	 the	 rendering	 equation	 or	 light	 transport	 equation	 and	 is	 the
cornerstone	of	building	illumination	models,	simple	or	complex.

Photometry	and	Color
For	 every	 radiometric	 property,	 there	 is	 a	 corresponding	 photometric	 property
that	intuitively	measures	“how	much	of	it	can	the	human	observer	make	use	of’.
Therefore,	photometric	quantities	have	an	aspect	of	perception	associated	with
them.	Color	 is	a	photometric	quantity	 that	we	use	all	 the	 time.	 It	 is	a	part	and
parcel	of	our	lives,	so	much	so,	that	we	probably	cannot	appreciate	it	unless	we
lose	our	perception	of	color.	Mr.	I,	who	lost	color	perception	due	to	an	accident
exclaimed	with	anguish,	“My	dog	looks	gray,	tomato	juice	is	black	and	color	TV
is	an	hodge	podge”.	Color	not	only	adds	beauty	to	our	life,	but	serves	important
signaling	functions.	The	natural	world	provide	us	with	many	signals	to	identify
and	classify	objects.	Many	of	these	come	in	terms	of	color.	For	e.g.	banana	turns

yellow	when	its	ripe,	the	sky	turns	red	when	it	is	dawn	and	so	on.

Figure	9.2	 .	This	 figure	 shows	 the	visible	 spectrum	of	 light	 and	 its	 position	with	 respect	 to	 the	 invisible
spectrum.

The	color	stimuli	 is	 the	 radiometric	quantity	 (usually	 radiance),	 that	 reaches
the	 human	 eye	 from	 any	 point	 in	 the	 world.	 The	 important	 parameter	 in	 the
context	of	photometry,	and	therefore	color	vision,	is	the	associated	wavelength	λ
.	The	visible	light	spectrum	has	wavelength	that	varies	between	400	nm	and	700
nm.	Figure	9.2	shows	the	visible	spectrum	of	colors.	A	illumination	or	an	object
selectively	emit	or	reflect	respectively	certain	wavelengths	more	than	other.	Two
things	are	responsible	for	our	color	vision	and	hence	photometry.	The	first	is	the
selective	reflection	of	wavelengths	by	different	objects.	However,	it	is	only	one
of	the	factors	responsible	for	the	color	of	an	object.	The	second	important	factor
is	the	eye’s	selective	response	to	different	wavelengths.	This	response,	and	hence
the	perception	of	color,	can	be	different	from	species	to	species,	and	also	shows
a	 variance	 across	 individuals	 of	 the	 same	 species.	 That	 is	 the	 reason,	 color	 is
often	considered	as	a	perception,	and	not	reality!
Let	 us	 start	 from	 the	 illumination	 of	 a	 scene.	A	 scene	 is	 usually	 lighted	 by

some	 light	 source.	 This	 light	 source	 emits	 light	 differently	 at	 different
wavelengths	λ	.	This	function,	denoted	by	I	(λ)	gives	the	illumination	spectrum.
Similarly,	for	an	object,	its	relative	reflectance	at	different	wavelengths	define	its
reflectance	spectrum	R	(λ)	.	Since	the	reflectance	or	reflectivity	of	an	object	is
the	ratio	of	outgoing	to	incoming	power,	it	is	between	0	and	1	for	an	object	that
is	not	a	light	source.	These	spectra	for	a	couple	of	light	sources	and	a	red	apple
are	illustrated	in	Figure	9.3.

Figure	9.3	.	Left:	The	illumination	spectrum	(I	(λ))	of	a	flouroscent	(bold	line)	and	tungsten	lamp	(dotted
line).	Right:	The	reflectance	spectrum	(R	(λ))	of	a	red	apple.

When	 an	 object	 is	 illuminated	 by	 a	 light	 source,	 the	 amount	 of	 light	 that	 is
reflected	from	that	object	at	different	wavelengths	is	given	by	the	product	of	I	(λ
)	and	R	(λ)	.	Since	this	is	the	spectrum	that	stimulates	the	vision,	this	is	called
the	color	stimuli	or	color	signal,	denoted	by	C	(λ)	.	Thus,

(9.24)
C	(λ)	=	I	(λ)	×	R	(λ)
as	 illustrated	 in	 Figure	9.4.	 The	 physical	 quantity	we	 are	 dealing	with	 here	 is
power	per	unit	area	per	unit	solid	angle	per	unit	wavelength	(Wm	-1(nm)-1(sr)-1)	.
Therefore,	 we	 are	 essentially	 thinking	 of	 radiance	 when	 we	 are	 defining	 the
color	stimuli.
Color	 stimuli	 can	be	of	different	 types	as	 shown	 in	Figure	9.4.	When	 it	 has

light	 of	 only	 one	 wavelength,	 it	 is	 called	monochromatic,	 e.g.	 a	 laser	 beam.
When	the	relative	amount	of	light	from	all	wavelengths	is	equal,	then	it	is	called
achromatic.	The	 sunlight	 is	 close	 to	achromatic	 in	 the	day	 time.	Finally,	 if	 the
stimulus	has	different	 amounts	of	 light	 from	different	wavelengths,	 it	 is	 called
polychromatic.	Most	of	the	time	we	deal	with	polychromatic	light.	Most	of	the
manmade	and	natural	color	stimuli	are	smooth	spectra	of	polychromatic	light.

9.2.1

Figure	9.4	 .	Top:	The	product	of	 the	 illumination	and	the	reflectance	spectrum	generate	 the	color	stimuli.
Bottom:	 This	 shows	 different	 types	 of	 color	 stiumli-from	 left	 to	 right	 ‐monochromatic,	 achormatic	 and
polychromatic.

CIE	XYZ	Color	Space
Interestingly,	the	perceived	color	is	different	than	the	color	stimuli.	Human	eye
has	 three	 sensors	 (usually	 called	 cones	 in	 biology)	 which	 have	 differential
sensitivities	 to	 different	 wavelengths.	 In	 1939,	 the	 CIE	 (International
Commission	on	Illumination)	came	up	with	standard	spectral	responses	of	these
sensors	based	on	earlier	studies	done	by	color	scientists.	Let	us	denote	these	by	x
¯	(λ)	,	y	¯	(λ)	,	z	¯	(λ)	.	Therefore,	multiplying	the	color	stimuli	with	these
sensitivities	give	us	the	perceived	spectrum	as	illustrated	in	Figure	9.5.	Now,	the
strength	of	each	of	 these	perceived	spectrum	is	 the	area	under	 the	curve	and	is
computed	by	integrating	each	of	the	three	curves.	These	provide	three	numbers
quantifying	of	the	stimuli	in	each	of	the	sensors	called	the	XYZ	tristimulus	values

Figure	 9.5	 .	 The	 color	 stimulus	 is	multiplied	 by	 the	 sensitivities	 of	 the	 three	 cones	 of	 the	CIE	 standard

observer	-	x	¯	(λ)	(red),	y	¯	(λ)	(green),	z	¯	(λ)	(blue)	—to	generate	the	perceived	spectrum.	The	strength
of	 each	 of	 these	 perceived	 spectrums	 is	 given	 by	 the	 area	 under	 these	 spectral	 curves	 given	 by	 their
integration.	This	is	also	the	process	to	find	the	XYZ	tristimulus	values	of	a	color	stimulus	which	quantifies
how	the	human	brain	perceives	this	stimulus.

(9.25)
X	=	∫	λ	C	(λ)	x	¯	(λ)	d	λ	=	∑	λ	=	400	700	C	(λ)	x	¯	(λ)

(9.26)
Y	=	∫	λ	C	(λ)	y	¯	(λ)	d	λ	=	∑	λ	=	400	700	C	(λ)	y	¯	(λ)

(9.27)
Z	=	∫	λ	C	(λ)	z	¯	(λ)	d	λ	=	∑	λ	=	400	700	C	(λ)	z	¯	(λ)
Let	us	now	consider	the	units	of	the	functions	we	are	dealing	with.	The	eye’s

response	is	measured	as	lumens	per	watt.	Lumens	(lm)	is	an	estimate	of	the	light
produced.	For	example,	think	of	a	light	bulbs.	They	are	usually	rated	in	terms	of
the	power	they	consume	(i.e.	watt)	and	the	useful	light	energy	they	produce	(i.e.
lumens).	Therefore,	the	higher	the	lm/W,	the	more	efficient	the	lamp.	Similar	is
the	 case	 for	 the	 human	 response	 functions,	 but	 they	 also	 have	 a	 wavelength
dependency.	Therefore,	the	unit	for	X,		Y	or	Z	is	(lm/W)(W/(m	2	sr)	=	lm/(m	2	sr)	.
Note	 that	 since	we	 integrate	 over	 the	wavelength,	 the	nm	 disappears	 from	 the
unit.	 One	 lumen	 per	 steridian	 of	 solid	 angle	 is	 defined	 as	 one	 cd	 (candela).
Therefore,	the	units	of	the	tristimulus	values	is	cd/m	2.
It	 has	 been	 shown	 that	 the	 human	 brain	 usually	 works	 with	 these	 three

numbers	 thus	 generated	 instead	 of	 the	 spectrum.	 It	 also	 provides	 us	 a	 better
paradigm	 to	 study	 color	 stimuli	 and	 perception	 than	working	with	 the	 spectra
directly.	 Note	 that	 the	 XYZ	 tristimulus	 values	 offer	 us	 a	 3D	 space	 to	 define
colors,	just	like	coordinate	systems	for	geometry.	Any	color	can	be	plotted	as	a
point	in	this	3D	space.	However,	since	XYZ	values	are	essentially	given	by	the
area	 under	 a	 curve,	 there	 can	 be	 two	 different	 spectra	 which	 can	 provide	 the
same	 XYZ	 value.	 This	 means	 that	 these	 two	 spectra	 will	 produce	 the	 same
sensation	 in	 the	human	eye	 and	hence	will	 be	plotted	 at	 the	 same	point	 in	 the
XYZ	space.	Multiple	such	spectra	which	produce	the	same	XYZ	values	are	called
metamers	and	the	phenomenon,	metamerism.	Metamerism	is	a	boon	in	disguise.
During	color	 reproduction	 from	a	display,	 to	 say	print,	 all	we	need	 to	do	 is	 to
create	a	metamer	of	the	original	color	i.e.	a	color	with	the	same	XYZ	value	and
not	 necessarily	 the	 same	 spectrum.	 Therefore,	 CIE	 XYZ	 space	 is	 always
considered	in	the	context	of	human	perception	and	not	in	the	context	of	the	real
color	spectra.
Now	 let	us	analyze	 this	XYZ	space.	First,	note	 that	only	 the	positive	octant

(where	the	values	of	X,	Y	and	Z	are	always	positive)	of	this	space	really	makes
sense	 since	 physically	 there	 is	 no	 negative	 light.	 Therefore,	 we	 are	 only
concerned	 with	 the	 first	 octant	 of	 this	 space.	 Second,	 some	 XYZ	 tristimulus
values,	 even	 in	 this	 octant,	 are	 not	 valid	 since	 they	 indicate	 an	 impossible
spectrum.	 For	 example,	 there	 cannot	 be	 any	 spectrum	 that	 can	 result	 in	 XYZ
value	of	(1;	0;	0)	i.e.	evoking	response	in	one	of	the	sensors	and	no	response	in
any	other	 sensors.	This	 is	 primarily	due	 to	 the	 fact	 that	 the	 sensitivities	of	 the
three	sensors	overlap	significantly.	These	XYZ	values	which	do	not	correspond
to	a	physical	spectrum	are	called	imaginary	colors.	Therefore,	a	part	of	the	XYZ
space	are	actually	imaginary	without	having	any	corresponding	real	spectra	to	go
with	 the	 tristimulus	 values.	 Therefore,	 the	 real	 colors	 or	 spectra	 only	 span	 a
subset	 of	 the	 positive	 octant	 of	 the	 XY	 Z	 space.	 Munsell,	 the	 famous	 color
scientist	of	20th	century,	was	instrumental	in	finding	the	shape	of	this	subset	of
real	colors	as	a	conical	volume	as	shown	in	Figure	9.6.

Figure	9.6	.	This	shows	the	conical	volume	occupied	by	the	real	colors	in	the	CIE	XYZ	space.

Put	a	Face	to	the	Name

9.2.2

Albert	Henry	Munsell	was	an	American	painter	and	teacher	of	art	who	was
the	first	to	attempt	to	create	a	numerical	system	to	accurately	describe	color
by	 designing	 the	 Munsell	 Color	 System	 that	 was	 the	 precursor	 and
inspiration	 for	 the	 development	 of	 the	 first	 scientific	 color	 order	 system,
CIE	XYZ	color	 space.	As	an	artist,	Munsell	 found	color	names	“foolish”
and	 “misleading”	 and	 therefore	 strived	 to	 create	 a	 system	 that	 has
meaningful	notation	of	color.	In	order	the	achieve	this,	he	invented	the	first
photometer	and	also	a	patented	device	called	 the	spinning	 top	 that	helped
him	measure	colors	and	how	colors	change.	Munsell	color	system	created	a
necessary	 bridge	 between	 art	 and	 science	 providing	 enough	 structure	 to
allow	scientists	 to	expand	upon	and	use	it,	while	being	simple	enough	for
artists	with	no	scientific	background	to	use	it	for	selecting	and	comparing
colors.	 Munsell’s	 System	 essentially	 created	 a	 way	 of	 communicating
colors.	 He	 also	 coined	 the	 terms	 chrominance	 or	 chroma	 and	 lightness.
Munsell	also	 investigated	 the	 relationship	between	 the	color	and	 the	 light
source	 used	 for	 illumination	 to	 find	 that	 the	 light	 source	 used	 drastically
effected	the	color	perceived	thereby	leading	him	to	eventually	develop	the
standard	 for	 daylight	 viewing	 of	 colors	 for	 accurate	 color	 evaluation.
Munsell	 lived	 from	 1858	 to	 1918	 and	 wrote	 three	 books,	 all	 of	 which
considered	 the	 most	 fundamental	 readings	 in	 color	 science	 −A	 Color
Notation	 (1905),	 Atlas	 of	 the	 Munsell	 Color	 System	 (1915)	 and	 one
published	 posthumously,	 A	 Grammar	 of	 Color:	 Arrangements	 of
Strathmore	Papers	 in	a	Variety	of	Printed	Color	Combinations	According
to	The	Munsell	Color	System	(1921).	In	1971	he	created	the	Munsell	Color
Company	 which	 is	 now	 called	 the	 Munsell	 Color	 Labs	 located	 in	 the
Rochester	Institute	of	Technology	and	is	the	premier	research	institution	for
color	science.

Perceptual	Organization	of	CIE	XYZ	Space
We	now	have	an	understanding	of	how	the	tristimulus	values	are	derived	from	a

color	 stimuli	 spectra.	 but	 we	 still	 do	 not	 have	 a	 sense	 of	 how	 colors	 are
organized	 in	 this	 space.	Where	do	 the	grays	 lie?	How	does	 the	 trajectory	of	 a
color	move	in	this	space	if	only	its	brightness	is	increased?	Therefore,	given	the
coordinates	of	a	color	in	this	space,	we	cannot	predict	how	this	color	will	look.

Figure	9.7	.	This	figure	illustrates	how	the	properties	of	color	relate	to	the	properties	of	their	spectra.	Left:	A
and	 B	 have	 the	 same	 area	 (therefore	 same	 intensity)	 has	 different	 dominant	 wavelength	 and	 therefore
different	hues.	Middle:	A	and	B	have	the	same	hue	but	different	intensities.	Right:	A	and	B	have	the	same
hue	but	different	saturations.

In	 order	 to	 find	 the	 perceptual	 organization	 of	 color	 in	 this	XYZ	 space,	we
should	first	study	all	the	perceptual	parameters	that	we	use	to	describe	color	and
relate	them	to	mathematical	properties	of	their	spectra.	We	often	find	ourselves
comparing	 one	 color	 to	 be	more	 or	 less	 bright	 than	 the	 other.	What	 does	 this
mean?	Intuitively,	this	can	be	thought	of	as	the	total	energy	of	color	perceived	by
the	eye	and	is	given	by	the	area	under	the	curve	C	(λ)	after	it	is	weighted	by	the
sensitivity	functions	of	the	eye.	Therefore,	X	+	Y	+	Z	is	a	good	measure	of	this
total	energy	reaching	the	eye.	Although,	there	is	no	good	term	for	this	quantity	in
the	 color	 literature,	 this	 term	 is	 considered	very	 important	 in	 color	 perception.
So,	 for	 lack	 of	 a	 better	 term,	 we	 call	 this	 the	 intensity	 I	 of	 a	 color	 and
I	=	X	+	Y	+	Z.	The	opponent	 theory	of	color,	something	we	will	not	go	into	 in
this	book,	explains	the	perception	of	color	in	higher	level	processing	in	the	brain
that	indeed	adds	up	the	tristimulus	values	to	estimate	the	total	energy	of	colors—
a	 quantity	 that	 is	 not	 independent	 of	 the	 distribution	 of	 the	 energy	 across	 the
wavelengths.	The	 tristimulus	 theory	of	color,	on	 the	other	hand,	deals	with	 the
perception	of	color	in	the	eye.
Hue,	h,	can	be	thought	of	as	the	colorfulness	of	a	color	and	can	be	given	by

the	weighted	mean	of	the	wavelengths	present	in	the	color	spectra	weighted	by
their	relative	power.	This	results	in	a	wavelength,	the	color	of	which	defines	the
dominant	sensation	the	spectra	will	create	in	the	human	eye.	Finally,	most	of	us
will	agree	 that,	 for	example,	pink	 is	a	 less	vibrant	version	of	 red.	Vibrancy,	or

saturation	s,	of	a	color	can	be	thought	of	as	the	amount	of	white	(or	achromatic
color)	 present	 in	 a	 color.	 The	 more	 white	 in	 a	 color,	 the	 less	 vibrant	 it	 is.
Therefore,	 saturation	 is	 inversely	 proportional	 to	 the	 standard	 deviation	 of	 the
color	spectra	from	the	hue.	Therefore,	monochromatic	color,	with	zero	standard
deviation	from	the	hue,	has	100%	saturation.	Keep	adding	white	to	this	you	will
get	 different	 levels	 of	 reduced	 saturation.	 When	 you	 get	 to	 a	 completely
achromatic	color,	that	is	the	most	unsaturated	color	with	saturation	of	0%.	Figure
9.7	illustrates	these	concepts	using	different	color	spectra.
In	 the	 XYZ	 space,	 we	 define	 the	 hue	 and	 saturation	 of	 a	 color	 using	 its

chromaticity	coordinates	x	and	y	as	the	proportion	of	X	and	Y	in	I	respectively.
Therefore,

(9.28)
x	=	X	I	=	X	X	+	Y	+	Z

(9.29)
y	=	Y	I	=	Y	X	+	Y	+	Z

Note	that	z	=	1	-	x	-	y	is	the	proportion	of	Z	in	I	and	is	redundant	since	it	can	be
computed	 from	 the	 chromaticity	 coordinates.	 Therefore,	 chromaticity
coordinates	are	a	way	to	remove	one	dimension	from	the	XYZ	space	to	create	a
2D	 space	defined	by	 the	 chromaticity	 coordinates.	This	2D	 space	 is	 called	 the
chromaticity	chart.	Now,	you	will	see	when	studying	geometric	transformations
in	 this	 book,	 that	 Equation	9.29	 defines	 a	 perspective	 projection	 of	 a	 point	 in
XYZ	space	on	to	a	plane	given	by	the	equation	X	+	Y	+	Z	=	k.	This	plane	has	a
normal	of	(1,	1,	1).	Perspective	projection	of	a	3D	point	(X	,	Y	,	Z)	is	defined
as	the	2D	point	where	a	ray	from	origin	to	the	3D	point	 intersects	 the	plane	of
projection	 which	 is	 the	 plane	 with	 normal	 (1,	 1,	 1)	 in	 this	 case.	 Note	 that
multiple	such	planes	can	be	defined	based	on	the	value	of	k.	But	the	location	of
the	 projection	 will	 be	 the	 same	 since	 the	 chromaticity	 coordinates	 define	 a
normalized	 coordinate	 system	 that	 ranges	 between	 0	 to	 1.	 One	 such	 plane	 is
shown	by	the	gray	bordered	triangle	in	Figure	9.6.

Figure	9.8	.	This	shows	the	chromaticity	chart	and	the	placement	of	different	colors	on	it.	W	is	a	color	with
equal	proportions	of	X,	Y	and	Z	resulting	in	chromaticity	coordinates	of	1	3	,	1	3	.	.	The	hue	of	color	P	is
defined	by	the	dominant	wavelength	is	given	by	B,	the	point	where	the	straight	line	WP	meets	the	spectral
periphery.	For	an-other	color	P’,	WP’	meets	the	non-spectral	periphery.	Therefore,	the	hue	of	P’	is	defined
by	 the	 complementary	 wavelength	 B’,	 the	 point	 where	 WP0	 extended	 backwards	 meet	 the	 spectral
periphery.	The	saturation	is	given	as	the	ratio	of	the	distance	of	the	color	from	W	to	the	distance	from	W	to
its	dominant	or	complementary	wavelength,	B	or	B’	respectively.

Now,	consider	a	ray	from	the	origin	to	a	3D	point	(X	,	Y	,	Z)	.	Any	point	on
this	ray	is	given	by	a	coordinate	(k	X	,	k	Y	,	k	Z)	.	Note	that	 the	chromaticity
coordinates	 of	 (k	X	 ,	 k	Y	 ,	 k	 Z)	 is	 identical	 irrespective	 of	 the	 value	 of	 k.
Therefore,	all	points	on	this	3D	ray	project	to	the	same	point	in	the	chromaticity
chart	—	and	therefore	have	the	same	chroma.	However,	what	changes	for	each
of	 these	colors	on	 this	 ray	 is	 their	 intensity	 I.	Therefore,	 this	projection	allows
removal	of	this	intensity	information	providing	us	only	the	information	about	the
chroma	 of	 the	 color.	 Therefore	 each	 ray	 from	 the	 origin	 is	 a	 iso‐chroma
trajectory	in	the	XYZ	space.
Although	 the	 3D	 coordinate	 of	 a	 color	 in	 the	XYZ	 space	 defines	 the	 color

uniquely	 (upto	 metamerism),	 it	 does	 not	 provide	 us	 with	 an	 adequately	 good
image	 in	 our	 mind.	 For	 example,	 even	 with	 the	 information	 of	 the	 3D
coordinates	of	a	color—say,	(100,	75,	25)	-	we	cannot	imagine	the	chroma	of	the
color.	However,	if	we	use	the	(Y	,	x	 ,	y)	 representation	of	 (75,	0.5,	0.28),	we
can	 immediately	 imagine	 the	 chromaticity	 chart	 and	 know	 that	 this	must	 be	 a
color	 in	 the	 red	 region	 of	 the	 chart.	 Therefore,	 most	 specification	 sheets	 for
devices	will	follow	the	(Y	,	x	,	y)	format.	However,	the	(X	,	Y	,	Z)	and	(Y	,	x	,
y)	 representations	 are	 completely	 interchangeable,	 i.e.	 one	 can	 be	 computed
from	the	other.
Let	us	discuss	 the	expected	response	of	 the	eyes	when	seeing	an	achromatic

color.	 It	 is	 intuitive	 that	 the	brain	makes	 a	decision	on	 color	based	on	 relative
difference	 in	 the	 firing	of	 the	 three	cones—	therefore	 the	 relative	difference	 in

the	tristimulus	values.	If	all	these	values	are	identical,	the	brain	would	interpret	it
as	 equal	 amounts	 of	 all	wavelengths	 and	 hence	would	 perceive	 an	 achromatic
color.	In	other	words,	for	an	achromatic	color,	X	=	Y	=	Z	and	therefore	(x	,	y)	=
1	3	,	1	3	.	Thus,	all	the	grays	including	black	at	origin	(X	=	Y	=	Z	=	0)	to	white
at	infinity	lie	on	the	ray	from	the	origin	in	the	3D	XYZ	which	all	map	to	the	same
chromaticity	 coordinate	 of	 1	 3	 ,	 1	 3	 that	 is	 called	 the	 white	 point	 in	 the
chromaticity	chart	and	 is	denoted	by	W.	Finally,	note	 that	we	need	 to	 limit	 the
space	to	some	finite	values.	This	is	achieved	by	normalizing	the	maximum	value
of	Y	 to	be	a	well	defined	white—	usually	the	luminance	of	a	perfectly	diffused
reflector.	This	allows	us	to	limit	the	space	spanned	by	physical	colors	to	the	cone
shown	in	Figure	9.6.
Similarly,	when	the	chromaticity	coordinates	of	physical	colors	are	plotted	on

the	chromaticity	chart,	the	result	it	yields	is	shown	in	Figure	9.8	which	is	rather
intuitive	 to	follow.	First,	 the	projection	of	 the	conical	volume	on	 the	 triangular
plane	shown	in	Figure	9.6	would	lead	to	a	horseshoe	shaped	as	shown	in	Figure
9.8.	Second,	note	that	the	higher	x	means	a	much	larger	proportion	of	X	which	in
turn	means	more	 intensity	 in	 the	 longer	wavelengths	 and	hence	 red.	Similarly,
the	higher	 value	of	y	 indicates	more	 intensity	 in	middle	wavelengths	which	 is
green.	 If	 both	 x	 and	 y	 are	 small	 i.e.	 z	 is	 high	 —it	 means	 that	 Z	 is	 highest
indicating	more	intensity	in	the	lower	wavelengths	or	blue.

Fun	Facts

This	 plot	 shows	 the	 actual	 sensitivities	 of	 the	 S,	 	M	 and	 L	 cones	 in	 the
human	 eye	 where	 S,	 	 M	 and	 L	 stand	 for	 short,	 middle	 and	 long
wavelengths.	 Note	 that	 the	M	 and	 L	 plots	 are	 very	 close	 to	 each	 other.
Further,	 the	number	of	S	cones	is	also	much	less	than	the	M	and	L	cones.
Note	that	these	plots	are	significantly	different	from	the	standard	observer
functions	shown	in	Figure	9.5.	This	is	due	to	the	fact	that	these	plots	were
physiologically	measured	only	after	mechanisms	to	do	so	were	available	to
biological	 scientists	 and	 happened	 much	 later	 than	 the	 design	 of	 the
standard	observer	functions.	However,	it	can	be	shown	that	the	LMS	space

can	be	related	to	the	XYZ	space	by	a	linear	transformation.

Note	 that	 in	 the	 chromaticity	 chart	 all	 the	monochromatic	 colors	 are	 at	 the
periphery.	 This	 is	 called	 the	 spectral	 boundary	 of	 the	 chromaticity	 chart.	 It	 is
almost	as	if	the	wavelengths	400	to	700	have	been	placed	around	the	boundary.
There	exists	a	straight	line	periphery	of	the	chart	that	connects	the	two	ends	of
the	horseshoe.	Which	wavelengths	do	they	represent?
To	answer	this	question,	let	us	go	back	to	the	visible	spectrum	of	light	(Figure

9.2).	There	are	no	wavelengths	corresponding	to	purple	which	nevertheless	is	a
color	we	perceive	quite	often.	Also	 the	colors	change	hue	smoothly	across	 the
wavelengths	i.e.	blue	changes	slowly	through	cyan	to	green	which	then	changes
slowly	 through	 green‐yellow	 to	 yellow	which	 then	 changes	 through	 orange	 to
red.	So,	cyan,	which	can	be	thought	of	as	a	combination	of	blue	and	green	rests
between	 blue	 and	 green.	 Similarly,	 orange	 rests	 between	 yellow	 and	 red.	 But,
where	 are	 the	 purples?	Shouldn’t	 there	 be	 shades	 of	 purples	 between	 the	 high
wavelengths	 red	 and	 lower	 wavelengths	 blue	 completing	 a	 circular
representation	of	the	visible	colors	of	light?	This	is	exactly	the	purples	that	show
up	 as	 the	 straight	 line	 periphery	 of	 the	 chromaticity	 chart.	 There	 is	 no	 single
wavelength	 to	 represent	 these	 colors	 and	 hence	 it	 is	 called	 the	 non‐spectral
boundary	of	the	chromaticity	chart.
Let	us	now	consider	a	color	P	in	this	chart	as	in	Figure	9.8.	We	connect	W	and

P	and	extend	the	line	backwards	to	meet	the	periphery	of	the	chromaticity	chart
at	 B.	 The	 wavelength	 of	 the	 color	 at	 B	 is	 considered	 to	 be	 the	 dominant
wavelength	of	P.	Dominant	wavelength	 is	 the	 sensation	of	 the	monochromatic
wavelength	evoked	by	P	 and	 is	 an	 estimate	 of	 the	perceptual	 property	of	 hue.
Note	that	instead	of	P,	if	we	consider	a	color	P	’	and	try	to	find	its	dominant	hue,
we	will	end	up	in	the	non‐spectral	part	of	 the	boundary	which	does	not	have	a
wavelength	 attached	 to	 it.	 In	 such	 cases	 (for	 purples),	 a	 dominant	 hue	 is
undefined.	 Instead,	we	connect	W	 to	P	 ’	 and	 extend	 the	 line	backwards	 to	B	 ’.
This	is	called	the	complimentary	wavelength,	i.e.	if	a	dominant	wavelength	for	P
’	 existed,	 its	 superposition	 with	 the	 complimentary	 wavelength	 will	 yield	 the
neutral	W.
Saturation	of	any	color	in	the	chromaticity	chart	is	defined	as	the	ratio	of	the

distance	of	the	color	P	from	the	white	point	to	the	distance	of	the	line	that	passes
through	P	from	W	to	the	periphery.	In	Figure	9.8,	saturation	is	thus	given	by	a	b	.
Note	that	when	the	P	 is	a	monochromatic	color,	 it	coincides	with	B.	Therefore
a	 =	b,	 leads	 to	 a	 saturation	of	 1	 or	 100%	as	 is	 expected	 for	 a	monochromatic
color.	On	 the	other	hand,	 if	P	=	W,	 then	a	 =	 0	 and	 the	 saturation	 is	 0%,	 as	 is

9.2.3

expected	for	an	achromatic	color.
Finally,	let	us	consider	one	more	property	of	color	called	luminance	which	is

Y.	This	 is	defined	as	 the	perceived	brightness	of	a	color.	For	 this,	consider	 the
following	experiment.	Consider	two	different	colors	of	the	same	intensitya	blue
and	a	green.	Therefore,	blue	will	have	higher	Z	while	green	will	have	higher	Y.
Though	these	two	colors	have	the	same	intensity,	almost	all	humans	will	find	the
green	to	be	brighter	than	the	blue.	This	is	due	to	a	preferential	importance	given
to	the	middle	wavelengths,	indicated	by	Y,	than	the	others.	This	stems	from	the
evolutionary	reasons	that	man	had	to	be	extra	sensitive	to	green	all	around	him
to	survive	on	land.	This	is	why	Y	is	called	the	luminance	and	is	often	considered
to	 be	 very	 important	 in	 perceptual	 tasks.	 For	 example,	 when	 compressing
images,	 Y	 is	 maintained	 at	 full	 resolution	 while	 the	 other	 two	 channels	 are
heavily	sub‐sampled.

Perceptually	Uniform	Color	Spaces
CIE	XYZ	 color	 space	 is	 perfectly	 suited	 for	 color	 matching	 applications.	 For
example,	 if	 you	 want	 to	 superimpose	 two	 projectors	 and	 want	 to	 match	 their
colors	—	 you	 just	 have	 to	make	 sure	 that	 they	 are	 projecting	 colors	with	 the
same	XYZ	values	at	the	two	overlapping	pixels.	However,	there	are	applications
where	perceptual	distances	between	colors	are	more	important.
What	do	we	mean	by	perceptual	distance?	This	means	how	much	distance	we

have	 to	 move	 from	 one	 color	 before	 the	 difference	 becomes	 visible.	 To
understand	the	importance	of	perceptual	distance,	let	us	consider	an	application
of	image	compression.	When	an	image	is	compressed,	we	may	want	to	change
the	colors	slightly	 to	aid	 the	compression.	This	would	mean	moving	 the	colors
from	their	original	location	in	the	color	space.	But,	we	would	like	to	move	it	just
enough	so	 that	 the	change	 is	not	visible	and	 the	compressed	 image	 looks	very
close	 to	 the	original	 image.	The	distance	between	 the	original	and	compressed
image	colors	can	give	us	an	idea	of	how	close	perceptually	these	images	are	and
hence	 use	 them	 to	 evaluate	 different	 compression	 techniques.	 In	 such
applications,	distance	between	colors	become	very	important.
Unfortunately,	CIE	XYZ	color	space	is	perceptually	non‐uniform.	This	means

that	equal	distance	at	different	regions	of	the	color	space	does	not	signify	equal
perceptual	difference.	A	perceptually	uniform	color	space	would	signify	 that	 if
we	want	to	draw	a	geometric	shape	around	a	color	P	in	the	chromaticity	chart	to
show	us	 the	 set	 of	 all	 colors	 close	 to	P	 that	 are	 indistinguishable	 from	P,	 this
shape	would	be	a	circle	and	the	size	of	the	circles	will	be	the	same	irrespective
of	the	position	of	P.	However,	this	is	not	true	when	considering	the	chromaticity

chart	devised	 from	 the	CIE	1939	XYZ	 color	 space.	Scientist	MacAdam	plotted
this	 geometric	 shape	 for	 different	 colors	 in	 the	 chromaticity	 chart	 and	 what
transpired	is	shown	in	Figure	9.9.	Note	that	 these	are	all	ellipses	and	the	shape
and	size	of	the	ellipses	change	with	the	position	of	the	color.	This	shows	that	our
ability	to	distinguish	between	different	shades	of	green	is	much	worse	than	our
ability	 to	 distinguish	 between	 purples	 or	 yellows.	 Our	 ability	 to	 distinguish
between	blues	is	probably	the	best.

Figure	9.9	.	This	figure	shows	the	MacAdam	ellipses	plotted	on	the	CIE	1939	chromaticity	chart	(left)	and
the	CIE	1976	u	’	v	’	chart	(right).	The	colors	in	each	of	ellipse	are	indistinguishable	to	the	human	eye.

Therefore	 in	 1964	 and	 subsequently	 in	 1976	 efforts	were	made	 to	 design	 a
perceptually	 uniform	 color	 space	 via	 non‐linear	 transformation	 of	 the
chromaticity	 coordinates.	 There	 are	 several	 such	 spaces	 designed	 like	 the	CIE
LUV	or	CIE	Lab.	Figure	9.9	shows	one	such	color	space	designed	in	1976	called
the	CIELUV	space.	Note	 that	 the	perceptual	distances	are	much	more	uniform
than	the	chromaticity	chart	of	1939,	but	still	not	ideal.	The	most	popular	space	in
this	 context	 is	 the	CIELab	 space	 designed	much	 later	 and	 is	 derived	 from	 the
CIE	XYZ	space.	The	Euclidian	distance	of	3	in	the	CIE	Lab	space	is	considered
to	 be	 just	 noticeable	 difference.	 However,	 if	 you	 have	 color	 matching
applications	 nothing	 can	 beat	 the	 simple	 old	 CIE	 XYZ	 space	 and	 the
chromaticity	chart	devised	thereof.

Fun	Facts
Did	you	know	that	the	concept	of	perceptual	distance	is	well	studied	in	the
perception	 literature?	 People	 always	 wondered	 how	 much	 difference	 in
stimulus	 we	 can	 tolerate	 without	 noticing	 it.	 For	 example,	 if	 you	 are
carrying	a	heavy	book	and	a	20	page	thin	book	is	added	to	your	load,	you
will	most	likely	not	notice	it.	However,	if	your	load	is	a	thin	20	page	book,

9.3

you	will	definitely	notice	the	change.	Therefore	the	more	important	thing	to
consider	 is	 not	 the	 absolute	 change	 in	 the	 stimuli,	 but	 rather	 the	 relative
change	 in	 the	 stimuli.	While	 in	 the	 former	 case	your	 stimuli	of	weight	 is
changing	by	a	few	percent;	in	the	latter	case,	it	is	almost	doubling.	In	fact,
Weber’s	 law,	 named	 after	 its	 discoverer,	 a	well‐known	 law	 in	 perception
literature	 says	 that	 our	 ability	 to	 perceive	 a	 difference	 (what	 is	 more
formally	 called	 the	 difference	 threshold)	 is	 directly	 proportional	 to	 the
amount	 of	 stimuli.	 The	 constant	 of	 this	 proportionality	 changes	 across
different	 perceptions,	 but	 10%	 has	 been	 found	 to	 be	 a	 reasonably	 good
approximation	 empirically.	 We	 see	 the	 same	 thing	 when	 perceiving	 the
range	of	grays.	We	are	more	sensitive	to	differences	at	dimmer	gray	values
than	 at	 brighter	 gray	 values.	This	 is	 also	 another	 reason	why	 our	 display
γ	 >	 1.0.	 This	 helps	 us	 to	 provide	 greater	 resolution	 at	 the	 lower	 channel
values	than	at	the	higher	ones.

Conclusion
The	rendering	equation	was	 introduced	first	 in	 two	seminal	works	 in	computer
graphics	in	1986—[Immel	et	al.	86]	and	[Kajiya	86].	Its	use	in	image	synthesis
was	popularized	by	the	seminal	work	of	Dr.	James	Arvo	in	[Arvo	and	Kirk	90]	.
Color	 is	 one	 of	 the	most	 confusing	 topics	 in	 the	 domain	 of	 visual	 computing
primarily	 due	 to	 the	 long	history	 of	 color	 and	 its	wide	use	 in	 various	ways	 in
many	 diverse	 domains	 starting	 from	 art,	 painting,	 physics,	 vision,	 human
perception,	 video	 processing	 and	 compression	 and	 then	 lately	 in	 image
processing,	 computer	 vision	 and	 graphics.[Stone	 03]	 is	 an	 excellent	 practical
handbook	to	understand	these	diverse	viewpoints.[Reinhard	et	al.	08]	provides	a
detailed	formal	treatise.

Bibliography
[Arvo	 and	 Kirk	 90]	 James	 Arvo	 and	 David	 Kirk.	 “Particle	 transport	 and	 image	 synthesis”SIGGRAPH

Computer	Graphics,	pp.	63‐66.
[Immel	 86]	 ImmelDavid	 S,	CohenMichael	 F,	GreenbergDonald	 P.	 “A	Radiosity	Method	 for	Non-diffuse

Environments	SIGGRAPH.	Computer	Graphics.	1986;20(4):133–142.
[Kajiya	86]	KajiyaJames	T.	“The	Rendering	Equation	SIGGRAPH.	Computer	Graphics.	 1986;20(4):143–

150.
[Reinhard	08]	Erik	Reinhard,	Erum	Arif	Khan,	Ahmet	Oguz	Akyz,	and	Garrett	M.	Johnson.Color	Imaging:

Fundamentals	and	Applications.A.	K.	Peters,	Ltd.,	2008.

[Stone	03]	MaureenC.	Stone.	A	K	Peters:	A	Field	Guide	to	Digital	Color;	2003.

Summary:	Do	you	know	these	concepts?

	Radiometry	and	Photometry
Radiance	and	Irradiance
Bidirectional	Reflectance	Distribution	Function	(BRDF)
Diffused	Illumination
Specular	Illumination
Phong	Illumination	Model
Visible	Spectrum	of	Light
Color	Stimuli
Metamerism
Tristimulus	Values
CIE	XYZ	Space
Chromaticity	Coordinates	and	Chart
Intensity,	Hue	and	Saturation
Perceptual	Distance

Exercises

1.	 	The	spectra	of

color	C	1	=	(X	1	,	Y	1	,	Z	1)	and	C	2	=	(X	2	,	Y	2	,	Z	2)	are	given	by
s	 1	 (λ)	 and	 s	 2	 (λ)	 respectively.	 Let	 the	 color	 formed	 by
multiplications	of	the	spectra	s	1	and	s	2	be	S3,	i.e.	s	3	(λ)	=	s	1	(λ)	×
s	 2	 (λ)	 .	 Is	 it	 true	 that	 the	 XYZ	 coordinate	 corresponding	 to	 s	 3,
denoted	by	C	3,	is	(X	1	X	2	,	Y	1	Y	2	,	Z	1	Z	2)	?	Justify	your	answer
with	calculations.

2.	 Consider	 the	 four	 spectra	 in	 the	 left	 image	of	 the	above	picture,	 their
color	is	not	related	to	their	visible	colors,	but	used	for	visualization.

a.	 What	is	the	relationship	between	the	dominant	wavelengths	of
all	these	colors?

b.	 What	 is	 the	 relationship	 between	 the	 saturation	 of	 all	 these
colors?

c.	 What	is	the	relationship	of	the	distances	of	these	colors	from
the	white	point	on	the	chromaticity	chart?

d.	 What	 is	 the	 relationship	between	 the	 I	=	X	+	Y	+	Z	 of	 these
colors?

e.	 The	chromaticity	coordinates	of	all	 these	colors	will	 lie	on	a
single	 geometric	 entity	 (e.g.	 circle,	 parabola).	 What	 is	 that
geometric	entity?

f.	 The	 CIE	 XYZ	 coordinates	 of	 all	 these	 colors	 will	 lie	 on	 a
single	 geometric	 entity	 (e.g.	 circle,	 parabola).	 What	 is	 that
geometric	entity?

3.	 Consider	the	spectra	in	the	right	image	of	the	above	picture,	their	color
not	related	to	their	visible	colors,	but	used	for	visualization.

a.	 The	 blue	 spectra	 is	 the	most	 likely	 complementary	 color	 to
which	spectra?

b.	 The	 chromaticity	 coordinates	 of	which	 of	 the	 spectra	would
lie	in	the	same	line?

c.	 If	the	chromaticity	coordinates	of	the	orange	and	pink	spectra
are	 (0.1,	 0.1)	 and	 (0.6,	 0.3)	 respectively,	 what	 is	 the	 most
likely	 chromaticity	 coordinates	 of	 a	 color	 formed	 by	 their
addition?

4.	 In	 the	 figure	 below	 match	 the	 objects	 on	 the	 right	 with	 their	 most
probable	 color	 spectra	 on	 the	 left.

5.	 Consider	 a	 Lambertian	 surface.	 How	 many	 dimensions	 would	 its
BRDF	 have?	 Briefly	 describe	 an	 simple	 hardware	 setup	 and	 an
algorithm	that	would	allow	you	to	measure	the	BRDF	of	a	Lambertian
surface?

6.	 You	 are	 measuring	 a	 surface	 patch	 with	 center	 P	 using	 a
spectroradiometer.	The	radius	of	the	patch	is	2mm.	The	light	is	coming
from	a	45	degree	angle	and	has	an	angular	extent	of	20	degrees.	The
measured	energy	is	200	Watts	per	nm.	Find	the	irradiance	and	radiance
at	P.

7.	 When	 you	 switch	 on	 the	 projector	 in	 the	 class	 you	 see	 that	 it	 is
projecting	predominantly	blacks	and	purples.	You	figure	out	that	one	of
the	 wires	 connecting	 to	 the	 primaries	 R,	 	 G	 and	 B	 may	 be
malfunctioning.	Which	one	is	it	and	why?

10

Color	Reproduction
Maybe	after	the	treatise	on	color	in	the	previous	chapter	you	are	wondering	what
is	the	use	of	the	XYZ	color	space?	To	understand	this,	we	have	to	take	a	look	at
what	 is	 called	 color	 reproduction.	When	 you	 think	 of	 images	 created	 by	 any
device—	 for	 example,	 a	 digital	 camera	 capturing	 an	 image	 or	 a	 projector
projecting	an	image	or	a	printer	printing	one	these	are	all	reproduction	of	colors
from	 the	 physical	 scene	 (e.g.	 camera)	 or	 from	 another	 device	 (e.g.	 printer
printing	 a	 camera	 captured	 image).	 The	 quality	 of	 a	 color	 reproduction	 is
evaluated	by	how	close	the	reproduced	image	is	to	that	of	the	original	image	or
scene.	The	term	‘close’	can	be	measured	both	quantitatively	and	qualitatively.
Color	 reproduction	 systems	 can	be	of	 two	 types	—	additive	 and	 subtractive

depending	on	the	way	two	or	more	colors	are	mixed	to	create	a	new	color	in	the
color	 reproducing	 system.	When	 learning	painting,	 children	are	 taught	 that	 the
primary	colors	are	red,	blue	and	yellow.	Yet	in	the	field	of	image	processing,	we
are	 taught	 that	 the	primary	colors	are	 red,	blue	and	green.	So,	wherein	 lies	 the
contradiction?	Apparently,	both	the	art	teachers	and	the	image	processing	books
are	 right.	 The	 difference	 stems	 from	 the	 fact	 that	 there	 are	 two	 ways	 to	 mix
colors	—	additive	and	subtractive.	While	red,	green	and	blue	are	primary	colors
of	 the	 former,	 the	 primary	 colors	 for	 the	 latter	 are	 cyan,	magenta	 and	 yellow
which	are	often	referred	to	as	blue,	red	and	yellow	for	simplicity.
In	subtractive	color	mixture,	the	color	of	a	surface	depends	on	the	capacity	of

the	 surface	 to	 reflect	 some	wavelengths	 and	 absorb	 others.	When	 a	 surface	 is
painted	 with	 a	 pigment	 or	 dye,	 a	 new	 reflectance	 characteristic	 is	 developed
based	on	 the	capacity	of	 the	pigment	or	dye	 to	 reflect	and	absorb	 the	different
wavelengths	 of	 light.	 Consider	 a	 surface	 painted	 with	 yellow	 pigment	 which
reflects	wavelengths	570	-	580nm	and	another	surface	painted	with	cyan	pigment
which	reflects	440	-	540nm.	If	we	mix	both	the	pigments,	only	the	wavelengths
that	are	not	absorbed	by	either	of	these	pigments	will	be	reflected,	thus	resulting
in	the	color	green.	The	yellow	absorbs	the	wavelengths	evoking	the	sensation	of
blue	while	 the	 cyan	 absorbs	 the	wavelengths	 evoking	 the	 sensation	 of	 yellow.
Hence,	what	is	left	behind	is	a	sensation	of	green.	This	is	called	subtractive	color
mixtures	 since	 bands	 of	 wavelengths	 are	 subtracted	 or	 canceled	 by	 the

combination	of	light	absorbing	materials.	And	 the	resulting	color,	as	you	have
probably	noticed,	is	given	by	the	intersection	of	the	two	spectrums.	The	yellow,
cyan	 and	 magenta	 are	 termed	 as	 the	 color	 primaries	 of	 the	 subtractive	 color
mixtures,	because	they	form	the	smallest	set	of	pigments	required	to	produce	all
other	 colors.	Dyes	 and	 inks	 usually	 follow	 subtractive	 color	 theory	 and	 hence
images	 generated	 using	 these	 media	 are	 the	 result	 of	 subtractive	 color
reproduction.
In	 additive	 color	 mixture	 systems,	 colors	 are	 mixed	 such	 that	 bands	 of

wavelengths	 are	 added	 to	 each	other.	This	 is	 called	additive	mixture	of	 colors.
Thus,	 the	 spectrum	 of	 the	 color	 formed	 by	 superposition	 of	multiple	 colors	 is
given	 by	 the	 addition	 of	 their	 respective	 spectra.	 This	 is	 similar	 to	 how	 the
human	eye	visualizes	color.	Devices	like	cameras	and	projectors	follow	additive
color	mixture.

Figure	10.1	.	The	blue	and	red	show	two	different	color	spectra	whose	additive	and	subtractive	mixtures	are
shown	by	the	purple	and	green	spectra	respectively.

Let	 us	 look	 at	 additive	 mixing	 of	 colors	 The	 blue	 and	 red	 a	 little	 more
formally.	Let	S	1	and	S	 2	be	 the	spectra	of	 two	different	color	stimuli	 in	Figure
10.1	shown	in	red	and	blue	respectively.	When	they	are	combined	additively,	the
resulting	spectrum	S	(λ)	is	given	by	the	addition	of	the	relative	powers	of	each
of	S	1	and	S	2	at	each	wavelength	resulting	in	the	purple	spectrum.	Therefore,	S	(
λ)	 =	 S	 1	 (λ)	 +	 S	 2	 (λ)	 .	 However,	 while	 representing	 a	 spectrum	 for
subtractive	color	mixture	such	as	paint,	a	value	of	x	at	a	particular	wavelength
means	x%	is	 reflected	by	 the	paint	while	 (1—x)%	is	absorbed.	This	curve	 is	a
spectral	 reflectance	 curve	 (values	 between	 [0,	 1])	 -	 	 fraction	 of	 the	 incident
spectral	 value	 reflected	 by	 the	 material.	 Therefore,	 when	 two	 paints	 are
superimposed,	 only	 the	 part	 that	 is	 not	 absorbed	 by	 either	 is	 reflected	 and
therefore	 the	resulting	spectrum	becomes	 the	multiplication	of	 the	 two	spectral
reflectances	and	the	incident	illumination	spectrum	creating	the	green	spectrum
in	Figure	10.1.

10.1Modeling	Additive	Color	Mixtures
Modeling	 additive	 color	 space	 and	 color	 mixtures	 is	 easy	 in	 the	 XYZ	 color
space.	When	 two	colors	 are	mixed	additively,	 the	XYZ	values	of	 the	 resulting
color	 are	 just	 the	 addition	 of	 the	 XYZ	 values	 of	 the	 individual	 colors	 in	 the
mixture.	 In	 other	 words,	 the	 color	 resulting	 from	 an	 additive	 mixture	 of	 two
colors	(X	1	,	Y	1	,	Z	1)	and	(X	2	,	Y	2	,	Z	2)	is	given	by	their	vector	addition	(
X	1	+	X	2	,	Y	1	+	Y	2	,	Z	1	+	Z	2)	and	so	forth.
Let	us	consider	two	colors	C	1	=	(Y	1	,	x	1	,	y	1)	and	C	2	=	(Y	2	,	x	2	,	y	2)	.

The	easiest	way	to	add	these	two	colors	would	be	to	convert	each	of	these	to	(X
,	Y	,	Z)	format	and	add	providing	C	s	=	(X	s	,	Y	s	,	Z	s)	=	(X	1	+	X	2	,	Y	1	+
Y	2	,	Z	1	+	Z	2)	.	Now	converting	this	back	to	(Y	,	x	,	y)	format,	we	get

(10.1)
Y	s	=	Y	1	+	Y	2

(10.2)
x	s	=	X	1	+	X	2	X	1	+	X	2	+	Y	1	+	Y	2	+	Z	1	+	Z	2

(10.3)
y	s	=	Y	1	+	Y	2	X	1	+	X	2	+	Y	1	+	Y	2	+	Z	1	+	Z	2

Let	us	consider	Equation	10.3	of	x	s
(10.4)

x	s	=	X	1	+	X	2	I	1	+	I	2	=	x	1	I	1	I	1	+	I	2	+	x	2	I	2	I	1	+	I	2	=	x	1	I	1	I	1	+	I	2	+
x	2	I	2	I	1	+	I	2	.

Using	the	same	concept	to	y	s	,	we	find	that

(10.5)
(x	s	,	y	s)	=	(x	1	,	y	1)	I	1	I	1	+	I	2	+	(x	2	,	y	2)	I	2	I	1	+	I	2

Note	that	the	above	equation	gives	you	lot	more	information	than	the	equations
10.3.	It	says	that	the	chromaticity	coordinate	of	C	s	 is	a	convex	combination	of
those	of	C	1	and	C	2.	Therefore	the	new	color	C	s	can	only	lie	on	the	straight	line
segment	between	(x	1	,	y	1)	and	(x	2	,	y	2)	 in	 the	chromaticity	chart.	 It	also
says	that	the	location	of	C	s	on	this	line	will	be	solely	dictated	by	the	proportion
of	its	intensity.	So,	if	C	1	is	blue	and	C	2	is	red,	C	s	will	be	a	purple	and	if	I	1	 is
much	 higher	 than	 I	 2,	 it	 will	 be	 a	 bluish	 purple	 landing	 closer	 to	C	 1	 on	 the
straight	line	between	(x	1	,	y	1)	and	(x	2	,	y	2)	.	If	I	2	is	larger,	then	it	will	be
reddish	 purple.	 Note	 that	 this	 also	 provides	 us	 an	 alternate	 way	 of	 doing	 the
addition	of	colors	in	the	(Y	,	x	,	y)	representation	without	going	to	the	(X	,	Y	,

10.1.1

Z)	representation	—	add	the	luminance	and	find	the	convex	combination	of	the
chromaticity	coordinates	weighted	by	 the	proportions	of	 the	 intensities	of	each
color.	When	considering	addition	of	n	different	colors,	the	formulae	are	given	by

(10.6)
Y	s	=	∑	i	=	1	n	Y	i

(10.7)
(x	s	,	y	s)	=	∑	i	=	1	n	(x	i	,	y	i)	I	i	∑	I	i

Therefore,	 the	 chromaticity	 coordinates	 of	 the	 new	 color	 are	 given	 by	 the
proportion	of	the	intensities	of	C	1	and	C	2	and	not	their	luminance.	Most	color
science	 literature	 makes	 this	 mistake	 and	 says	 that	 the	 chroma	 needs	 to	 be
combined	 in	 proportion	 of	 their	 luminance	 and	 not	 the	 total	 intensity.	 This
fundamental	mistake	makes	it	 impossible	to	match	colors	by	combining	one	or
more	 additive	 colors	 in	 an	 experimental	 set	 up,	 and	 you	 may	 often	 think	 of
moving	 to	more	 complicated	 perceptually	 uniform	 color	 spaces.	However,	we
can	show	with	correct	derivation	of	model	parameters	as	above,	that	we	can	do
perfect	matching	of	colors	just	working	with	the	XYZ	color	space.

Figure	10.2	 .The	3	D	gamut	 (left)	and	 the	2	D	gamut	 (right)	of	a	 linear	 three-primary	device.	 In	 the	3	D
gamut	on	left,	R	=	(X	r	,	Y	r	,	Z	r)	,	G	=	(X	g	,	Y	g	,	Z	g)	and	B	=	(X	b	,	Y	b	,	Z	b)	.	The	2	D	gamut	is
shown	by	the	black	triangle	RGB.	Any	color	in	the	triangle	RGB	is	reproduced	by	a	convex	combination	of
R,	 	G	and	B	 using	unique	weights	given	by	 its	barycentric	 coordinates	with	 respect	 to	R,	 	G	 and	B.	 If	 a
fourth	primary	C	is	added,	the	2D	color	gamut	is	now	given	by	the	polygon	RGCB,	the	convex	hull	of	R,	
G,		B	and	C.	However,	note	that	in	this	case,	the	color	P	inside	this	gamut	RGCB	can	be	reproduced	by	non-
unique	combinations	of	different	primaries—	one	with	G	and	B	and	another	with	R	and	C.

Color	Gamut	of	a	Device
Equation	10.7	provides	an	 interesting	 insight.	This	equation	shows	 that	a	 large
number	 of	 colors	 are	 generated	 by	 a	 convex	 combination	 of	 a	 few	 colors.

Therefore,	in	order	to	reproduce	a	reasonable	area	of	the	chromaticity	chart	we
will	need	at	 least	 three	colors,	 the	convex	combination	of	which	creates	colors
with	 chromaticity	 coordinates	 in	 the	 triangle	 formed	 by	 the	 chromaticity
coordinates	 of	 these	 three	 colors.	 These	 three	 given	 colors	 are	 called	 the
primaries	of	the	device	and	the	triangle	formed	by	their	chromaticity	coordinates
is	called	the	2D	color	gamut	of	the	device.	Typically,	these	three	primaries	lie	in
the	 regions	 of	 blue,	 red	 and	 green	 to	 cover	 a	 reasonably	 large	 area	 of	 the
chromaticity	chart.	That	is	why	most	devices	we	see	today	have	red,	green,	and
blue	primaries	as	shown	in	Figure	10.2.	Nowadays,	devices	with	more	than	three
primaries	are	also	designed	to	increase	the	color	gamut.
Let	us	now	consider	a	device	with	three	primaries,	usually	red,	green	and	blue.

Let	the	input	value	for	each	channel,	given	by	i	r	,	i	g	,	and	i	b	,	be	normalized	and
therefore	 range	between	0	and	1.	Suppose	 that	 the	XYZ	 coordinates	of	each	of
the	primaries	at	maximum	intensity	is	given	by	R	=	(X	r	,	Y	r	,	Z	r)	,	G	=		(X	g
,	Y	g	,	Z	g)	and	B	=	(X	b	,	Y	b	,	Z	b)	as	illustrated	in	Figure	10.2.	This	means	if
we	change	the	input	of	only	one	of	the	channels—	say	red—	keeping	the	other
two	at	zero,	the	XYZ	values	of	the	reproduced	colors	will	travel	along	vector	OR
starting	from	O	at	i	r		=	0	and	reach	R	at	i	r		=	1.	Also,	when	we	change	the	inputs
of	multiple	 channels	we	 get	 a	 vector	 addition	 of	 the	 vectors	OR,	OG	 and	OB
scaled	by	their	respective	input	values.	In	other	words,	the	color	C	=	(X	,	Y	,	Z)
produced	for	input	I	p	=	(i	r	,	i	g	,	i	b)	is	computed	as

(10.8)
C	=	(X	,	Y	,	Z)	=	O	+	i	r	(R	-	O)	+	i	g	(G	-	O)	+	i	b	(B	-	O)

(10.9)
=	i	r	(X	r	,	Y	r	,	Z	r)	+	i	g	(X	g	,	Y	g	,	Z	g)	+	i	r	(X	b	,	Y	b	,	Z	b)

The	space	spanned	by	C	as	i	r	,	 	i	 g	and	 i	 b	changes	from	0	 to	1	 is	given	by	 the
parallelepiped	shown	in	Figure	10.2	(left).	This	is	the	entire	gamut	of	colors	that
the	device	can	reproduce	and	hence	is	called	the	3	D	color	gamut	of	the	device.
Typically,	 the	 tristimulus	 values	 of	 the	 primaries	 of	 practical	 devices	 are	well
within	 the	 visible	 colors,	 the	 parallellopiped	 formed	 by	 these	 primaries	 will
usually	 be	 strictly	 inside	 the	 visible	 color	 gamut.	 Hence,	 usually	 our	 devices
typically	reproduce	only	a	subset	of	the	colors	human	can	see.	How	big	a	subset
they	 can	 produce	 depends	 on	 the	 properties	 of	 their	 primaries	 given	 by	 the
coordinates	of	R,	G	and	B.	Note	that	Equation	10.9	can	be	written	in	the	form	of
a	3	×	3	matrix	as

(10.10)
X	Y	Z	=	X	r	X	g	X	b	Y	r	Y	g	Y	b	Z	r	Z	g	Z	b	i	r	i	g	i	b

(10.11)
C	=	M	I	p

When	the	entire	color	gamut	(or	characteristics)	of	a	device	can	be	represented
by	such	a	matrix	M,	 it	 is	 called	a	 linear	device.	Note	 that	 the	above	matrix	M
indeed	tells	us	everything	about	the	color	characteristics	of	a	device.	Also,	if	we
know	 the	desired	 color	C	 to	 be	 reproduced,	we	 can	 find	 the	 unique	 input	 that
would	 create	 it	 by	 I	 p	 	 =	M	 -1	C.	 Therefore,	 every	 color	 within	 the	 gamut	 is
created	by	a	unique	combination	of	input	values.
The	 intersection	of	 the	vectors	OR,	OG	 and	OB	with	 the	 chromaticity	 chart

provides	us	with	the	chromaticity	coordinates	of	these	three	primaries	which	will
define	 the	 set	 of	 all	 chromaticities	 that	 the	 device	 can	 reproduce	 (without
considering	the	intensity).	Since	there	are	three	vectors,	their	intersection	in	the
chromaticity	chart	will	create	a	triangle	as	illustrated	in	Figure	10.2	by	the	black
triangle	RGB.	This	is	called	the	2	D	color	gamut	of	a	device.
From	 Figure	 10.2	 it	 is	 obvious	 that	 adding	 an	 additional	 primary,	 like	C,	

outside	 the	 current	 color	 gamut,	 would	 help	 us	 cover	 a	 larger	 area	 of	 the
chromaticity	 chart	 and	 thereby	 increase	 the	 2D	 gamut	 to	 the	 polygon	CBRG.
This	is	of	course	true	and	is	often	used	as	a	technique	to	increase	color	gamut	by
the	 TV	manufacturers.	 However,	 there	 is	 a	 downside	 to	 it.	 Consider	 this	 four
primary	system	and	the	color	P.	Notice	that	it	can	be	generated	in	more	than	one
way	—	 either	 by	 combining	G	 and	B	 or	 by	 combining	C	 and	 R.	 Therefore,
unlike	a	three-primary	system	which	provides	a	unique	way	to	create	a	color	by
combination	of	the	primaries,	here	there	are	multiple	ways	to	create	a	color.

Figure	10.3	 .This	 figure	 shows	a	 few	standard	and	empirically	measured	color	gamuts	of	 current	display
devices.

In	Equation	10.9,	we	assume	that	O	is	at	the	origin	(0,	0,	0).	This	means	that
the	black	produced	by	the	device	(output	for	I	p		=	(0,	0,	0))	indeed	generates	zero
light.	Unfortunately,	 in	some	display	devices	today,	especially	projectors,	some
constant	leakage	light	is	always	present,	even	for	input	(0,	0,	0),	which	is	often
called	 the	 black	 offset.	 If	 this	 black	 offset	 is	 characterized	 by	 the	 XYZ
coordinates	(X	l	,	Y	l	,	Z	l)	,	then	the	equation	10.9	becomes

(10.12)
(X	,	Y	,	Z)	=	O	+	i	r	(R	-	O)	+	i	g	(G	-	O)	+	i	b	(B	-	O)

(10.13)
=	(X	l	,	Y	l	,	Z	l)

(10.14)
+	i	r	(X	r	-	X	l	,	Y	r	-	Y	l	,	Z	r	-	Z	l)

(10.15)
+	i	g	(X	g	-	X	l	,	Y	g	-	Y	l	,	Z	g	-	Z	l)

(10.16)
+	i	r	(X	b	-	X	l	,	Y	b	-	Y	l	,	Z	b	-	Z	l)

The	above	equation	represented	as	a	matrix	becomes

(10.17)
X	Y	Z	=	X	r	-	X	l	Y	r	-	Y	l	Z	r	-	Z	l	X	g	-	X	l	Y	g	-	Y	l	Z	g	-	Z	l	X	b	-	X	l	Y	b	-	Y
l	Z	b	-	Z	l	X	l	Y	l	Z	l	i	r	i	g	i	b	1

Fun	Facts

	 Interestingly,	 not	 only	 human	 perception	 of

light,	but	all	human	perceptions	follow	a	power	law.	This	is	called	the	Steven’s
power	law	based	on	the	scientist	who	first	made	the	observation.	This	law	says
that	 response	 R	 of	 any	 human	 perception	 to	 the	 input	 stimuli	 I	 follows	 the
equation	R	 =	KI	 γ	 .	 If	 γ	 >	 1.0,	 perception	 is	 expansive.	An	 example	 is	 electric
shock.	 If	 γ	 <	 1.0,	 perception	 is	 compressive.	An	 example	 is	 our	 perception	 of
brightness.	 γ	 is	 seldom	 1.0.	 The	 expansive	 or	 compressive	 nature	 of	 our
perception	is	shaped	by	evolution!	The	compressive	nature	of	our	perception	to
brightness	 saves	 our	 eyes	 from	 getting	 burned	 regularly	 by	 sunlight.	 The
expansive	 nature	 of	 our	 perception	 to	 electric	 shock	 helps	 to	 put	 us	 on	 guard
when	the	stimulus	is	not	too	large	to	cause	damage.
However,	note	that	the	parameters	of	the	matrix	are	not	available	to	the	user

directly	 from	 the	 specification	 sheet	 of	 the	 devices.	 In	 general,	 they	 can	 be
derived	 from	 other	 parameters	 that	 are	 specified.	 The	 first	 of	 these	 is	 a
standardized	2	D	gamut.	The	2	D	gamut	of	a	device	should	usually	conform	to	a
predefined	standard	gamut,	like	sRBG,	HD	and	NTSC	(Figure	10.3).	However,
the	 2	 D	 gamutdoes	 not	 contain	 any	 information	 about	 the	 minimum	 and
maximum	luminance	that	can	be	reproduced	by	the	display.	It	only	signifies	the
hue	and	saturation	of	the	primaries,	each	of	which	can	have	different	minimum
and	 maximum	 brightness.	 So,	 to	 complete	 the	 description,	 we	 need	 the
information	about	the	white	point	and	the	dynamic	range(more	commonly	called
contrast).	The	white	point	gives	the	chromaticity	coordinate	of	the	white	and	the
dynamic	range	is	given	by	the	ratio	of	the	brightest	and	dimmest	gray,	i.e.	white
and	black.	The	white	point	is	specified	as	conforming	to	a	predefined	standard.

10.1.2

Whites	 can	 be	 of	 different	 tints	—	 purplish,	 bluish	 or	 reddish.	 And	 different
cultures	have	been	seen	to	prefer	different	white	points.	So,	such	standard	whites
have	been	defined	like	D65	(x	=	0.31271	,	y	=	0.32902)	or	D85.	However,	note
that	dynamic	range	can	provide	you	the	color	gamut	only	up	to	a	scale	factor	and
hence	the	display’s	maximum	brightness	(usually	produced	at	white)	is	required
to	get	the	absolute	color	gamut.	The	intensity	of	the	white	is	usually	specified	as
a	measure	of	the	brightness	of	the	device.	All	these	parameters	together	define	a
3	D	color	gamut	in	the	XYZ	space	and	the	matrix	M.

Tone	Mapping	Operator
Let	us	now	discuss	another	important	property	of	a	color	reproducing	device,	the
tone	mapping	operator.	As	we	change	the	input	of	one	channel	from	0	to	1	as	the
other	 two	 remain	 zero,	 the	 output	 will	 travel	 on	 the	 vectors	OR,	OG	 or	OB
(Figure	10.2).	Now,	the	way	the	resulting	output	moves	on	these	vectors	may	not
be	linear.	In	fact,	most	of	the	times	it	is	a	non-linear	function	trying	to	adjust	for
the	response	of	human	eye.	Let	us	call	this	function	h.	For	example,	the	human
eye	has	a	non-linear	response	to	light	which	is	compressive	in	nature	i.e.	if	the
eye	is	stimulated	with	k	times	the	intensity,	the	perceived	intensity	is	less	than	k
times.	For	 example	 in	 cameras,	 this	 function	h(i	 r)	 is	modeled	 by	 i	 r	 γ	where
γ	 <	 1.0.	 In	 displays,	 γ	 >	 1.0,	 most	 commonly	 γ	 =	 2.0	 to	 compensate	 for	 the
compressive	gamma	imparted	by	cameras.	Although	we	have	assumed	the	same
h	for	all	channels	here,	these	functions	can	be	different	for	different	channels.	In
fact,	predefined	γ	was	in	vogue	in	the	pre-digital	age	when	film	cameras	usually
had	 a	 γ	 =	 0.5	which	was	 compensated	 by	 displays	with	 a	 γ	 =	 2.0.	Hence,	 the
name	gamma	function	or	gamma	correction.	This	is	illustrated	in	Figure	10.4.

Figure	10.4	.	On	the	left	is	a	typical	display	gamma	of	2.2.	In	the	middle	is	the	gamma	of	a	capture	device
set	to	2	1	.2	to	mimic	the	human	eye.	The	result	of	putting	this	image	on	to	the	display	is	a	linear	response	of
input	to	output	as	seen	in	the	right.

Let	us	consider	a	more	general	 representation	of	 the	gamma	 function	which
need	not	be	a	power	function	in	a	color	reproducing	device	and	can	be	thought

of	as	a	parameter	of	a	color	producing	device	 that	can	be	controlled	 to	change
the	appearance	of	the	device.	This	more	general	representation	is	called	the	tone
mapping	 operator	 or	 transfer	 function.	When	 color	 devices	 were	 non-existent
and	people	were	used	to	only	black	and	white	devices	(a	better	way	to	call	them
would	be	gray),	transfer	function	was	the	only	function	that	dictated	the	picture
quality.	 All	 the	 terminology	 for	 user	 interfaces	 to	 control	 picture	 quality
originated	 at	 this	 time	 and	 hence	 they	 have	 a	 direct	 relationship	with	 the	 tone
mapping	operator.
The	basic	assumption	was	that	the	tone	mapping	operator	would	be	a	smooth

monotonically	 increasing	 function.	 There	 used	 to	 be	 two	 controls	 —	 usually
called	brightness	and	contrast	or	picture.	Brightness	used	to	act	like	an	offset	on
the	transfer	function	moving	the	function	up	or	down.	Contrast	or	picture	used	to
change	the	gain	of	the	transfer	function.	This	is	illustrated	in	Figure	10.6	along
with	its	effect	on	an	example	image.
When	color	displays	came	into	being,	the	natural	thing	to	do	was	to	have	an

independent	 transfer	 function	 for	 each	 channel.	 This	 provided	 a	much	 greater
control	on	image	appearance.	Changing	the	tone	mapping	operator	for	one	of	the
channels	 to	 be	 different	 than	 others	 created	 different	 effects	 like	 producing
unique	color	tints,	as	shown	in	Figure	10.7.	This	is	often	described	as	changing
the	color	balance.	Changing	 the	 tone	mapping	operator	 is	 the	only	one	way	 to
change	 the	 color	 balance	 of	 the	 display.	 The	 same	 effect	 can	 be	 achieved	 by
changing	the	relative	intensities	of	the	different	primaries	using	the	off	Notice	set
control.

Figure	 10.5	 .	 Notice	 the	 contouring	 in	 the	 flat	 colored	 region	 around	 the	 portrait.	 This	 is	 the	 tell-tale
quantization	artifact	due	to	insufficient	intensity	resolution.

In	the	displays	menu	from	the	control	panel	on	a	standard	Windows	desktop,
all	 these	 three	 transfer	 functions,	one	 for	each	channel,	can	be	seen.	Therefore
today,	γ	has	become	a	way	 for	users	 to	have	 control	 on	 the	device	 to	 create	 a
different	look	and	feel	for	images.	In	any	laptop,	in	properties	and	settings,	one
can	 change	 the	h	 for	 different	 channels	 differently	which	need	not	 be	 even	 an

10.1.3

exponential	function.	To	get	the	best	reproduction	and	to	take	full	advantage	of
the	dynamic	 range	of	 the	medium,	 the	 image	should	have	pixels	with	 range	of
colors	that	span	throughout	the	entire	tone	range.

Intensity	Resolution
Intensity	 resolution	 ideally	 means	 the	 number	 of	 visible	 intensity	 steps.
However,	 this	 visibility	 depends	 on	 the	 viewing	 environment	 such	 as	 ambient
light	 color	 and	 absolute	 brightness.	 So,	 in	 order	 to	 make	 it	 simple,	 intensity
resolution	is	defined	by	the	number	of	digital	steps	used	to	define	the	intensity	of
each	 channel.	 Thus,	 for	 an	 8	 bit	 display,	 intensity	 resolution	 is	 256.	 The
distribution	 of	 these	 intensities	 across	 different	 input	 values	 depends	 on	 the
transfer	 function.	 Insufficient	 intensity	 resolution	 introduces	 quantization
artifacts	in	the	form	of	contour	lines	as	illustrated	in	Figure	10.5.	 In	practice,	a
perceptually	uniform	brightness	distribution	rarely	shows	contouring	with	8	bits
per	 pixel.	 However,	 perceptually	 uniform	 distribution	 indicated	 non-uniform
steps	in	output	value	for	equal	steps	in	input	values.	But,	if	we	want	to	achieve	a
linear	encoding	on	such	displays,	that	provide	uniform	steps	in	output	value	for
equal	 steps	 in	 input	 value,	 we	 would	 need	 a	 much	 larger	 number	 of	 bits—
around	10-12	bits	per	pixel.

Figure	10.6	 .This	 figure	 shows	 the	effect	of	brightness	 and	contrast	 control	on	 the	 transfer	 function.	Top
Row:	Increasing	contrast	increases	the	slope	of	the	red	curve.	Three	different	contrasts	are	shown	on	the	left
followed	 by	 their	 effect	 on	 the	 image	 produced	 on	 the	 right	 of	 the	 plot	 of	 the	 curves—top,	middle	 and
bottom	curves	from	left	to	right.	Middle	Row:	On	the	other	hand,	the	brightness	control	moves	the	transfer
function	 up	 and	 down.	 Increasing	 the	 brightness	 function	means	 saturating	 higher	 values	with	 the	 same
value	and	vice	versa.	The	effect	of	all	 these	changes	 to	a	picture	 is	shown	on	 the	right	of	 the	plot	of	 the

10.1.4

curves—top,	middle	and	bottom	curves	from	left	to	right.	As	the	brightness	is	reduced	notice	the	clamping
near	0	and	as	a	result	 the	rightmost	 image	has	most	of	 its	parts	darkened	to	zero.	When	the	brightness	 is
increased	the	higher	values	are	clamped	to	1	giving	it	a	washed	out	appearance	as	 is	seen	in	 the	leftmost
image.	Bottom	Row:	This	shows	the	effects	of	changing	the	tone	mapping	operator	altogether	to	have	more
general	 functions—	the	 images	on	 the	 right	 show	 the	effect	of	 the	 top,	middle	and	bottom	 tone	mapping
operators	 from	 left	 to	 right.	 For	 each	 of	 these	 figures,	 all	 of	 the	 three	 channels	 have	 the	 same	 transfer
function.

Figure	10.7	 .The	 figure	shows	 the	effect	of	having	different	gamma	functions	 for	different	channels.	The
green	channel	is	kept	the	same	in	all	the	pictures	(the	red	curve	in	the	third	row	of	Figure	10.6)	while	the
red	 and	 blue	 channels	 are	 changed	 similarly	 for	 the	 left,	 middle	 and	 right	 picture	 respectively	 using
respectively	 the	red,	green	and	blue	curves	 in	 the	 third	row	of	Figure	10.6.	This	 results	 in	different	color
tints	in	the	different	pictures—	the	right	two	are	much	warmer	than	the	left	one	while	the	rightmost	one	is
much	more	purplish	than	the	other	two.

Example	Displays
Displays	 are	 one	 of	 the	 most	 common	 devices	 where	 the	 effects	 of	 these
different	 properties	 of	 color	 gamut,	 tone	 mapping	 operators	 and	 intensity
resolution	 can	 be	 readily	 observed.	 So,	 let	 us	 study	 a	 few	 common	 display
technologies	from	this	perspective.
Cathode	Ray	 Tube	 (CRT)	Displays:	 CRT	monitors	 excite	 phosphors	 with

rays	of	electrons	from	an	electron	gun.	Different	types	of	phosphors	are	used	to
emit	 red,	 green	 and	 blue	 light.	 The	 phosphor	 colors	 match	 the	 sRGB	 color
gamut,	but	 they	age	easily	becoming	progressively	 less	bright.	 In	addition,	 the
blue	 phosphor	 often	 degenerates	 faster	 leading	 to	 a	 change	 in	 color	 balance,
giving	 the	 monitor	 a	 yellowish	 appearance.	 Note	 that	 though	 the	 hue	 and
saturation	 of	 the	 primaries	 remain	 the	 same	 in	 the	 chromaticity	 diagram,	 the
color	of	the	display	changes	just	due	to	deterioration	of	their	brightness.
The	CRT’s	 transfer	 function	 is	a	non-linear	power	function	which	 is	defined

by	the	physics	of	the	electron	gun	exciting	the	phosphors.	In	the	simplest	form,	it
is	approximated	as
I	=	V	γ
where	 I	 is	 the	measured	 intensity	 and	V	 is	 the	 input	 voltage	 corresponding	 to
channel	 inputs.	 If	 the	 intensity	 produced	 at	V	 0	 (black)	 is	 non-zero,	 then	 this
equation	is	modified	to

I	=	(V	+	V	0)	γ
Finally,	 the	entire	curve	can	be	scaled	by	a	constant	k	 to	give	the	most	general
form	of	the	equation
I	=	k	(V	+	V	0)	γ

Figure	10.8	 .The	effects	of	 flare	 light	on	 the	chromaticity	of	 the	primaries	of	an	LCD	display.	The	XYZ
chromaticity	coordinates	of	each	channel	are	plotted	(with	red,	green	and	blue	color)	as	the	input	values	are
ramped	 from	 0	 to	 1	 while	 the	 other	 channels	 are	 left	 at	 zero.	 The	 black	 plots	 show	 the	 chromaticity
coordinates	of	the	grays	as	they	ramp	from	0	to	1.	Left:	With	flare.	Right:	With	flare	subtracted.	Note	that
with	flare,	each	of	these	plots	starts	from	the	black	offset	chromaticity	coordinates	and	move	to	the	channel
chromaticity	value	on	a	straight	line	as	the	input	value	increases	thereby	decreasing	the	effect	of	the	black
offset	in	the	additive	combination.	If	the	black	offset	or	flare	is	removed,	the	chromaticity	coordinates	are
constant	(since	only	the	intensity	changes	with	the	change	in	input	values).

The	 brightness	 and	 contrast	 controls	 in	 CRTs	 therefore	 change	 k	 and	 γ
respectively.
Liquid	 Crystal	 Displays	 (LCD):	 LCD	 displays	 are	 a	 spatial	 array	 of	 red,

green	and	blue	segments,	each	of	which	is	a	colored	filter	over	a	cell	of	 liquid
crystal	 material	 that	 can	 be	 made	 variably	 transparent.	 A	 backlight	 shines
through	 the	 LCD	 array	 so	 that	 the	 resulting	 color	 is	 a	 function	 of	 both	 the
backlight	and	the	filters.	However,	colored	filters	are	significantly	different	than
colored	phosphors.	The	more	 intensely	colored	(saturated)	 the	filter	 is,	 the	 less
light	 it	 will	 pass	 making	 the	 display	 dim	 .	 The	 less	 saturated	 the	 filters,	 the
brighter	the	display	but	it	is	also	a	lot	less	colorful.	Thus,	to	get	a	highly	bright
and	colorful	display,	very	bright	backlights	 are	needed	 in	 addition	 to	 saturated
color	 filters.	 But	 a	 trade-off	 needs	 to	 be	 made	 due	 to	 the	 huge	 power
consumption.	When	compared	to	the	gamut	of	the	CRT	displays,	the	blues	of	the
LCD	displays	are	often	much	less	saturated.
The	 transfer	 function	 of	 LCDs	 is	 usually	 linear.	 But	 usually	 LCDs	 include

10.2

electronics	by	which	this	can	be	changed	to	match	the	traditional	CRT	displays.
Also,	usually	LCDs	project	some	light	even	at	 input	zero	due	to	leaking	of	 the
backlight	through	the	front	of	the	display.	Though	it	is	called	flare,	it	is	the	same
as	 the	 black	 offset.	 Thus,	 the	 chromaticities	 of	 the	 primaries	 shift	 towards	 the
white	 point	 for	 the	 lower	 intensities.	 Even	 with	 flare	 subtracted,	 the	 LCDs
deviate	measurably	from	the	ideal	RGB	model	since	the	chromaticity	is	still	not
constant	at	all	brightness	levels.
Projection	Displays:	 A	 digital	 projector	 contains	 a	 digital	 imaging	 element

like	an	LCD	panel	or	an	array	of	digital	micromirrors	(DMD)	that	modulate	the
light	 coming	 from	 a	 high	 intensity	 light	 bulb.	 Most	 LCD	 projectors	 and	 the
larger	DMD	projectors	have	 three	 imaging	elements	and	a	dichroic	mirror	 that
splits	 the	 white	 light	 from	 the	 bulb	 into	 its	 red,	 green	 and	 blue	 components.
These	 are	 recombined	 and	 displayed	 through	 a	 single	 lens.	 The	 smaller
projectors	 use	 a	 single	 imaging	 element	 with	 a	 wheel	 of	 filters,	 so	 that	 the
separations	 are	 displayed	 sequentially	 in	 time.	 Some	 DLP	 (digital	 light
processing)	projectors	have	a	fourth	filter	called	 the	clear	filter	which	are	used
while	 projecting	 the	 grays	 to	 achieve	 a	 higher	 brightness	 for	 grays.	However,
note	 that	 this	 is	 not	 equivalent	 to	 using	 more	 than	 three	 primaries	 since	 the
chromaticity	coordinate	of	the	fourth	filter	lies	inside	the	color	gamut	formed	by
the	red,	green	and	blue	filters.

Color	Management
So	 far	we	have	been	discussing	 a	 single	device.	Let	 us	now	consider	multiple
devices.	When	considering	multiple	devices,	 even	 if	 they	are	of	 the	 same	 type
and	same	brand,	the	primaries	in	them	can	differ	significantly.	Especially,	when
we	consider	a	complete	 imaging	system	 including	acquisition	 (using	cameras),
monitors,	 displays	 and	 printing,	 we	 need	 to	 make	 sure	 that	 the	 color	 in	 one
device	looks	similar	to	that	in	another.	You	may	have	had	the	situation	that	your
picture	 in	 the	 camera	 display	 looked	 nice	 and	 vibrant,	 but	 looked	 dull	 when
projected	in	a	slide	projector	for	an	event.	Or,	the	printed	picture	looked	washed
out	while	the	same	picture	looked	perfectly	fine	in	your	monitor!
Color	management	 entails	modifying	 the	 input	 going	 to	 each	device	 so	 that

the	 output	 coming	 from	 each	 device	matches.	 Since	 each	 device	 has	 different
primaries,	 it	 is	 evident	 that	 they	will	 need	 different	 inputs	 to	 create	 the	 same
color.	Since	our	goal	 is	 to	maintain	the	same	color	across	multiple	devices,	 the
only	way	to	achieve	this	is	to	change	the	input	from	one	device	to	another.	We
will	consider	two	fundamental	techniques	of	color	management	in	this	section.

10.2.1 Gamut	Transformation
Let	us	consider	two	devices	with	linear	gamma	and	color	gamut	defined	by	two
different	matrices	M	1	and	M	2.	Let	us	assume	that	the	input	(R	1	,	G	1	 ,	B	1)
creates	the	color	(X	,	Y	,	Z)	in	the	first	device.	Our	goal	is	to	find	the	input	(R
2	,	G	2	,	B	2)	in	the	second	device	that	would	create	the	same	color.	Note	that,
as	per	Equation	10.10

(10.18)
X	Y	Z	=	M	1	R	1	G	1	B	1	=	M	2	R	2	G	2	B	2

From	the	above	equation,	we	find	that

(10.19)
R	2	G	2	B	2	=	M	2	-	1	M	1	R	1	G	1	B	1

Therefore,	if	we	multiply	the	input	to	the	first	device	with	the	matrix	M	2	-	1	M
1	 ,	 we	 will	 get	 the	 appropriate	 input	 to	 create	 the	 same	 color	 in	 the	 second
device.	This	is	called	gamut	transformation.
However,	 there	 are	 some	 issues	 with	 this	 technique	 as	 illustrated	 in	 Figure

10.9.	Here	we	show	the	parallelepiped	gamut	of	 two	devices,	one	in	black	and
the	other	in	gray.	Let	us	now	consider	the	color	marked	by	the	blue	dot	which	is
within	the	gamut	of	the	first	device.	Once	we	apply	our	gamut	transformation	to
find	the	corresponding	input	in	the	second	device	to	produce	the	same	color,	the
values	we	get	are	marked	in	the	orange,	magenta	and	cyan	vectors.	Note	that	the
required	color	is	outside	the	color	gamut	of	the	second	device,	and	to	reproduce
that	color	one	of	the	primaries	has	to	be	scaled	by	avalue	greater	than	1.0.	This
means	that	the	inputs	generated	will	be	out	of	the	range.	This	indicates	that	the
color	to	be	generated	is	out	of	the	device	gamut	and	cannot	be	generated	using
convex	 combination	of	 the	primaries.	Such	 colors	 are	 call	out-of-gamut	 colors
and	cause	a	problem	in	any	gamut	transformation.
There	 are	 multiple	 ways	 to	 deal	 with	 out-of-gamut	 colors	 and	 they	 can	 be

chosen	based	on	the	application.	One	option	is	to	use	an	in-gamut	color	on	the
planar	boundaries	of	 the	gamut	 that	 is	 closest	 to	 the	out-of-gamut	colors.	This
can	be	achieved	by	clamping	the	out-of-bound	input	to	1	or	0.	Such	a	clamping
creates	 a	 local	 movement	 of	 only	 the	 out-of-gamut	 colors	 retaining	 the
appearance	of	all	in-gamut	colors.	This	method	can	yield	rather	effective	results
for	GUI	applications	where	flat	colors	are	used	for	buttons	and	slides.

10.2.2

Figure	10.9	.This	figure	illustrates	the	problem	caused	by	out	of	gamut	colors	during	gamut	transformation.

However,	when	dealing	with	natural	images,	multiple	out-of-gamut	colors	can
land	on	 the	same	 in-gamut	colors	creating	color	blotches.	Another	option	 is	 to
scale	 the	 position	 of	 all	 the	 colors	 to	 fit	 the	 out-of-gamut	 colors	 within	 the
gamut.	 This	 can	 be	 achieved	 by	 scaling	 the	 input	 by	 an	 appropriate	 factor	 to
move	 the	 out-of-range	 value	 to	 1.	 This	 leads	 to	 a	 global	movement	 of	 colors
yielding	better	result	for	images	though	vibrancy	and	brightness	of	all	the	colors
are	sacrificed.

Gamut	Matching
Gamut	 matching	 is	 a	 technique	 that	 tries	 to	 eliminate	 out-of-gamut	 colors
altogether.	 The	 mainstay	 of	 this	 method	 is	 to	 find	 a	 common	 gamut	 that	 all
devices	can	reproduce.	The	method	is	illustrated	in	Figure	10.10.	Let	us	consider
two	devices	with	gamuts	G	1	and	G	2	-		shown	in	red	and	blue	respectively.	Let
the	linear	matrices	representing	these	two	devices	be	M	 1	and	M	 2	 respectively.
First,	we	find	the	intersection	of	G	1	and	G	2.	G	1	∩	G	2	is	shown	in	green.	There
is	no	guarantee	that	G	1	∩	G	2	is	a	parallelepiped.	However,	in	order	to	express
the	common	gamut	as	a	matrix,	we	find	the	largest	parallelepiped,	G	c	,	inside	G
1	∩	G	2	.	We	desire	to	find	the	largest	such	parallelepiped	to	increase	the	gamut
of	 colors	 that	 can	 be	 reproduced	 by	 both	 the	 devices.	 Let	 the	 matrix	 that
represents	this	black	gamut	be	M	c	.
Next,	we	consider	any	input	to	be	an	input	(R	c	,	G	c	,	B	c)	in	this	common

gamut	G	c	and	find	the	corresponding	input	in	the	ith	device	from	Equation	10.19
as

10.3

Figure	 10.10	 .This	 figure	 illustrates	 the	 process	 of	 gamut	 matching	 for	 two	 devices	 whose	 gamuts	 are
denoted	 by	 the	 red	 and	 blue	 parallelepiped.	 The	 intersection	 of	 these	 two	 gamut	 is	 shown	 by	 the	 green
volume	(left).	The	biggest	parallelepiped	inscribed	in	this	intersection	is	shown	in	black	(middle).	Finally,
the	 red	 and	 blue	 parallelepipeds	 are	 transformed	 to	 the	 black	 one	 via	 appropriate	 linear	 transformations
(right).

(10.20)
R	1	G	1	B	1	=	M	i	-	1	M	c	R	c	G	c	B	c

This	 method	 can	 be	 easily	 generalized	 to	 n	 devices.	 However,	 finding	 the
intersection	of	multiple	parallelepipeds	 and	 the	 largest	 inscribed	parallelepiped
in	it	are	time	consuming	computations.
We	 have	 discussed	 here	 only	 two	 very	 basic	 color	 management	 techniques

that	 only	 apply	 to	 linear	 devices.	Non-linear	 devices	 (for	 e.g.	 ones	with	more
than	 three	 primaries)	 have	more	 complex	 shaped	 gamuts.	 Complex	 geometric
entities	like	Bezier	patches	or	splines	may	be	used	to	handle	such	non-linearities.
Further,	we	also	only	considered	methods	that	are	content-independent	(i.e.	that
does	 not	 depend	 on	 the	 particular	 content).	 There	 are	 other	 gamut	 matching
techniques	that	take	content	into	consideration.	For	example,	if	you	are	dealing
with	fall	images	where	you	know	you	will	have	predominantly	reds,	oranges	and
yellows,	you	can	do	lot	better	by	adapting	the	method	to	these	colors	so	that	they
are	maintained	at	higher	fidelity	while	larger	movements	occur	for	colors	which
are	sparse	in	the	image.

Modeling	Subtractive	Color	Mixture
We	 have	 discussed	 additive	 color	 mixtures	 so	 far.	 Though	 this	 is	 the	 system
which	we	will	use	mostly,	paint	based	systems	(e.g.	printers)	still	use	subtractive
color	mixtures.	We	will	discuss	some	of	the	basic	issues	about	subtractive	color
mixtures	in	this	section.
Cyan,	magenta	 and	yellow	are	 considered	 to	be	 the	primaries	of	 subtractive

color	 systems.	 Cyan	 absorbs	 red,	 magenta	 absorbs	 green	 and	 yellow	 absorbs
blue.	The	 ideal	 response	of	 such	paints	or	 filters	 is	 shown	by	 the	bold	 lines	 in
Figure	10.11).	When	we	say	that	yellow	has	an	input	of	0.5,	it	essentially	means

that	50%	of	blue	is	absorbed.	Or,	a	input	of	0.75	magenta	means	75%	of	green	is
absorbed.	Considering	this,	a	very	simplistic	model	of	CMY	systems	can	be

(10.21)
(C	,	M	,	Y)	=	(1	,	1	,	1)	-	(R	,	G	,	B)	.

Therefore,	 it	 is	easy	 to	 find	 the	RGB	inputs	of	a	device	given	 the	 input	 to	a
subtractive	CMY	device	using	the	above	equation.	However,	the	problem	is	that
the	real	CMY	filters	rarely	behave	as	ideal	block	filters.	They	show	lot	of	cross
talk	 due	 to	 ink	 impurities.	 This	 also	 causes	 gray	 imbalance	which	means	 that
equal	 amount	 of	 the	 different	 primaries	 do	 not	 lead	 to	 a	 neutral	 gray	 color.
Therefore,	this	simplistic	model	rarely	holds.
In	addition,	when	dealing	with	dyes	on	paper,	several	other	issues	come	into

play.	For	example,	it	is	evident	that	depositing	C,		M	and	Y	on	top	of	each	other
in	 layers	 should	 create	 a	 dark	 black.	But	 due	 to	 the	 cross	 talk,	 the	 black	 thus
created	 usually	 does	 not	 provide	 a	 good	 contrast.	 Sometimes,	 layering	 of	 so
many	different	primaries	causes	the	paper	to	get	wet	and	tear	off.	So,	almost	all
subtractive	 color	 devices	 use	 an	 inexpensive	 high	 contrast	 black	 dye	 to	 avoid
tearing	 of	 paper	 and	 to	 reduce	 cost	 by	 reducing	 the	 usage	 of	 the	 ink	 of	 other
primary	colors.	This	creates	a	4-primary	CMYK	system	where	K	stands	for	black
(traditionally	K	 stood	 for	key	color	—	 this	was	during	 the	age	of	 text	printing
when	black	was	considered	a	very	important	dye	for	printing	books;	also	since	B
is	used	for	Blue,	the	convention	is	to	use	K	for	black).	However,	this	means	that
the	primaries	are	no	longer	independent	of	each	other	and	hence	each	color	can
be	produced	in	more	than	one	way.	Thus,	such	devices	undergo	careful	factory
calibration	to	decide	what	amount	of	which	primaries	will	be	used	to	generate	a
particular	color	and	it	is	difficult	to	reverse	engineer	due	to	the	non-uniqueness
of	 the	 process.	 Figure	 10.11	 shows	 the	 comparison	 between	 a	 common
subtractive	 gamut	 of	 a	 printer	 to	 additive	 gamuts	 of	 displays.	 Note	 that	 the
subtractive	gamut	is	usually	much	smaller	than	an	additive	gamut.

10.4

Figure	10.11	.Left:	This	figure	illustrates	the	transmittance	profile	of	cyan,	magenta	and	yellow	filters	in	a
subtractive	color	system.	The	ideal	responses	are	given	in	bold	lines	and	the	real	responses	in	dotted	line.
Right:	This	 shows	a	subtractive	2D	 color	gamut	of	a	printer	 (CMYK)	when	compared	 to	an	additive	2D
color	gamut	of	a	display	(standard	RGB-often	referred	to	as	sRGB).

Limitations
At	this	point,	it	is	very	important	to	point	out	that	a	single	image	from	a	device
cannot	 really	 reproduce	 exactly	 how	 the	 humans	 perceive	 the	 scene.	 The
limitations	 in	 any	 color	 reproduction	 mechanism	 stem	 from	 two	 fundamental
reasons	 the	 range	 of	 brightness	 and	 the	 range	 of	 colors	 (chromaticity
coordinates)	that	a	device	can	capture	or	reproduce	are	usually	smaller	than	what
is	 found	 in	 nature.	 We	 have	 already	 seen	 this	 in	 the	 context	 of	 chromaticity
coordinates.	It	is	evident	that	no	3-primary	device	can	reproduce	the	entire	color
gamut	 that	 is	 perceived	 by	 a	 human	 since	 any	 triangular	 2D	 color	 gamut	will
leave	some	part	of	the	chromaticity	chart	uncovered.
The	 same	 phenomenon	 happens	 for	 brightness.	 Let	 us	 consider	 Figure

10.12(top).	The	brightness	in	any	scene	can	range	from	10-2	lumens	(in	shadows
of	trees	on	a	moon-lit	night)	to	1010	(in	sky	on	a	bright	sunlit	day).	This	is	a	huge
variation	 and	 is	 hence	 plotted	 in	 log	scale.	 The	 response	 of	 the	 human	 eye	 to
these	brightness	range	is	not	as	shown	by	the	black	dotted	line.	Instead,	at	any
particular	 time,	 the	human	eye	can	only	perceive	a	smaller	subset	of	 this	 large
range	 of	 brightness—	 maybe	 only	 3-4	 orders	 of	 magnitude.	 This	 means	 the
human	eye	can	perceive	a	contrast	ratio	or	dynamic	range	of	about	1:10,000.	In
contrast,	the	dynamic	range	that	can	be	reproduced	by	8-bit	device	is	usually	of
the	order	of	1:100.

10.4.1

Further,	 based	 on	 the	 brightness	 of	 different	 parts	 of	 the	 scene	 our	 eye	 can
quickly	adapt	to	the	most	appropriate	range	that	should	be	sensed	to	gather	the
maximum	 information.	We	 have	 all	 experienced	 this,	 especially	when	 our	 eye
goes	through	a	drastic	adaptation,	like	when	we	are	blinded	for	some	time	when
we	come	out	to	brightly	lit	outdoors	from	a	dark	room,	only	to	get	adapted	to	the
new	condition	quickly.	This	 flexible	 adaptation	capability	of	 the	human	eye	at
different	brightness	level	is	 illustrated	by	the	different	colored	curves	in	Figure
10.12(top).	 Each	 curve	 is	 linear	 only	 within	 a	 range	 of	 illumination	 beyond
which	 it	 saturates.	 Given	 a	 particular	 illumination	 level,	 the	 curve	 which
provides	a	linear	response	around	that	range	of	illumination	provides	the	curve
in	which	 the	eye	 is	 responding	 to	 the	scene.	Therefore,	when	given	a	scene	as
Figure	10.12(bottom),	 the	eye	adapts	 to	a	higher	 range	of	brightness	 to	extract
information	of	the	appearance	of	the	sky	and	then	to	a	lower	range	of	brightness
to	 extract	 the	 information	 of	 the	 objects	 like	 houses,	 roads	 and	 cars.	 Then	 it
combines	 all	 this	 information	 to	 create	 a	 mental	 picture	 similar	 to	 the
combination	of	 these	 two.	In	 this	section,	we	discuss	a	few	ways	by	which	we
address	the	limited	capability	of	usual	devices	when	compared	to	the	human	eye.

High	Dynamic	Range	Imaging
High	 dynamic	 range	 imaging	 is	 a	 technique	 by	which	we	mimic	 the	 dynamic
range	of	the	human	eye	and	create	an	image	that	can	have	a	contrast	similar	to
the	 human	 eye	 or	 even	 as	 high	 as	what	 is	 present	 in	 nature.	Here	 images	 are
captured	at	different	camera	settings	so	that	different	amounts	of	light	illuminate
the	sensor.	When	more	light	illuminates	the	sensor,	we	capture	the	darker	parts
of	 the	 scene	 while	 the	 brighter	 parts	 of	 the	 scene	 over-saturate	 the	 sensor
creating	 `burned	 out’	 or	 over-exposed	 regions.	When	 less	 light	 illuminates	 the
sensor,	we	 capture	 the	 brighter	 part	 of	 the	 scene	while	 the	 darker	 parts	 of	 the
scene	 under-saturate	 the	 sensor	 creating	 under-exposed	 regions.	 Therefore,	 by
capturing	different	 images	 and	allowing	different	 levels	of	 light	 to	 impinge	on
the	sensor,	different	parts	of	the	scene	get	captured	while	others	are	either	under
or	 over	 exposed.	 But,	 by	 combining	 the	 information	 from	 all	 these	 pictures,
information	in	all	parts	of	the	scene	can	be	gathered	creating	one	high	dynamic
range	image	that	has	a	much	higher	dynamic	range	than	what	is	available	to	us
via	any	standard	8-bit	image	capture.
Therefore,	 the	 obvious	 question	 is,	 how	 do	 we	 control	 the	 light	 that

illuminates	the	sensor	to	create	a	high	dynamic	range	image?	This	can	be	done
by	changing	the	exposure	of	the	camera	which	can,	in	turn,	be	achieved	either	by
changing	 the	 aperture	 size	 of	 the	 camera	 or	 the	 shutter	 speed.	 Shutter	 speed

dictates	 the	amount	of	 time	 the	 shutter	 is	open	 to	expose	 the	camera	 sensor	 to
light.	Usually	the	latter	control	is	chosen	for	a	reason	that	is	completely	device
dependent.	 As	 the	 aperture	 of	 the	 camera	 changes,	 due	 to	 the	 complex	 lens
system,	 the	 light	 that	 reaches	 the	 center	 of	 the	 sensor	 is	 not	 the	 same	 as	 that
which	reaches	the	periphery.	In	fact,	the	amount	of	light	reaching	different	pixels
of	the	sensor	shows	a	steady	fall-off	from	center	to	periphery.	This	is	often	called
the	vignetting	effect	of	a	camera.	The	vignetting	effect	in	a	camera	is	minimal	at
low	apertures	(f/8	or	below)	when	the	camera	is	closest	to	the	pinhole	model.	At
other	 aperture	 settings	 the	vignetting	effect	 is	 considerable	 thereby	 influencing
the	accuracy	of	 the	 light	 sensed	at	each	pixel.	Therefore,	 it	 is	better	 to	use	 the
shutter	speed	(and	not	change	aperture)	to	change	the	exposure	to	minimize	the
inaccuracies	due	to	the	different	vignetting	effects	at	different	aperture	settings.

Figure	10.12	.Top:	This	figure	illustrates	the	adaptive	dynamic	range	of	the	eye.	Each	colored	curve	shows
how	 the	 response	of	 the	eye	 spans	a	 range	of	brightness	much	 smaller	 than	 the	 total	 range	of	brightness
available	in	nature.	At	any	instant	the	response	of	the	eye	is	linear	within	this	small	range.	The	black	dotted
lines	show	the	hypothetical	response	if	there	was	no	adaptation	to	different	ranges	of	brightness	and	the	eye
had	a	response	that	spanned	the	entire	dynamic	range	available	in	nature.	Bottom:	This	shows	how	the	eye
processes	information	from	capturing	the	different	parts	of	the	scene	in	an	appropriate	dynamic	range.

Let	 us	 now	 consider	 a	 static	 scene	 captured	 by	 a	 camera	 using	 n	 different
shutter	 speeds.	For	 the	 jth	 shutter	 speed,	 1	≤	 j	 ≤	n,	 let	 the	 time	 for	which	 the
shutter	is	open	be	given	by	t	j	,	the	number	of	pixels	in	the	image	captured	by	the
camera	be	m,	 the	gray	scale	value	captured	at	ith	pixel,	1	≤	i	≤	m,	be	Z	 ij	 ,	 	 the
scene	 irradiance	 at	 the	 ith	pixel	 be	E	 i	 ,	 and	 the	 camera	 transfer	 function	 be	 f.
Therefore,	for	any	i	and	j,	we	can	model	the	imaging	process	as

(10.22)

Z	ij	=	f	(E	i	t	j)	.

Assuming	that	f	is	monotonic	and	invertible,	we	can	write	the	above	equation	as

(10.23)
f	-	1	(Z	ij)	=	E	i	t	j	.

Assuming	a	natural	logarithm	of	both	sides,	we	can	write	this	equation	as

(10.24)
g	(Z	ij)	=	l	n	E	i	+	l	n	t	j

where	g	=	lnf	-1	In	this	equation,	t	j	and	Z	ij	are	known	and	E	i	and	g	are	unknown.
For	 every	 pixel	 i,	 for	 every	 shutter	 speed	 j,	 we	 can	 write	 one	 such	 equation
leading	to	a	system	of	mn	linear	equations.	g	is	a	function	with	256	values	for	a
8-bit	device.	Therefore,	we	will	need	to	solve	m	+	255	unknowns	from	set	of	mn
over-constrained	linear	equations	using	linear	regression.	To	constrain	the	g	to	be
monotonic,	we	can	add	additional	constraints	to	the	system	of	equations.	We	can
even	add	curvature	constraints	to	assure	the	g	is	smooth.	The	solutions	of	these
equations	will	provide	a	high	dynamic	range	image	as	shown	in	Figure	10.13.
However,	 a	 high	 dynamic	 range	 image	 brings	 forth	 the	 obvious	 question	 of

how	can	we	display	it?	Its	range	of	brightness	and	contrast	are	many	orders	of
magnitude	beyond	what	a	 traditional	8-bit	display	can	do.	Seeking	the	solution
to	 this	 problem	 has	 created	 a	 large	 body	 of	 research	 literature	 on	 designing
complex,	often	spatially	varying,	tone	mapping	operators	that	can	take	this	huge
range	of	contrast	and	successfully	compress	it	within	the	range	(usually	0-255)
that	can	be	reproduced.	The	basic	idea	behind	the	tone	mapping	operators	is	to
create	the	effect	of	spatially	varying	exposure	such	that	every	region	is	exposed
the	 right	amount	 to	 reveal	 information	 (Figure	10.13)	without	getting	under	or
over	saturated.	Though	such	an	image	may	not	look	photo-realistic	since	we	are
not	used	 to	seeing	such	photos	 from	a	 real	camera	where	both	very	bright	and
very	dark	regions	are	well-exposed,	it	nevertheless	is	perfect	for	conveying	the
information	content	in	every	region	of	the	picture.

10.4.2

Figure	 10.13	 .Top	 Row:	 Three	 different	 images	 captured	 at	 different	 shutter	 speeds.	 Bottom	 Left:	 The
recovered	high	dynamic	range	radiance	map.	Note	that	this	image	cannot	be	displayed	in	the	regular	display
since	 it	 has	 a	 much	 higher	 contrast.	 Therefore	 we	 show	 a	 heat	 map	 visualization	 of	 the	 radiance,	 blue
indicating	low	and	red	indicating	high.	Right	bottom:	This	shows	the	same	image	being	shown	on	a	regular
8-bit	display	using	a	tone-mapping	operator.

Multi-Spectral	Imaging
Multi-spectral	 imaging	 is	 a	 technique	 that	 addresses	 the	 issue	 of	 a	 limited	 2D
color	 gamut	 of	 any	3-primary	 color	 reproduction	 system.	 It	 is	 evident	 that	 the
triangular	2D	gamut	formed	by	3-primaries	can	never	capture	the	entire	2D	color
gamut	 of	 the	 human	 eye.	 In	 fact,	 as	 shown	 in	 Figure	 10.3,	 most	 color
reproduction	systems	do	not	have	highly	saturated	primaries	thereby	restricting
the	2D	gamut	of	3-primary	systems	even	 further.	This	 is	due	 to	a	 fundamental
physical	 limitation.	Saturated	primaries	are	achieved	by	narrow	band	primaries
which	 are	 light	 inefficient	 since	 they	 filter	 out	 most	 of	 the	 light	 in	 a	 scene
retaining	 only	 a	 very	 narrow	 band.	 Therefore,	 saturated	 primaries	 require
addressing	 this	 fundamental	 trade	off	between	 light	 efficiency	and	a	 larger	2D
color	 gamut.	 An	 obvious	 solution	 to	 this	 problem	 is	 to	 choose	 more	 than	 3-
primaries	 and	 various	 systems	 have	 been	 designed	 over	 the	 years	 using	 4-6
primaries.	More	 than	 six	 primaries	 lead	 to	 compromising	 other	 properties	 like
spatial	resolution	to	offset	the	gain	in	the	2D	color	gamut.

Figure	10.14	.Consider	a	scene	captured	by	a	hyperspectral	camera	that	captures	the	accurate	spectrum	at
every	pixel	from	which	we	compute	the	XYZ	values	at	every	pixel.	Left:	This	image	shows	the	RGB	image
from	 a	 standard	 camera	 that	 the	 spectra	 captured	 by	 the	 hyperspectral	 camera	 would	 produce.	 Middle:
Consider	the	same	scene	being	captured	by	a	6	primary	camera	(RGBCMY),	a	standard	RGB	camera	and	a
CMY	camerathe	primaries	are	shown	on	the	chromaticity	chart	on	the	right.	The	Euclidian	distance	between
the	 reconstructed	 spectrum	 from	 these	 three	 cameras	 and	 the	 ground	 truth	 spectra	 captured	 by	 the
hyperspectral	camera	are	normalized	and	represented	as	a	gray	scale	value	at	every	pixel	(brighter	means
greater	distance).	As	expected,	a	6-primary	camera	captures	a	spectra	closer	to	the	ground	truth	than	the	3-
primary	cameras.

Referring	 to	 Figure	 10.14,	 consider	 a	 scene	 captured	 by	 a	 hyperspectral
camera	that	captures	the	accurate	spectrum	at	every	pixel.	The	XYZ	tristimulus
value	can	be	computed	at	every	pixel	from	the	captured	spectra.	Next,	the	same
scene	 is	captured	by	a	6	primary	camera	(RGBCMY),	a	standard	RGB	camera
and	 a	 CMY	 camera.	 The	 inaccurate	 spectra	 captured	 via	 these	 primaries	 are
reconstructed	 using	 a	 linear	 combination	 of	 the	 sensitivities	 of	 the	 primary
weighted	 by	 the	 values	 captured.	 The	 Euclidian	 distance	 between	 the
inaccurately	 captured	 spectra	 from	 the	 six	 or	 three	 primary	 cameras	 and	 the
ground	 truth	 spectra	 captured	 by	 the	 hyperspectral	 camera	 are	 normalized	 and
represented	as	a	gray	scale	value	at	every	pixel.	Brighter	values	indicate	greater
distances	and	 therefore	greater	errors	 in	capture.	Note	 that,	as	expected,	as	 the
number	of	primaries	 increases,	 the	errors	 reduce.	Also,	note	 that	 the	errors	 for
the	CMY	camera	is	much	greater	than	that	from	the	RGB	camera.	This	is	evident
from	examining	the	coverage	of	these	two	2D	gamuts	in	Figure	10.14	where	the
area	covered	by	the	CMY	gamut	is	clearly	much	smaller	than	the	area	covered
by	the	RGB	gamut.
This	 light	 inefficiency	 becomes	 the	 primary	 inhibitor	 for	 creating	 spectrally

accurate	reproduction	of	colors	in	displays.	Spectrally	accurate	displays	demand
highly	saturated	(and	therefore	narrow	band)	primaries	which	are	very	bright	to
create	 the	 light	 efficiency	 demanded	 by	 a	 display.	 Creating	 such	 super-bright
saturated	 primaries	 for	 displays	 was	 practically	 impossible	 till	 date.	 But,	 the

10.5

promised	 gamut	 of	 the	 6-primary	 laser	 projectors	 of	 the	 future,	 shown	 by	 the
cyan	polygon	in	Figure	10.3	shows	promise	to	achieve	this,	hopefully	sometime
soon.

Fun	Facts

The	world	 of	 color	 standards	 can	 be	 a	 confusing	 aspect	 to	 deal	 with	 for
consumers.	What	do	the	terms	NTSC,	HDTV,	UHDTV	mean	and	what	are
their	 consequences	 on	 the	 picture	 quality?	 The	 color	 standard	 definitions
have	their	origin	in	the	1940s	when	the	TV	industry	felt	the	need	to	define
some	standards	for	transmission	of	the	video	signals.	Since	this	was	the	era
of	 black	 and	 white	 television,	 the	 only	 property	 that	 was	 related	 to	 the
transmission	was	the	spatial	resolution	of	the	imagery	which	was	640	×	480
at	a	4:3	aspect	ratio	(ratio	of	the	screen	width	to	height).	In	1953,	color	was
added	 to	 the	standards	after	 the	advent	of	color	 televisions.	This	 included
specifying	a	standard	2D	color	gamut	and	white	point	(as	shown	in	Figure
10.3).	This	was	 the	main	 standard	 until	 around	 2010	when	 the	 advent	 of
digital	 content	 led	 to	 the	development	of	 the	HDTV	 (high-definition	TV)
standard.	 This	 changed	 the	 resolution	 to	 1920	 ×	 1080	 and	 expanded	 the
color	 gamut	 slightly	 (as	 shown	 in	 Figure	 10.3).	 This	 also	 introduced	 the
concept	 of	widescreen	 TV	with	 aspect	 ratio	 of	 16:9.	 Recently,	 there	 is	 a
new	standard	called	UHDTV	(Ultra	high-resolution	TV)	which	doubles	the
resolution	to	3840	×	2160.	But	we	have	reached	the	limits	of	our	ability	to
perceive	 resolution	 in	 standard	 TV	 size	 with	 HDTV.	 Therefore	 UHDTV
does	 not	 promise	 a	 huge	 difference	 in	 quality	 in	 terms	 of	 resolution.
However,	the	color	gamut	has	also	expanded	significantly	promising	much
more	 vibrant	 displays.	Also,	UHDTV	standard	 now	allows	high	dynamic
range	 imagery	 which	 together	 with	 the	 expanded	 color	 gamut	 should
improve	the	color	quality	of	TVs	greatly.

Conclusion
Color	 reproduction	 needs	 to	 combine	 the	 precision	 of	 hard	mathematics	 along
with	 the	 limitations	and/or	 imprecision	of	human	perception—	often	 involving
human	cognition—	making	 it	a	very	difficult	science	or	application	 to	succeed

in.
Deep	knowledge	of	human	perception,	as	offered	 in	books	 like	[Palmer	99],

can	 be	 very	 useful	 in	 this	 domain.	 Texts	 that	 focus	 on	 engineering	 aspects	 of
color	reproduction	include	[Hunt	95,	Berns	et	al.	00].	The	involvement	of	people
from	 diverse	 domains,	 like	 biology,	 art,	 science	 and	 engineering,	 in	 the
development	of	color	models	has	been	the	boon	and	the	curse	resulting	in	color
reproduction	being	a	complex	area	to	explore.	Therefore,	it	is	often	useful	to	see
color	from	an	alternate	perspective	as	in	[Livingstone	and	Hubel	02].
Much	work	was	 done	 in	 high	 dynamic	 range	 images	 in	 the	 late	 1990s	 and

early	2000s.	This	was	stimulated	by	the	initial	work	on	capturing	HDR	image	in
[Debevec	 and	Malik	 97].	 This	 led	 to	 a	 plethora	 of	 work	 in	 appropriate	 tone
mapping	operators	to	display	such	images	on	traditional	displays	[Tumblin	and
Turk	99,	Larson	 et	 al.	 97,	Gallo	 et	 al.	 09].	New	HDR	 cameras	were	 designed
[Yasuma	et	 al.	 10].	Displays	 that	 can	 truly	display	 such	a	high	dynamic	 range
were	also	designed	[Seetzen	et	al.	04].	Today,	such	displays	are	becoming	more
mainstream	and	slowly	emerging	in	the	market.	HDR	imaging	continues	to	be	an
active	area	of	research	even	today	[Gupta	et	al.	13].	A	comprehensive	reference
for	 HDR	 imaging	 pipeline	 is	 Reinhard	 et	 al.’s	 recent	 book	 on	 this	 topic
[Reinhard	 et	 al.	 05].	 Multi-spectral	 cameras	 [Yasuma	 et	 al.	 10,	 Susanu	 09,
Shogenji	et	al.	04]	and	displays	[Li	et	al.	15]	have	been	explored	before,	but	they
have	not	made	their	way	to	the	consumer	devices	yet.	The	only	successful	case
is	that	of	the	RGBW	projector	that	uses	a	clear	filter	in	addition	to	red,	green	and
blue	filters	only	during	the	projection	of	grays	to	increase	the	brightness	rating.
However,	this	does	not	help	in	increasing	the	2D	color	gamut	since	the	white	lies
within	the	gamut	created	by	R,		G	and	B.

Bibliography
[Berns	 00]	Roy	 S.	 Berns,	 FredW.	 Billmeyer,	 and	Max	 Saltzman.	 Billmeyer	 and	 Saltzman's	 Principles	 of

Color	Technology.	Wiley	Interscience,	2000.
[Debevec	and	Malik	97]	Paul	E.	Debevec	and	Jitendra	Malik.	“Recovering	High	Dynamic	Range	Radiance

Maps	from	Photographs."	In	Proceedings	of	the	24th	Annual	Conference	on	Computer	Graphics	and
Interactive	Techniques,	SIGGRAPH	'97,	pp.	369-378,	1997.

[Gallo	 09]	O.	 Gallo,	 N.	 Gelfand,	 W.	 Chen,	 M.	 Tico,	 and	 K.	 Pulli.	 “Artifact-free	 High	 Dynamic	 Range
Imaging."	IEEE	International	Conference	on	Computational	Photography	(ICCP).

[Gupta	13]	M.	Gupta,	D.	Iso,	and	S.K.	Nayar.	“Fibonacci	Exposure	Bracketing	for	High	Dynamic	Range
Imaging."	pp.	1-8.

[Hunt	95]	R.	W.	G.	Hunt.	The	Reproduction	of	Color.	Fountain	Press,	1995.
[Larson	97]	G.	W.Larson,	H.Rushmeier,	and	C.Piatko.	“A	Visibility	Matching	Tone	Reproduction	Operator

for	High	Dynamic	Range	Scenes."IEEE	Transactions	on	Visualization	and	Computer	Graphics	3:4.
[Li	 15]	 YuqiLi,	 Aditi	 Majumder,	 Dongming	 Lu,	 and	 Meenakshisundaram	 Gopi.	 “Content-Independent

Multi-Spectral	Display	Using	Superimposed	Projections."	Computer	Graphics	Forum.
[Livingstone	 and	Hubel	 02]	Margaret	Livingstone	 and	H.David	Hubel.	Vision	 and	Art	 :	 The	Biology	 of

Seeing.	Harry	N	Abrams,	2002.
[Palmer	99]	Stephen,	E.Palmer.	Vision	Science:	MIT	Press,	1999.
[Reinhard	 05]	 Erik	 Reinhard,	 Greg	Ward,	 Sumanta	 Pattanaik,	 and	 Paul	 Debevec.	 High	Dynamic	 Range

Imaging:	 Acquisition,	 Display,	 and	 Image-Based	 Lighting	 (The	 Morgan	 Kaufmann	 Series	 in
Computer	Graphics).	Morgan	Kaufmann	Publishers	Inc.,	2005.

[Seetzen	 04]	Helge	Seetzen,	W.Heidrich,	W.Stuezlinger,	G.Ward,	L.Whitehead,	M.Trentacoste,	A.Ghosh,
and	A.Vorozcovs.	“High	Dynamic	Range	Display	Systems."	ACM	Transactions	on	Graphics	(special
issue	SIGGRAPH).

[Shogenji	04]	R.Shogenji,	Y.Kitamura,	K.Yamada,	S.Miyatake,	and	J.Tanida.	“Multispectral	imaging	using
compact	compound	optics."	Opt.	Exp.,	p.	16431655.

[Susanu	09]	Peterescu	S.	Nanu	F.	Capata	A.	Corcoran	P.	 Susanu,	G.	“RGBW	Sensor	Array."	US	Patent
2009/0,167,893.

[Tumblin	 and	 Turk	 99]	 J.Tumblin	 and	G.Turk.	 “Low	Curvature	 Image	 Simplifiers	 (LCIS):	 A	 Boundary
Hierarchy	for	Detail-Preserving	Contrast	Reduction."	pp.	83-90.

[Yasuma	10]	 F.Yasuma,	 T.Mitsunaga,	D.Iso,	 and	 S.K.Nayar.	 “Generalized	Assorted	 Pixel	 Camera:	 Post-
Capture	 Control	 of	 Resolution,	 Dynamic	 Range	 and	 Spectrum."	 IEEE	 Transactions	 on	 Image
Processing	99.

Summary:	Do	you	know	these	concepts?

3D	or	2D	Color	Gamut	of	a	Device
Gamma	Function
Color	Management
Gamut	Transformation	and	Matching
Dynamic	Range
Adaptation
High	Dynamic	Range	Imaging
Multi-spectral	Imaging

Exercises
1.	 C	 1	and	C	 2	 are	 colors	with	 chromaticity	 coordinates	 (0.33,	 0.12)	 and

(0.6,	 0.3)	 respectively.	 In	 what	 proportions	 should	 these	 colors	 be
mixed	to	generate	a	color	C	3	of	chromaticity	coordinates	(0.5,	0.24)?	If
the	intensity	of	C	3	is	90,	what	are	the	intensities	of	C	1	and	C	2?

2.	 Consider	 a	 linear	 display	 whose	 red,	 green	 and	 blue	 primaries	 have
chromaticity	 coordinates	 of	 (0.5,	 0.4),	 (0.2,	 0.6)	 and	 (0.1,	 0.2)

respectively.	 The	 maximum	 brightnesses	 of	 the	 red,	 green	 and	 blue
channels	are	100,	200	and	80cd/m	 2	 respectively.	Generate	 the	matrix
that	 converts	 the	 RGB	 coordinates	 for	 this	 device	 to	 the	 XYZ
coordinates.	What	are	 the	XYZ	coordinates	of	 the	color	generated	by
the	RGB	input	(0.5,	0.75,	0.2)	on	this	device?

3.	 Consider	two	colors	C	1	=	(X	1	,	Y	1	,	Z	1)	and	C	2	=	(X	2	,	Y	2	,	Z	2
)	in	the	CIE	XYZ	space.	Let	their	chromaticity	coordinates	be	(x	1	,	y
1)	and	(x	2	,	y	2)	respectively.

a.	 If	C	1	is	a	pure	achromatic	color,	what	constraint	will	hold	on
its	tristimulus	values	and	its	chromaticity	coordinates?	In	that
case,	 would	 black	 and	 white	 lie	 on	 the	 ray	 connecting	 the
origin	to	C	1	in	XYZ	space?	Justify.

b.	 If	C	2	=	(50,	100,	50),	then	what	is	the	value	of	(x	2	,	y	2)	?
c.	 What	is	the	dominant	wavelength	of	C	2?
d.	 To	create	a	color	of	chromaticity	coordinates	(7/24,	10/24),	in

what	proportions	should	be	C	 1	and	C	 2	be	mixed?	What	are
the	intensity	and	luminance	of	C	1	required	for	this	mixture?

4.	 When	we	mix	blue	paint	with	yellow	paint	we	get	green.	But	when	we
project	blue	light	on	yellow	light,	we	get	brown.	How	do	you	explain
this	contradiction?

5.	 Consider	 a	 grayscale	 image	with	 linear	 gamma	 function.	How	would
you	 change	 the	 gamma	 function	 to	 make	 the	 image	 have	 higher
contrast?

6.	 Another	 name	 for	 the	gamma	 function	 is	 the	 tone	mapping	operator.
Consider	 a	 8—bit	 display	 (each	 channel	 is	 represnted	 with	 8—	 bit
integers)	with	tone	mapping	operator	of	i	2	across	all	channels	where	i
is	 the	 channel	 input.	 Consider	 the	 properties	 of	 brightness,	 contrast,
color	 resolution,	white	 point	 and	 tint.	Which	 of	 these	 properties	will
change	in	each	of	the	following	scenarios?

a.	 The	tone	mapping	operator	is	made	i	3	across	all	the	channels.
b.	 	 The	 tone	 mapping	 operator	 is	 made	 i	 3	 across	 the	 green

channel	only.
c.	 The	number	of	bits	are	changed	to	10	bits	across	all	channels.
d.	 Which	property	would	remain	unchanged	across	all	the	above

changes?

7.	 Gamut	matching	addresses	the	problems	caused	by	out-of-gamut	colors
in	 gamut	 transformation.	 But	 what	 do	 you	 expect	 to	 be	 the	 negative
effect	of	gamut	matching?

8.	 Consider	 a	 projector	 with	 sRGB	 color	 gamut	 (RGB	 chromaticity
coordinates	 given	 by	 (0.64,	 0.33),	 (0.3,	 0.6)	 and	 (0.15,	 0.06)).	 The
luminance	of	the	red,	green	and	blue	channels	is	given	by	100,	400	and
50	 lumens.	 Since	 this	 is	 a	 projector,	 it	 has	 a	 black	 offset	 with
chromaticity	(0.02,	0.02)	and	luminance	of	10	lumens.

a.	 Find	the	matrix	to	convert	the	input	values	of	this	projector	to
the	XYZ	space.

b.	 Consider	another	projector	whose	all	color	properties	are	the
same	 except	 the	 luminance	 of	 green	 which	 is	 200	 lumens.
Find	the	same	matrix	for	this	projector.

c.	 Find	an	 input	 in	 the	 first	projector	 that	will	be	out	of	gamut
for	the	second	projector.

d.	 Is	 there	any	color	 in	 the	second	projector	 that	will	be	out	of
gamut	for	the	first	projector?	Justify	your	answer.

9.	 Consider	 a	 display	 with	 the	 following	 specs.	 The	 2D	 gamut	 of	 the
display,	given	by	the	chromaticity	coordinates	of	its	blue,	green	and	red
primaries	 respectively,	 are	 (0.1,	 0.1),	 (0.2,	 0.6)	 and	 (0.6,	 0.2).	 The
intensity	of	the	white	is	1000	lumens.	The	white	point	 is	(0.35,	0.35).
Find	the	matrix	M	that	defines	the	color	property	of	this	display.

11

Photometric	Processing
In	 the	 previous	 chapter,	 we	 learned	 about	 different	 ways	 to	 represent	 color.
Though	 device	 dependent,	 RGB	 representation	 is	 still	 the	 most	 common
representation	 of	 color	 images.	 In	 this	 chapter,	 we	 will	 learn	 about	 some
fundamental	image	processing	techniques	that	deal	with	processing	the	colors	of
the	image.	There	are	two	ways	to	process	color	images.	(a)	In	the	first	approach,
the	processing	techniques	are	applied	similarly	to	the	red,	green	and	blue	color
channels	 assuming	 each	 of	 them	 to	 be	 an	 independent	 2D	 image.	 (b)	 In	 the
second	 approach,	 RGB	 images	 are	 converted	 to	 1D	 luminance	 (Y)	 and	 2D
chrominance	 (via	 some	 linear	or	non-linear	color	 space	 transformation),	which
are	 processed	 separately	 and	 the	 processed	 image	 is	 subsequently	 transformed
back	to	RGB.
When	 applying	 tone	mapping	 operators,	 the	 first	 approach	 is	 commonly	 used
since	 this	 does	 not	 change	 the	 relative	 differences	 between	 the	 colors.	 But,	 a
good	 example	 of	 the	 second	 approach	 is	 contrast	 enhancement	 where	 the
contrast	of	the	luminance	but	not	of	the	chrominance	is	enhanced.	As	opposed	to
enhancing	the	contrast	of	each	of	the	red,	blue	and	green	channel	independently,
enhancing	only	the	luminance	while	keeping	the	chrominance	unchanged	helps
to	preserve	 the	hue	which	can	be	 important	 in	many	applications.	Similarly,	 in
other	 applications	 like	 image	 compression,	 changing	 to	 a	 luminance	 and
chrominance	 representation	 is	 justified	 since	 human	 perception	 gives	 more
importance	 to	 luminance	 which	 can	 be	 leveraged	 by	 compressing	 the
chrominance	channels	more	aggressively	than	the	luminance.	Which	of	the	two
methods	 is	 used	 to	process	 color	 images	often	depends	on	 several	 criteria	 like
application,	network	bandwidth	and	processing	power.	We	will	discuss	different
techniques	in	this	chapter	assuming	they	will	be	applied	to	a	single	channel	of	an
image,	 be	 it	 be	 luminance	 or	 red	 or	 green	 or	 blue	 channel.	 It	 is	 left	 to	 the
application	developer	to	decompose	an	image	to	appropriate	channels.

11.1

Figure	 11.1	 .	 This	 figure	 shows	 different	 images	 (top	 row)	 and	 their	 corresponding	 histograms	 (bottom
row).	 Since	 these	 are	 single	 channel	 gray	 scale	 images,	 the	 gray	 values	 i	 range	 from	 0	 to	 255.	 The
probability	 of	 their	 occurance,	 h(i)	 ranges	 from	 0	 to	 1.	 Note	 that	 the	 left	 and	middle	 image	 have	 same
histogram	though	they	are	very	different	in	appearance.

Histogram	processing
Histogram	 is	 defined	 as	 the	 probability	 density	 function	 of	 the	 values	 in	 an
image.	Let	us	consider	a	single	channel	of	an	 image	of	size	m	×	n	providing	a
total	of	N	=	m	×	n	 pixels.	The	value	at	 each	pixel	 i	can	 take	p	 discrete	 values
normalized	between	zero	(black)	to	one	(white).	p	is	given	by	the	number	of	bits
used	 for	 representing	 the	 grays.	 Let	 us	 consider	 8-bit	 gray	 values	 leading	 to
p	 =	 256.	 There-fore,	 i	 can	 take	 k	 different	 values,	 i	 k	 ,	 	 1	 ≤	 k	 ≤	 256.	 Let	 the
number	of	pixels	in	the	image	with	value	i	k	be	N	k	.	Therefore,	the	histogram	h(i	k
)	is	defined	as

(11.1)
h	(i	k)	=	N	k	N

i.e.	 the	probability	of	a	pixel	 to	have	a	value	 i	 k	 .	Since	h(i	 k)	 is	 a	 probability,
0	≤	h(i	k)	≤	1,	and	therefore	h	is	a	probability	density	function.

Figure	11.2	.	This	figure	shows	how	the	exposure	(the	measure	of	how	much	light	is	let	into	the	camera	to
capture	the	picture)	affects	the	histogram	of	an	image.	When	the	image	is	underexposed	(left)	the	histogram
h	 shifts	 left	 with	 higher	 values	 of	 h	 for	 lower	 values	 of	 i.	 When	 the	 image	 is	 overexposed	 (right)	 the
histogram	h	shifts	right.	For	correctly	exposed	image,	the	values	of	h	at	0	and	255	are	not	outliers.

Figure	 11.1	 shows	 some	 example	 of	 histogram	 of	 images.	 Note	 that	 two
images	can	have	entirely	different	appearances	but	have	very	similar	histograms.
Figure	 11.2	 shows	 the	 effect	 of	 the	 exposure	 on	 the	 histogram	 of	 an	 image.
Exposure	 decides	 how	much	 light	 comes	 into	 the	 camera	 when	 capturing	 the
image.	If	 too	little	light	is	let	 in,	darker	regions	of	the	image	are	underexposed
having	the	value	0	therefore	creating	a	high	value	for	h(0).	If	too	much	light	is
let	 in,	 brighter	 regions	 of	 the	 image	 are	 overexposed	 having	 the	 value	 of	 1
thereby	creating	a	spike	at	h(1)	.	Figure	11.3	shows	the	effect	of	contrast	on	the
histogram	of	an	image.	Low	contrast	images	usually	do	not	have	the	near	black
and	near	white	grays.	Therefore,	h(i	k)	is	non-zero	only	in	a	small	middle	ranges
of	values	of	i	k	.
One	common	application	of	histogram	processing	 is	 to	enhance	 the	contrast

of	the	image,	using	a	process	called	histogram	stretching.	As	we	saw	earlier,	the
range	of	values	for	which	h(i	k)	≠	0	is	small	for	a	low	contrast	image.	The	goal
of	histogram	stretching	is	to	map	every	input	value	i	k	to	a	new	input	j	k	such	that
the	range	of	the	new	histogram	h(j	k)	has	positive	values	for	all	values	of	k.
The	 first	 step	 of	 histogram	 stretching	 is	 to	 find	 the	 cumulative	 probability

distribution	function,	H,	where

Figure	11.3	.	This	figure	shows	the	effect	of	change	of	contrast	on	the	histogram	of	an	image.	Note	that	low
contrast	image	(left)	means	very	dark	grays	and	very	bright	grays	are	both	absent	and	therefore	the	range	of
values	for	which	h(i	k)	is	positive	is	small	and	in	the	middle	range.

(11.2)
H	(i	k)	=	∑	0	k	h	(i	k)	=	H	(i	k	-	1)	+	h	(i	k)

H(i	 k)	 is	 a	monotonically	 non-decreasing	 function	 that	 goes	 from	H(0)	 =	 0	 to
H(1)	=	1.	Let	us	examine	the	function	H	for	a	low	contrast	image	(Figure	11.4).
Let	the	range	of	values	with	non-zero	values	in	h	be	from	d	to	u	where	d	≤	u,	
d	>	>	0	and	u	<	<	255.	Therefore,	H	=	0	from	0	≤	i	k		≤	d	and	H	=	1	for	all	u	≤	i	k
	≤	1.
In	 order	 to	 stretch	 the	 histogram	 to	 increase	 the	 contrast	 of	 the	 image	 i	 k	 is

mapped	to	j	k		=	H(i	k)	.	Therefore,	j	k		=	0	for	all	0	≤	i	k		≤	d	and	j	k		=	1	for	u	≤	i	k

	≤	1.	All	the	values	in	between	d	and	u	are	mapped	between	the	entire	range	of	0
and	1.	Therefore	the	range	of	the	values	in	the	new	image	now	spans	the	entire
range	 0	 to	 1	 instead	 of	d	 to	u	 resulting	 in	 an	 improved	 contrast.	However,	 j	 k
depends	entirely	on	the	slope	of	H	at	i	k	.	Also,	since	j	k	can	only	have	u	-	d	+	1
values	between	0	to	1,	the	histogram	of	the	contrast	enhanced	image	will	be	non-
zero	only	at	u	-	d	+	1	input	values	and	not	all	p	values	between	0	and	1.	Figure
11.5	shows	the	results	of	this	contrast	enhancement	via	histogram	stretching.

Figure	11.4	.	This	figure	shows	a	histogram	h(i)on	the	left	and	the	cumulative	probability	distribution	c(i)
corresponding	 to	 h(i)	 on	 the	 right.	 Note	 that	 the	 cumulative	 probability	 distribution	 function	 is	 a
monotonically	increasing	function	ranging	between	0	to	1.

However,	the	mapping	function	used	to	map	i	k	to	j	k	in	histogram	stretching	is
spatially	 invariant	 across	 the	 image.	 Therefore,	 this	 method	 is	 called	 global
histogram	 stretching.	 Histogram	 stretching	 is	 often	 also	 called	 histogram
equalization.
Applying	 the	 same	mapping	 at	 every	 pixel,	 as	 is	 done	 in	 global	 histogram

stretching,	inherently	assumes	that	the	contrast	is	similar	across	the	entire	image.
Therefore	 when	 the	 image	 has	 spatially	 varying	 contrast,	 global	 histogram
stretching	leads	to	an	artifact	of	burn	and	dodge.	In	other	words,	some	parts	of
the	 image	 get	 over-exposed	 while	 other	 parts	 are	 under	 exposed.	 This	 is
illustrated	in	Figure	11.6.	To	avoid	this	artifact,	a	variant	of	 the	global	method,
called	adaptive	histogram	stretching,	is	used.

Figure	 11.5	 .	 This	 figure	 shows	 contrast	 enhancement	 of	 the	 image	 on	 the	 left	 using	 global	 histogram
stretching	to	produce	the	image	on	the	right.	The	bottom	row	shows	the	corresponding	histograms	of	these

two	images.

Let	us	consider	an	image	whose	contrast	is	varying	spatially.	In	such	cases,	a
global	 histogram	 stretching	 technique	 should	 be	 applied	 in	 a	 local
P	 ×	 Pneighborhood	 window	 around	 a	 particular	 pixel	 (u;	 v)	 to	 compute	 the
mapping	 of	 the	 input	 value	 at	 (u;	 v).	 Applying	 this	 technique	 at	 every	 pixel
results	 in	 adaptive	 histogram	 stretching	 where	 the	 mapping	 at	 every	 pixel	 is
different	and	is	guided	by	the	 local	contrast	given	by	the	 local	histogram	in	its
P	×	Pneighborhood.	However,	in	this	case,	the	same	value	ik	will	get	mapped	to
different	 values	 at	 different	 pixel	 locations	 in	 the	 image	 based	 on	 the	 local
contrast.	Therefore,	even	if	the	original	image	had	only	u	-	d	+	1	gray	values	in
the	range	d	to	u,	they	could	be	mapped	to	more	than	u	-	d	+	1	gray	values	after
adaptive	histogram	stretching.	Therefore,	 the	histogram	of	 the	enhanced	 image
will	not	be	sparse	as	in	global	histogram	stretching.

Figure	11.6	.	This	left	image	is	one	with	spatially	varying	contrast	-note	that	the	top	right	part	of	the	image
has	much	better	contrast	than	the	rest	of	it	while	the	left	bottom	part	has	much	worse	contrast	than	the	rest
of	 the	 image.	The	 right	 image	 shows	 the	 result	 after	global	histogram	equalization	which	 shows	 that	 the
former	region	is	now	over-exposed	while	the	latter	is	under-exposed.

As	is	evident,	the	quality	of	the	result	from	this	adaptive	histogram	stretching
will	depend	on	the	value	of	P.	This	is	illustrated	in	Figure	11.7.	If	P	is	too	small,
the	contrast	 is	evaluated	at	a	small	granularity	leading	to	a	tremendous	amount
of	noise.	As	the	window	size	increases,	the	noise	reduces.	But	if	P	 is	too	high,
local	 burns	 and	 dodges	 will	 start	 to	 appear.	 Therefore,	 choosing	 an	 optimal
window	size	is	important	for	adaptive	histogram	stretching.

11.1.1

Figure	11.7	 .	The	original	 image	 is	shown	in	(a)	and	 the	result	of	global	histogram	stretching	 in	(b).	The
result	of	adaptive	histogram	stretching	with	P	=	12,	60,	100,	250	is	shown	in	(c),	(d),	(e),	(f)	respectively.
Note	that	the	noise	is	much	more	than	(b)	in	(c),	(d)	and	(e).	However,	the	window	size	in	(f)	is	optimal	and
it	 provides	 a	 much	 better	 contrast	 enhancement	 than	 (b),	 especially	 in	 the	 horizon	 at	 the	 back	 whose
contrast	 is	 significantly	 lower	 than	 that	 of	 the	 city.	 Also	 note	 that	 each	 buildings	 contrast	 is	 differently
enhanced	in	(f).	However,	in	some	places	in	(f),	burning	still	occurs	due	to	over	exposure.

Handling	color	images
To	apply	 histogram	processing	 to	 color	 images,	 the	 treatment	 differs	 based	on
the	 application.	One	option	 is	 to	 apply	 the	 same	method	 to	 the	 three	 channels
independently.	 But	 this	 does	 not	 ensure	 that	 the	 hue	 is	 preserved.	 Therefore,
most	 of	 the	 time,	 the	 RGB	 image	 is	 first	 converted	 to	 luminance	 and
chrominance	 using	 standard	 RGB	 to	 XYZ	 linear	 transformation	 followed	 by
finding	the	chromaticity	coordinates	computation.	Then,	contrast	enhancement	is
applied	 only	 to	 Y	 while	 the	 chromaticity	 coordinates	 are	 left	 unchanged.
Following	the	enhancement	in	Y,	the	image	is	transformed	back	to	RGB	format
using	 inverse	 transformations.	 What	 results	 is	 called	 hue	 preserving	 contrast
enhancement.	 This	 is	 illustrated	 in	 Figure	 11.8.	 When	 hue	 is	 not	 preserved,
blotches	of	pink	and	green	show	up	in	different	parts	of	the	scene	during	contrast
enhancement.

11.2

Figure	11.8	 .	The	 left	 three	 images	on	 the	 top	 shows	 two	different	ways	 to	handle	 color	during	adaptive
histogram	stretching.	Left:	Original	image;	Middle:	Adaptive	histogram	stretching	of	each	of	the	channels
independently.	Therefore	hue	is	not	preserved	as	is	shown	by	the	shift	towards	green	on	the	door	on	top	of
the	stairs	and	the	shift	to	purple	on	the	left	side	of	the	shadow	and	on	the	wall.	Also	notice	that	the	shawl	of
the	lady	now	has	more	saturated	pink.	Right:	Adaptive	histogram	stretching	applied	only	on	the	luminance
channel	 resulting	 in	 a	 hue	 preserving	 contrast	 enhancement.	 However,	 whether	 it	 is	 more	 realistic	 or
pleasant	to	look	at	may	still	be	an	arguable	issue.	For	some,	the	more	saturated	pink	and	the	higher	contrast
between	 sunlight	 and	 shadows	 may	 make	 the	 second	 picture	 aesthetically	 more	 appealing.	 The	 bottom
figure	shows	the	process	of	histogram	matching.	On	the	right,	the	histogram	of	I	g	is	matched	with	that	of	I	h
creating	I	g	′	that	has	the	same	look	and	feel	as	I	h	.

However,	 in	 some	 cases	 hue-preservation	may	 not	 be	 applicable.	 One	 such
example	is	 that	of	histogram	matching.	Histogram	matching	is	a	technique	that
allows	us	 to	 impart	 the	 look	and	feel	of	one	 image	onto	another	which	 is	only
possible	by	modification	of	both	hue	and	luminance.	Consider	two	images	I	h	and
I	 g	with	 two	 different	 histograms	h	 and	g	 respectively.	 The	 goal	 of	 histogram
matching	is	to	make	these	two	histograms	identical.	To	achieve	this,	we	first	find
the	corresponding	cumulative	distribution	functions	H	and	G	respectively.	Next,
for	 an	 input	 x	 i	 in	 I	 g	 ,	 we	 map	 it	 to	 an	 input	 x	 j	 such	 that	G(x	 i)	 =	H(x	 j).
Following	this	mapping	h	becomes	identical	 to	g	and	I	g	′	 looks	similar	 to	 I	 h	 .
These	 are	 illustrated	 in	 Figure	 11.8.	 Here	 the	 color	 tone	 of	 a	 sunset	 scene	 is
imparted	into	an	oceanside	scene	via	histogram	matching.

Image	Composition
Compositing	images	is	another	important	application	of	color	image	processing.

11.2.1

In	 this	 section	 we	 will	 discuss	 a	 number	 of	 methods	 to	 achieve	 this.	 Image
composition	 is	quite	commonly	used	 in	 the	entertainment	 industry	where	often
virtual	objects	or	characters	from	past	or	artistic	effects	have	to	be	worked	in	the
images/videos	captured.
The	simplest	technique	for	image	composition	is	by	using	sprites—	currently

available	 in	Photoshop	 as	 a	 feature	 called	 intelligent	 scissors.	Sprites	 are	parts
cut	out	from	an	image	I	given	by	S	×	I	where	S	is	a	binary	image	called	the	sprite
mask	 with	 1	 for	 the	 pixels	 included	 in	 the	 sprite,	 and	 ×	 	 indicates	 pixel-wise
multiplication.	A	sprite	is	defined	for	each	image	to	be	used	in	the	composition.
These	sprites	are	then	appropriately	translated	and	scaled	and	placed	in	layers	on
top	of	each	other	in	a	specific	order.	Figure	11.9	shows	an	example	where	I	1	is	a
picture	of	downtown	Seattle	and	I	2	is	a	picture	of	Bill	Gates.	Two	sprites	S	1	and
S	2	are	defined	each	scissoring	out	 the	foreground	from	I	1	and	I	 2	 respectively.
Therefore,	three	layers	Ií,	I	2	′	and	I	3	′	are	defined	as

(11.3)
I	í	=	I	1	×	S	1

(11.4)
I	2	′	=	I	2	×	S	2

(11.5)
I	3	′	=	I	1	×	S	1	′
The	combined	image	I	is	created	by	overlaying	translated	and	scaled	I	1	′	,	I	2

′	and	I	3	′	.	I	3	′	provides	the	first	layer	of	the	background	made	by	the	sky	in	I.
This	is	then	overlaid	by	the	the	image	of	Bill	Gates	formed	by	I	2	′	which	 is	 in
turn	overlaid	by	the	image	of	the	city	I	1	′	.	Note	that	overlaying	means	replacing
the	 pixels	 in	 I	 ’	 wherever	 the	 sprite	 is	 1.	 However,	 such	 overlaying	 of	 pixels
hardly	work.	For	example	in	Figure	11.10,	I1	multiplied	with	sprite	S	1	is	overlaid
on	I	2	to	create	I.	Mathematically,	the	operation	can	be	expressed	as	I	=	I	1	S	1	+	I
2(1	-	S	1).	But	the	pawn	does	not	look	like	it	is	placed	on	the	chess	board,	rather	it
looks	 pasted	 on	 the	 chess	 board.	 This	 problem	 is	 addressed	 by	 the	 image
blending	operation.

Image	Blending
Sprite	is	binary	and	only	allows	for	complete	retention	or	removal	of	a	pixel	of
the	 source	 image	 in	 the	 composited	 image.	 So	 the	 sprites	 do	 not	 work	 while
compositing	images	with	transluscent	objects	where	the	background	is	partially
visible	through	the	foreground,	or	when	compositing	images	with	furry	objects

for	which	generating	a	precise	binary	mask	separating	the	foreground	from	the
background	is	extremely	hard.

Figure	11.9	.	This	figure	shows	the	layer	based	composition	of	two	images	I	1	and	I	2	to	form	the	new	image
I	using	sprites	S	1	and	S	2	respectively.

Figure	11.10	.	I	1	multiplied	with	binary	sprite	S	1	is	overlaid	on	I	2	to	create	I	mathematically	expressed	as
I	=	I	1	S	1	+	I	2(1	-	S	1)	.	When	S	1	is	modified	to	an	alpha	mask	α,	the	same	operation	of	I	=	I	1	α	+	I	2(1	-	α)
results	in	a	nice	result	where	the	pawn	looks	as	if	it	is	sitting	on	the	chess	board	due	to	the	more	realistic
shadow.

This	brings	us	to	the	concept	of	a	more	general	sprite	mask	that	does	not	need
to	 be	 binary.	 In	 fact,	 as	 a	 more	 general	 concept,	 a	 sprite	 mask	 can	 have	 any
fractional	value	between	0	to	1	and	therefore	can	be	used	to	attenuate	colors	of
different	parts	of	the	image	differently	on	multiplication.	Such	a	sprite	is	termed
as	an	alpha	mask	(Figure	11.10).	Using	the	same	operation	I	1	α	+	I	2(1	-	α)	with
the	 alpha	 mask	 now	 creates	 the	 image	 I	 b	where	 the	 shadow	 of	 the	 pawn	 is
weighted	by	a	smaller	value	than	1.0,	resulting	in	an	image	I	b	where	 the	pawn
looks	 like	 it	 is	 placed	 on	 the	 chessboard	 and	 not	 pasted	 on	 it	 due	 to	 a	 more
realistic	shadow.	This	process	is	called	alpha	blending.
Now,	let	us	explore	some	application	of	such	alpha	masks.	Figure	11.11	shows

the	 compositing	 of	 two	 images	 I	 1	 and	 I	 2	 (a	 and	 b)	 which	 have	 a	 horizontal
common	region.	 In	 the	first	 image	 I	 1,	most	of	 the	bottom	part	of	 the	 image	 is
dark	(a)	while	in	the	second	one,	I	2,	most	of	the	top	part	is	dark	(b).	These	are
composited	using	different	alpha	masks	using	the	equation	I	1	α	+	I	2(1	-	α).	The
first	alpha	mask	(c)	is	a	binary	mask,	similar	to	a	sprite	mask,	that	uses	a	central
seam	and	assigns	all	the	pixels	on	one	side	of	it	 to	I	1	and	all	 the	pixels	on	the

other	side	to	I	2	 resulting	in	the	image	in	(d)	that	shows	a	clear	seam	along	the
central	 line	of	division.	In	the	second	alpha	mask	(e),	all	 the	pixels	in	the	non-
overlapping	region	below	the	central	seam	are	assigned	to	one	image	and	those
above	 the	seam	to	 the	other	 image	and	all	 the	pixels	 in	 the	overlapping	 region
are	allowed	to	have	equal	contribution	from	I	2	and	I	2	by	assigning	a	weight	of
0.5.	The	result	is	an	image	(f)	where	the	seam	is	smooth	but	still	visible.	Finally,
in	the	third	mask	(g),	the	assigned	alpha	value	is	dependent	on	the	distance	from
the	two	boundaries	created	by	the	overlapping	region	of	I	1	and	I	2	with	each	of	I
1	and	I	2	respectively.	In	order	to	see	how	this	distance	can	contribute	to	the	alpha
value,	 let	us	consider	a	pixel	 in	 the	overlap	region	between	 I	 1	and	 I	 2.	Let	 the
distance	of	this	pixel	from	the	boundary	of	this	overlap	with	I	1	and	I	2	be	d	1	and
d	 2	 respectively.	 Note	 that	 as	 d	 1	 increases	 d	 2	 decreases	 and	 vice-versa.	 The
weight	assigned	to	this	pixel	in	the	alpha	mask	is	α	=	d	2	d	1	+	d	2	.	Therefore,
when	d	1	is	0,	i.e.	the	pixel	is	close	to	the	boundary	with	I	1,		α	=	1	and	therefore
all	the	contribution	is	from	I	1.	(1	-	α)	is	zero	signifying	no	contribution	from	I	2.
But,	as	d	2	=	0	near	the	boundary	with	I	2,		α	=	0	signifying	no	contribution	from
I	 1	 but	 (1	 -	 α)	 =	 1	 signifying	 complete	 contribution	 from	 I	 2.	 For	 pixels	 in
between,	 the	α	 is	 in	between	0	 and	1	based	on	 the	 relative	distances	 from	 the
boundaries	with	I	1	and	I	2.	Note	that	the	resulting	image	with	this	alpha	mask	(h)
based	blending	is	truly	seamless.	Blending	of	images	using	such	an	alpha	mask
will	result	in	a	smooth	change	in	the	contribution	of	the	individual	images	in	the
final	image	and	will	appear	seamless.
The	same	process	of	alpha	blending	can	be	used	to	blend	two	images	placed

adjacent	to	each	other.	This	is	a	common	process	in	applications	like	panoramic
image	 generation	 and	 image	 synthesis.	 We	 show	 such	 an	 example	 in	 Figure
11.12.	The	goal	is	to	composite	I	1	and	I	2	to	create	an	image	whose	and	right	half
will	look	like	I	1	and	I	2	respectively	with	a	seamless	transition	in	between.	For
this,	we	will	resort	to	alpha	blending	using	the	function	I	1	α	+	I	2(1	-	α)	where	α
is	 the	mask.	Consider	 a	 step	 function	α	which	 is	 black	 (0)	 in	 the	 left	 half	 and
white	(1)	in	the	right	half.	Let	I	1	α	and	I	2(1	-	α)	result	in	I	l	and	I	r	respectively.	I	l
	+	I	r	does	not	show	a	smooth	transition	between	I	1	and	I	2	at	the	center	due	to	a
step	blending	function.	A	better	way	to	achieve	a	smooth	transition	would	be	to
choose	a	width	w	 around	 the	central	 line	of	 the	 image	and	smoothly	 transition
the	alpha	mask	from	0	to	1	through	the	w	pixels	as	shown	in	I	1	′	and	I	r	′	.	This
process	is	called	feathering	and	creates	a	much	smoother	blending.

Figure	11.11	.	This	shows	the	compositing	of	two	images	in	(a)	and	(b)	using	three	different	alpha	masks
shown	in	(c),	(e)	and	(g)	with	the	resulting	images	shown	in	(d),	(f)	and	(h).

Figure	11.12	.	This	figure	shows	blending	or	feathering	technique	being	used	to	composite	two	images.	The
goal	 is	 to	 composite	 I	 1	 and	 I	 2	 to	 create	 an	 image	 whose	 left	 and	 right	 half	 will	 look	 like	 I	 1	 and	 I	 2
respectively	with	 a	 seamless	 transition	 in	 between.	On	 the	bottom	we	 show	a	 step	blending	 function	 (to
compute	alpha	mask)	which	steps	down	from	1	to	0	exactly	at	the	middle	giving	I	 l	.	The	complementary
blending	function,	given	by	(1	-	α),	steps	up	from	0	to	1	in	the	middle	providing	I	r	which	is	then	added	to	I	l
to	create	the	composite	image	on	bottom	right.	The	step	function	creates	a	drastic	seam.	On	the	top	we	show
how	the	blending	function	is	changed	to	transition	in	a	smooth	manner	from	0	to	1	across	the	width	w	to
create	a	much	more	seamless	composite	image	on	the	top	right.

Note	 that	 for	 such	 blending	 operations	 the	most	 appropriate	 way	 to	 handle
color	 images	 would	 be	 to	 apply	 the	 same	 blending	 functions	 across	 the	 three
channels	 independently.	 Using	 a	 luminance	 and	 chrominance	 does	 not	 make
much	sense	since	the	same	pixel	from	two	images	in	the	overlap	region	may	not

have	the	exact	same	luminance	and	chrominance	to	start	with.
Feathering	 effects	 depend	 on	 two	 parameters:	 the	 blending	 width	 and	 the

blending	function,	as	shown	in	Figure	11.13.	Too	large	blending	width	results	in
ghosting	while	 too	small	blending	width	results	 in	a	visible	seam.	The	optimal
blending	width	is	dependent	on	the	size	of	the	features	in	the	blending	region.	In
fact,	 if	 this	problem	is	cast	 into	 the	fourier	domain,	 it	can	be	shown	that	 if	 the
size	of	 the	features	span	one	octave	(should	be	between	2	i	and	2	 i+1	pixels),	an
optimal	 blending	 width	 of	 2	 i+1	 will	 not	 show	 any	 ghosting	 artifacts,	 but	 will
result	 in	 a	 smooth	 seam	 between	 the	 two	 images.	 In	 terms	 of	 the	 blending
function,	so	far	we	have	only	seen	functions	that	ramp	down	or	up	linearly.	But
such	functions	lead	to	a	gradient	discontinuity	when	they	transition	from	the	flat
part	to	the	linear	part	which	results	in	visible	artifacts	called	Mach	bands.

Figure	 11.13	 .	 This	 figure	 shows	 the	 effect	 of	 blending	 width	 (top)	 and	 blending	 function	 (bottom)	 on
feathering.

Mach	bands,	as	illustrated	in	Figure	11.14,	are	caused	by	the	phenomenon	of
lateral	 inhibition	 in	 the	 human	 eye	 which	 is	 the	 perception	 of	 any	 gradient
discontinuity	as	higher	than	the	actual	value	at	one	end	and	lower	than	the	actual
value	at	 the	other.	Figure	11.14(a)	shows	a	figure	created	by	a	step	function	of
different	gray	levels.	Yet	at	the	boundary,	instead	of	being	perceived	as	a	clean
step,	it	is	perceived	as	a	gradual	change	of	gray	that	goes	higher	and	then	lower
before	achieving	the	next	gray	level.	This	phenomenon	is	just	an	illusion	called
Mach	 bands	 that	 is	 broken	 in	 (b)	 when	 one	 of	 the	 bands	 is	 removed.	 This	 is
explained	 by	 how	 our	 human	 perception	 distorts	 the	 perception	 of	 a	 gradient
discontinuity.	In	the	context	of	blending,	the	same	problem	arises	at	the	gradient
discontinuities	of	a	linear	ramp	as	shown	in	(d).	The	human	perception	distortion
is	 illustrated	 in	 (e).	A	more	 conducive	 function	 for	 blending,	 therefore,	 is	 one
whose	 gradient	 is	 continuous	 like	 a	 cosine	 function	 or	 a	 spline	 function,	 as
shown	 in	 Figure	 11.13.	 Since	 these	 functions	 do	 not	 show	 any	 gradient

discontinuity,	they	do	not	lead	to	Mach	bands.

Figure	11.14	.	Mach	band	effect:	Note	that	close	to	the	boundary	between	bands	the	gray	scale	values	are
perceived	to	be	darker	or	lighter	than	at	pixels	slightly	farther	than	the	boundary	making	it	look	almost	like
a	‘curtain’.	However,	the	actual	values	of	the	bands	are	defined	by	step	functions	that	move	from	one	gray
level	 to	 another	 as	 shown	 in	 (b)-left.	 The	 ‘curtain’	 illusion	 occurs	 due	 to	 the	 phenomenon	 of	 lateral
inhibition	in	the	human	eye	that	makes	our	perception	of	a	gradient	discontinuity	as	shown	in	(b)-right	and
therefore	 the	 ‘curtain’	 illusion	 is	 removed	when	we	remove	one	of	 the	bands	 in	 (a)	as	shown	 in	 (c).	The
same	effect	is	also	shown	even	with	the	presence	of	a	smaller	gradient	discontinuity	as	in	(d)	whose	effect
on	perception	is	illustrated	in	(e).

Fun	Facts
The	 largest	 non-digital	 photographs	 in	 the	 world	 are	 made	 by	 stitching
smaller	images	together.	The	largest	single	non-digital	photograph	captured
in	the	world	is	of	a	control	tower	and	runways	at	the	US	Marine	Corps	Air
Station	in	El	Toro,	Orange	County,	California.	It	measures	32	feet	high	and
11	 feet	 wide.	 It	 was	 taken	 in	 a	 decommissioned	 jet	 hangar,	 which	 was
turned	into	a	giant	pinhole	camera.	The	film	was	a	32’	×	111’	piece	of	white
fabric	 covered	 in	 20	 gallons	 of	 light-sensitive	 emulsion.	 The	 fabric	 was
exposed	to	the	outside	image	for	35	minutes.	Print	washing	the	image	was
done	with	fire	hoses	connected	to	two	fire	hydrants.
The	longest	photographic	negative	in	the	world	is	129	feet	and	was	created
by	Esteban	Pastorino	Diaz	in	March,	2015.	The	negative	is	of	a	panorama
of	major	streets	in	Buenos	Aires,	Argentina.	The	images	were	captured	by
the	slit	camera	(a	camera	that	captures	1	pixel	wide	columns	at	a	time	while
panning	from	left	to	right),	which	was	mounted	to	the	roof	of	a	moving	car.

Combining	 the	 constraints	 on	 feature	 size	 and	 smoothness	 of	 blending
function,	 the	 ideal	 way	 to	 blend	 images	 is	 to	 blend	 the	 image	 in	 multiple
resolutions.	Such	 a	multi-resolution	decomposition	 is	 created	by	 the	Laplacian

11.2.2

pyramid	where	each	level	of	the	pyramid	provides	a	different	resolution	and	the
levels	can	be	combined	to	create	the	image	back.	Let	us	consider	two	images	I	1
and	I	2,	each	of	size	2	N		×	2	N	,	to	be	blended	to	create	the	new	image	I.	Let	the
respective	 Laplacian	 pyramids	 be	 denoted	 by	 L	 1	 and	 L	 2	 -	 	 each	 with	 ln(N)
levels.	 Using	 k	 as	 an	 index	 to	 the	 levels	 of	 the	 pyramid,	 each	 level	 of	 the
Laplacian	 pyramids	 of	 I	 1	 and	 I	 2	 are	 given	 by	 L	 1	 k	 and	 L	 2	 k	 respectively,
where	 0	 ≤	 k	 ≤	 ln(N)	 .	 To	 achieve	 a	 smooth	 blending,	 a	 different	 blending
function	b	k	with	width	w	k	should	be	used	for	each	level	k.	Most	commonly,	b	k	is
a	spline	that	provides	a	smooth	function	whose	resolution	(i.e.	how	fast	it	ramps
down	or	up)	can	be	changed	to	provide	the	different	w	k	.	Recall	that	size	of	the
image	at	each	level	of	the	Laplacian	pyramid	is	different,	the	size	of	the	image	at
level	k	being	2(N	-	k)	.	The	blended	images	at	each	level	create	a	new	Laplacian
pyramid	L.	The	images	in	L	are	then	combined	to	provide	the	blended	image	I.
To	learn	more	about	 this,	refer	 to	the	seminal	work	by	Burt	and	Adelson	[Burt
and	Adelson	83].	An	illustration	is	presented	in	Figure	11.15.
Blending	 is	 a	 common	 technique	 used	 in	 an	 application	 called	 panoramic

image	generation,	illustrated	in	Figure	11.16.	The	goal	here	is	to	capture	multiple
narrow	field	of	view	images	from	consumer	camera	to	create	a	single	wide	field
of	view	panoramic	image.	Multiple	contiguous	images	of	a	location	are	captured
with	 adequate	 overlap	 between	 spatially	 adjacent	 images.	 Since	 the	 camera
moves	between	two	adjacent	images,	the	first	step	is	to	register	adjacent	images
geometrically.	This	is	achieved	applying	a	geometric	transformation	to	the	image
(e.g.	 scaling,	 translation	 or	 rotation)	 so	 that	 the	 overlapping	 areas	 can	 be
spatially	 overlapped	 to	 match	 exactly.	 We	 will	 learn	 more	 about	 such
geometrical	 transformations	 in	 the	 next	 chapter	 of	 the	 book.	 The	 overlapping
area	of	two	adjacent	images	are	blended	together	to	create	a	seamless	transition
between	the	images.	This	results	in	a	panorama	or	an	image	that	covers	a	much
wider	angle	of	view.

Image	Cuts
Blending	 is	 not	 always	 the	 best	way	 to	 achieve	 a	 nice	 transition	 between	 two
images.	 This	 is	 especially	 true	 if	 there	 are	moving	 objects	 in	 the	 common	 or
overlapping	areas	of	 the	 image.	 In	 these	cases,	a	blending	operation	will	blend
between	two	time	instances	of	the	same	scene	creating	a	ghosting	artifact,	almost
similar	 to	what	we	 see	 in	motion	 blur.	 In	 such	 cases,	 instead	 of	 blending,	we
apply	 a	 cut	 operation.	 This	 is	 a	 complementary	 operation	 to	 blending.	 In
blending,	a	pixel	 in	 the	composite	 image	can	have	contributions	from	multiple
source	images.	But,	in	an	image	cut,	every	pixel	in	the	composite	image	comes

from	 only	 one	 of	 the	 source	 images.	 Therefore,	 when	 stitching	 two	 adjacent
images	as	in	Figure	11.17,	the	contribution	should	switch	from	the	blue	image	to
the	 red	 image	 as	we	move	 from	 left	 to	 right.	 If	 this	 switch	 is	 done	 at	 a	 point
where	the	pixel	to	the	left	coming	from	the	blue	image	has	very	similar	color	to
the	pixel	on	the	right	coming	from	the	red	image,	then	the	composition	will	be
seamless.	The	problem	is	formulated	as	a	minimal	error	boundary	cut	problem.
The	goal	is	to	find	a	cut	through	the	overlapping	area	such	that	the	neighboring
pixels	at	 any	point	has	 the	minimum	energy	 transition	across	 the	cut.	To	 learn
more	 about	 this,	 please	 refer	 to	 the	work	 from	Efros	 and	 Freeman	 [Efros	 and
Freeman	01]

Figure	11.15	.	This	figure	shows	the	effect	blending	of	two	image	via	their	laplacian	pyramid.	The	left	two
rows	shows	the	different	levels	of	the	Laplacian	pyramid	blended	using	different	spline	functions	achieving
the	 effect	 of	 a	wider	blending	 region	of	 lower	 resolution	 levels	 and	narrower	blending	 regions	of	higher
resolution	 levels.	The	 images	are	 composited	 to	create	 the	 image	on	 the	 right	 to	 create	each	 level	of	 the
laplacian	pyramid	of	 the	composited	 image.	These	are	 then	composited	 to	create	 the	 image	of	 the	apple-
orange	on	top	right.

11.3

Figure	11.16	.	Multiple	contiguous	images	of	a	location	are	captured	(top)	with	adequate	overlap	between
adjacent	 images	 (shown	by	 similarly	 colored	 rectangles).	These	 images	are	 then	 registered	geometrically
(bottom	left)	placing	the	overlap	region	exactly	on	top	of	each	other.	Finally,	the	regions	coming	from	two
adjacent	 images	 are	 blended	 using	 a	 blending	 function	 and	 the	 image	 cropped	 to	 form	 a	 rectangular
panorama	(bottom	right).

Figure	11.17	 .	On	 the	 left	you	see	 two	 images	 (shown	by	red	and	blue	 rectangle)	with	a	 large	overlap	 in
between	that	are	composited	using	blending.	Since	the	people	and	the	truck	moved	between	the	capture	of
these	two	images,	this	results	in	severe	ghosting	of	the	moving	objects.	On	the	right,	the	same	two	images
are	composited	using	an	image	cut	operation	resulting	in	a	artifact	free	composition.

Photometric	Stereo
The	final	photometric	processing	application	that	we	are	going	to	discuss	in	this
chapter	 is	of	computing	shape	of	objects	 from	illumination	changes	 in	 images.
Illumination	contributes	to	the	photometric	properties	of	an	object.	Photometric
stereo	is	a	different	kind	of	photometric	processing	that	uses	some	knowledge	on
geometric	processing	you	have	been	exposed	 to	earlier	 in	 this	book.	We	use	a
very	 simple	 illumination	 model	 considering	 a	 point	 light	 source	 from	 the
direction	L	illuminating	an	object	point	P	with	normal	N.	More	light	is	incident
per	unit	area	of	the	object	if	L	and	N	are	coincident	i.e.	the	light	is	illuminating	P
head-on.	As	the	angle	between	L	and	N	 increases,	 the	amount	of	 incident	 light
decreases.	 It	 can	 be	 shown	 that	 the	 fall	 off	 of	 incident	 light	 per	 unit	 area	 is
proportional	 to	 cosθ	 where	 θ	 is	 the	 angle	 between	 N	 and	 L.	 Therefore,	 the

illumination	at	P	is	given	by	N	⋅	L.	To	compute	the	amount	of	the	illumination
that	is	reflected	from	P,	we	assume	the	object	to	be	Lambertian	i.e.	reflects	light
equally	 in	 all	 directions.	 Let	 fraction	 of	 light	 reflected	 be	 ρ.	 Therefore,	 the
amount	of	reflected	light	is	given	by	ρ	⋅	N	⋅	L.

Figure	 11.18	 .	 This	 figure	 shows	 the	 recovery	 of	 shape	 from	 illumination	 under	 the	 assumption	 that	 the
object	is	Lambertian.	The	top	row	shows	the	five	input	images	taken	by	changing	only	the	light	position.
The	bottom	row	shows	the	recovered	reflectance	function	(left),	the	normals	(middle)	and	the	reconstructed
shape	(right).

Now,	 for	 photometric	 stereo,	 let	 us	 consider	 a	 set	 up	 where	 a	 Lambertian
object	is	being	seen	by	a	camera.	The	locations	of	both	the	object	and	the	camera
do	not	 change.	However,	 it	 is	 lighted	by	n	 lights	 located	 at	 different	 locations
surrounding	the	object.	These	light	directions	are	known	and	given	by	L	1,		L	2,	.	.
.,	L	 n	 ,	 where	L	 i	 is	 a	 vector	 given	 by	 (L	 i	 x	 ,	 L	 i	 y	 ,	 L	 i	 z)	 .	 Let	 the	 light
intensities	 be	 unity.	 Let	 the	 point	P	 with	 normal	N	 =	 (n	 x	 ,	 n	 y	 ,	 n	 z)	 and
reflectance	ρ	on	the	object	be	seen	at	a	camera	location	(p	,	q)	.	Let	the	reflected
illumination	recorded	by	the	camera	at	(p	,	q)	with	only	light	L	i	illuminating	the
surface	be	R	i	(p	,	q)	.	Therefore	at	each	pixel	(p	,	q)

(11.6)
R	i	=	ρ	N	·	L	i	.
Expanding	this,	we	get	the	following	equation	at	each	pixel	(p	,	q)	 for	each

light	L	i	.

(11.7)
R	i	-	ρ	(L	i	x	L	i	y	L	i	z)	N	x	N	y	N	z	=	0
Taking	into	account	all	the	n	lights	we	get

(11.8)
R	1	R	2	.	.	.	R	n	-	ρ	L	1	x	L	1	y	L	1	z	L	2	x	L	2	y	L	2	z	⋯	⋯	⋯	L	n	x	L	n	y	L	n
z	N	x	N	y	N	z	=	0

Rearranging	the	terms,	we	get

(11.9)
L	1	x	L	1	y	L	1	z	L	2	x	L	2	y	L	2	z	⋯	⋯	⋯	L	n	x	L	n	y	L	n	z	-	1	R	1	R	2	.	.	.	R	n
=	ρ	N	x	N	y	N	z
or

(11.10)
L	-	1	R	=	ρ	N
where	L	-1	is	the	pseudo-inverse	of	the	non-square	matrix	L.	Note	that,	at	every
pixel	 (p	 ,	q)	 the	 light	 directions	 and	 the	 intensity	 recorded	 are	 known.	 Each
term	 in	 the	 left	 hand	 side	 of	 the	 Equation	 11.10	 is	 known.	 Therefore,	 we
compute	the	right	hand	side	of	the	equation	and	the	vector	obtained	is	the	normal
vector	 at	 the	 point	 on	 the	 object	 scaled	 by	 ρ.	 The	 magnitude	 of	 this	 vector
provide	reflectance	ρ	at	 (p	 ,	q)	and	 the	corresponding	unit	vector	provide	 the
normal	N.	This	is	illustrated	in	Figure	11.18.
The	above	process	gives	us	 the	surface	normal	at	any	pixel	 (p	 ,	q)	 and	 its

reflectance,	but	not	its	depth.	So,	in	the	next	step	we	need	to	find	the	depth	of	the
surface	 with	 respect	 to	 the	 camera.	 Let	 us	 consider	 the	 camera’s	 coordinate
system	and	the	surface	as	shown	in	Figure	11.19.	Let	the	depth	of	points	at	(p	,	q
)	,	(p	,	q	+	1)	,	and	(p	+	1	,	q)	given	by	z	p,q	,		z	p+1,q	and	z	p,q+1	respectively.	Note
that	 the	 tangent	plane	 to	 the	normal	N	=	(N	x	 ,	N	y	 ,	N	y)	 recovered	 by	 the
photometric	stereo	can	be	approximated	by	the	vectors	V	1	and	V	 2,	assuming	a
smoothly	varying	normal,	and	is	given	by

(11.11)
V	1	=	(p	+	1	,	q	,	z	p	+	1	,	q)	-	(p	,	q	,	z	p	,	q)	=	(1	,	0	,	z	p	+	1	,	q	-	z	p	,	q)

(11.12)
V	2	=	(p	,	q	+	1	,	z	p	,	q	+	1)	-	(p	,	q	,	z	p	,	q)	=	(0	,	1	,	z	p	,	q	+	1	-	z	p	,	q)

Figure	11.19	.	Left:	This	figure	shows	the	depth	of	points	at	(p	,	q)	,	(p	,	q	+	1)	,	and	(p	+	1	,	q)	given	by
z	p,q	,		z	p+1,q	and	z	p,q+1	respectively.	The	normal	N	=	(N	x	,	N	y	,	N	y)	recovered	by	the	photometric	stereo	is
shown	as	well.	Right:	This	 figure	 shows	 the	assumptions	on	 the	 light	and	camera	set	up	 for	photometric
stereo	given	by	three	or	more	non-coplanar	lights	and	camera	distant	to	the	surface.

Note	that	since	V	1	and	V	2	are	both	perpendicular	to	N.	Therefore,	we	can	find
two	constraints,	first	of	which	is	as	follows.

(11.13)
0	=	N	·	V	1

(11.14)
=	(N	x	,	N	y	,	N	z)	·	(1	,	0	,	z	p	+	1	,	q	-	z	p	,	q)

(11.15)
=	N	x	+	N	z	(z	p	+	1	,	q	-	z	p	,	q)

Similarly,	the	second	constraint	is	given	by

(11.16)
0	=	N	·	V	2

(11.17)
=	(N	x	,	N	y	,	N	z)	·	(0	,	1	,	z	p	,	q	+	1	-	z	p	,	q)

(11.18)
=	N	y	+	N	z	(z	p	,	q	+	1	-	z	p	,	q)

There	the	two	constraints	can	be	summarized	as

(11.19)
N	x	N	z	=	z	p	,	q	-	z	p	+	1	,	q

(11.20)
N	y	N	z	=	z	p	,	q	-	z	p	,	q	+	1

where	the	depth	values	are	the	only	unknown.

Every	 pixel	 thus	 contributes	 to	 constraints	 involving	 the	 depths	 of	 its
neighboring	pixels.	Considering	the	camera	image	of	P	×	Q	size,	let	us	assume
that	 the	 total	 number	 of	 all	 such	 constraints	 is	C.	 The	 value	 of	C	 would	 have
been	2PQ	but	for	the	pixels	in	the	boundary	for	whom	only	one	such	constraint
can	 be	 designed.	 Therefore,	C	 <	 2PQ	 but	 still	 sufficiently	 larger	 than	 PQ	 to
create	an	over-constrained	system	of	equations	given	by

Figure	11.20	.	From	left:	One	of	the	input	images;	the	recovered	surface	normals	encoded	by	a	RGB	vector;
the	surface	albedo;	the	reconstucted	depth	where	depth	is	inversely	proportional	to	the	gray	value;	the	same
object	relighted	from	a	different	virtual	direction.

(11.21)
M	Z	=	B

where	M	is	a	C	×	PQ	matrix	whose	entries	can	be	either	1	or	-	1,		Z	is	a	PQ	×	1
column	 vector	 containing	 the	 unknown	 depth	 and	 B	 is	 a	 same	 sized	 column
vector	 of	 known	 scalar	 values.	Therefore,	Z	 can	 now	be	 solved	 using	 a	 linear
regression	or	singular	value	decomposition.	The	reconstructed	depth	is	shown	in
Figure	11.18.
There	are	a	few	things	to	note	from	the	above	equations.	We	need	to	solve	for

three	unknowns.	Therefore,	we	need	at	least	three	lights	(i.e.	n	=	3)	 to	find	the
shape	 of	 the	 object.	 However,	 if	 the	 light	 directions	 are	 coplanar,	 L	 is	 rank-
deficient	and	hence	cannot	be	solved.	Hence,	we	need	at	least	three	noncoplanar
light	 directions.	 Other	 assumptions	 include	 that	 the	 camera	 image	 plane	 is
parallel	to	the	XY	plane	in	the	global	coordinate	system	and	the	camera	and	the
lights	are	distant	from	the	object.	Figure	11.19	shows	that	photometric	stereo	can
give	accurate	surface	normals	but	the	recovered	depth	is	inaccurate	if	the	camera
or	the	lights	are	placed	very	close	to	the	object.	Note	that	we	do	not	need	to	find
any	 correspondence	 unlike	most	 stereo	methods	we	have	 studied	 in	Chapter	8
since	 the	 camera	 location	 does	 not	 change.	 Before	 processing	 the	 images	 in
photometric	stereo	you	have	to	undo	the	effect	of	the	camera	transfer	function.
Finally,	once	the	surface	normals	and	reflectance	are	computed,	the	object	can	be
relighted	 from	 a	 light	 direction	 that	 was	 not	 available	 originally,	 as	 shown	 in

11.3.1

11.3.2

Figure	11.20

Figure	11.21	.	This	figure	shows	the	specular	highlight	on	the	chrome	sphere	in	the	scene	when	lighted	from
four	different	light	directions.

Figure	 11.22	 .	 This	 figure	 shows	 the	 results	 of	 photometric	 stereo	 on	 color	 images	 in	 the	 presence	 of
shadows.	On	 the	 left	we	see	 the	 input	 images	and	on	 the	 right	 the	 reconstructed	 face	geometry	 is	 shown
from	different	views.

Handling	shadows
One	limitation	of	photometric	stereo	stems	from	the	shadows.	If	any	pixel	(p	,	q
)	is	in	shadow	in	the	image	i,	its	importance	should	be	undermined.	To	achieve	a
formulation	 where	 such	 confidence	 can	 be	 imparted	 to	 the	 accuracy	 of	 the
recorded	illumination,	we	can	weight	each	equation	in	Equation	11.8	by	the	pixel
intensity	recorded.	The	pixels	in	shadow	will	therefore	be	given	less	weight	due
to	their	lower	intensity.	This	gives	us	the	equations

(11.22)
I	1	I	2	.	.	.	I	n	-	ρ	I	1	L	1	x	I	1	L	1	y	I	1	L	1	z	I	2	L	2	x	I	2	L	2	y	I	2	L	2	z	⋯	⋯
⋯	I	n	L	n	x	I	n	L	n	y	I	n	L	n	z	N	x	N	y	N	z	=	0

that	can	be	solved	as	before	for	more	accurate	normals.

Computing	illumination	directions
Photometric	stereo	computes	 the	 light	directions	also	 in	addition	 to	 the	surface
geometry.	To	achieve	this	easily,	one	option	is	to	put	a	chrome	sphere	of	known
radius	 r	 in	 the	 scene.	 This	 sphere	 will	 show	 specular	 highlights	 at	 different
places	in	different	images	from	which	the	light	directions	can	be	computed.	An
example	of	the	chrome	sphere	in	the	scene	when	lighted	by	the	same	lights	are
shown	in	Figure	11.21.
Let	us	assume	that	we	can	detect	the	center	of	the	highlight	at	(h	p	,	h	q)	and

11.3.3

the	center	of	the	sphere	(which	appears	in	the	same	place	in	all	camera	images)
as	(c	p	,	c	q)	.	Let	us	assume	that	the	depth	of	the	center	is	0	and	the	depth	of
the	center	of	the	highlight	is	h	z	.	Therefore,	we	can	find	h	z	using

(11.23)
h	z	=	r	2	-	(h	p	-	c	p)	2	-	(h	q	-	c	q)	2

Now	we	know	the	3D	location	of	the	highlight	(h	x	,	h	y	,	h	z)	and	the	center	(c
x	,	c	y	,	0)	.

Figure	11.23	.	This	figure	illustrates	the	computation	of	light	directions	by	from	the	specular	highlight	on	a
chrome	sphere	introduced	in	the	scene.

From	this,	we	can	compute	 the	normal	N	 to	 the	sphere	at	 the	highlight.	The
view	direction	is	given	V	=	(0,	0,	1)	.	The	light	vector	L	i	was	reflected	about	N
and	 then	 seen	 along	 the	 view	 direction	 to	 create	 the	 highlight.	 Therefore,
reflecting	V	 about	N	 will	 give	 the	 light	 direction.	 This	 is	 illustrated	 in	 Figure
11.23.	Note	that	N	is	given	by	the	sum	of	V	and	L	which	are	equal	sized	vectors.
Their	projection	along	N	 is	given	by	N.V.	Therefore	L	 i	 is	 given	 by	 the	 vector
addition

(11.24)
L	i	+	V	=	2	(N	.	V)	N

Therefore,	we	can	easily	compute	the	light	direction	from	the	above	equation
for	each	of	the	images.

Handling	Color
There	are	two	ways	to	handle	color	in	photometric	stereo.	The	first	option	is	to
generate	three	sets	of	equations,	one	for	each	channel.

(11.25)
L	-	1	I	R	=	ρ	R	N

(11.26)
L	-	1	I	G	=	ρ	G	N

11.4

(11.27)
L	-	1	I	B	=	ρ	B	N
In	this	case,	first	N	can	be	solved	using	only	one	of	the	channels.	Then	it	can	be
substituted	 in	 the	 above	 set	 of	 equations	 to	 find	ρ	R	 ,	 	 ρ	 G	 and	 ρ	 B	 .	 The	 other
option	is	to	combine	the	three	channels	assuming	a	channel-independent	ρ	where
I	=	I	R	+	I	G	+	I	B	.	Figure	11.22	shows	an	example	which	takes	the	latter	route
in	the	presence	of	shadows	in	the	input	images.

Conclusion
In	 this	 chapter	we	 learned	a	 large	number	of	 techniques	 that	 start	 from	one	or
more	 color	 images	 and	 combine	 them	 to	 create	 a	 new	 image	 or	 generate	 new
information	about	the	scene.	Here	are	some	pointers	to	follow	advanced	topics.
To	learn	more	on	contrast	enhancement,	you	can	check	out	[Majumder	and	Irani
07].	 Instead	of	generating	all	 the	 levels	of	Laplacian	pyramid	during	blending,
[Brown	 and	 Lowe	 03]	 shows	 a	way	 to	 do	 a	 two	 band	 blending	 that	 achieves
comparable	results	more	efficiently.	Blending	inherently	assumes	that	the	colors
of	the	input	images	are	similar.	Therefore	blending	does	not	yield	a	good	result	if
the	 colors	 of	 the	 objects	 in	 the	 images	 are	 vastly	 different	 e.g.	 oceans	 with
differently	 colored	 waters.	 In	 such	 cases,	 better	 composition	 is	 achieved	 by
blending	the	gradients	of	the	images	instead	of	their	values.	To	learn	more	about
gradient	 domain	 blending,	 refer	 to	 [Pérez	 et	 al.	 03].	 To	 learn	 more	 about
complex	 image	 cutting	 for	 texture	 synthesis,	 refer	 to	 the	 use	 of	 graph	 cuts	 in
[Kwatra	et	al.	03].	To	learn	more	about	human	perception	phenomena	and	Mach
bands,	please	refer	to	[Goldstein	10].	In	case	of	photometric	stereo,	the	two	big
limitations	are	the	assumptions	of	known	light	vectors	and	a	Lambertian	object.
[Basri	 et	 al.	 07]	 presents	 a	 method	 for	 photometric	 stereo	 where	 the	 light
directions	are	also	unknown.	[Wu	et	al.	11]	presents	a	method	that	can	achieve
surface	reconstruction	from	photometric	stereo	even	in	the	presence	of	specular
reflections.

Bibliography
[Basri	 07]	 BasriRonen,	 JacobsDavid,	 KemelmacherIra.	 ‘(Photometric	 Stereo	 with	 General.	 Unknown

Lighting	International	Journal	of	Computer	Vision.	2007;72:239–257.
[Brown	 and	Lowe	 03]	M.Brown	 and	D.	G.Lowe.	 “Recognising	 Panoramas	 In	Proceedings	 of	 the	 Ninth

IEEE	International	Conference	on	Computer	VisionVolume	2	,	2003.
[Burt	and	Adelson	83]	Peter	J.	Burt	and	Edward	H.Adelson.	“A	Multiresolution	Spline	with	Application	to

Image	Mosaics	ACM	Trans.	Graph.	2:4.
[Efros	and	Freeman	01]	AlexeiA.	Efros	and	William	T.	Freeman.	“Image	Quilting	for	Texture	Synthesis	and

Transfer	 In	 Proceedings	 of	 the	 28th	 Annual	 Conference	 on	 Computer	 Graphics	 and	 Interactive
Techniques,	SIGGRAPH	01,	2001.

[Goldstein	10]	BruceE.	Goldstein.	Thomas	Wadsworth:	Sensation	and	Perception;	2010.
[Kwatra	 03]	Vivek	Kwatra,	Arno	 Schdl,	 Irfan	Essa,	Greg	Turk,	 and	Aaron	Bobick.	 “Graphcut	Textures:

Image	and	Video	Synthesis	Using	Graph	Cuts	ACM	Transactions	on	Graphics,	SIGGRAPH200322:3
(2003),	277–286.

[Majumder	 and	 Irani	 07]	Aditi	Majumder	 and	 Sandy	 Irani.	 “Perception-based	 Contrast	 Enhancement	 of
Images	ACM	Trans.	Appl.	Percept.	4:3.

[Péerez	 03]	 PérezPatrick,	 GangnetMichel,	 BlakeAndrew.	 “Poisson	 Image	 Editing	 ACM	 Trans.	 Graph.
2003;22(3):313–318.

[Wu	11]	Lun	Wu,	Arvind	Ganesh,	Boxin	Shi,	Yasuyuki	Matsushita,	Yongtian	Wang,	and	Yi	Ma.	“Robust
Photometric	Stereo	via	Low-rank	Matrix	Completion	and	Recovery	pp.	703–717.

Summary:	Do	you	know	these	concepts?

Histogram
Histogram	Stretching	or	Equalization
Histogram	Matching
Contrast	Enhancement
Image	Composition
Image	Blending
Image	Cuts
Mach	Bands
Panoramic	Image	Generation
Shape	from	Illumination
Photometric	Stereo
Reflectance	and	Normal	Reconstruction

Exercises
1.	 An	 image	has	 a	 linear	 histogram	p(r)	=	 r.	We	want	 to	 transform	 this

image	 so	 that	 its	 histogram	 becomes	 quadratic,	 p(z)	 =	 z2.	 Assume
continuous	images	and	find	out	the	equation	for	this	transformation.

2.	 Two	 projectors	 overlap	 partially	 to	 create	 a	 bright	 overlap	 region	 as
shown	 in	Figure	2.	 (a)	We	would	 like	 to	 reduce	 the	brightness	 in	 the
overlap	region	using	a	blending	operation.	What	should	be	width	of	the
blending	 function?	 (b)	Consider	 a	 linear	 blending	 function.	Draw	 the
blending	function	of	the	projector	1	(in	blue)	and	projector	2	(in	red).
(c)	 Are	 linear	 blending	 functions	 continuous	 in	 terms	 of	 gradient?
Justify	 your	 answer.	 (d)	 What	 are	 the	 artifacts	 caused	 by	 linear
blending	functions?	What	property	should	a	blending	function	have	to
alleviate	these	artifacts?	Name	one	or	two	blending	functions	that	will
alleviate	these	artifacts.

3.	 Consider	the	16	pixel	1D	image	I	=	{4,	2,	3,	6,	2,	3,	4,	5,	2,	3,	4,	5,	5,	1,
5}.	Assume	for	padding	the	last	element	of	the	1D	image	are	repeated
on	both	sides.

a.	 Represent	its	histogram.
b.	 Show	the	array	for	the	output	of	the	low	pass	filtering	of	this

image	with	the	filter	[1/31/31/3].
c.	 Show	the	array	for	the	output	of	the	high	pass	filtering	of	this

image	with	the	filter	[−101].
d.	 Show	the	output	of	applying	a	lx3	median	filter	to	this	image.

4.	 Consider	a	10	×	10	checker	board	image	whose	checkers	are	white	and
gray	(value	=	128)	instead	of	white	and	black.	Each	checker	is	10	×	10
pixels	 in	 size.	 Draw	 the	 histogram	 of	 this	 image.	 Can	 you	 think	 of
another	image	that	will	have	the	same	histogram?	Justify	your	answer.

5.	 Let	 us	 consider	 two	 images	 with	 histograms	 A	 and	C	 shown	 in	 the
above	 figure.	Which	of	A	 and	C	 has	 a	 lower	 contrast?	 If	we	 apply	 a
global	histogram	stretching	to	A	which	of	the	histograms	shown	will	be
the	most	likely	resulting	histogram?	If	we	take	a	cumulative	sum	of	A,
which	will	 be	 the	most	 likely	 histogram?	What	 kind	 of	 artifacts	 can
global	 histogram	 stretching	 result	 in?	 What	 is	 the	 cause	 of	 these
artifacts?	What	method	can	be	used	to	alleviate	this	artifact?

6.	 Consider	 two	 flat	 square	 images	 each	of	 size	 1000	×	1000	with	gray
values	200	and	100.

a.	 Consider	 a	 blending	 width	 of	 10	 pixels.	 What	 will	 be	 the
resulting	size	of	the	blended	image?

b.	 Consider	 a	 linear	 blending	 which	 causes	 Mach	 bands.	 One
solution	to	this	problem	would	be	to	use	cosine	blending.	Can
the	same	problem	be	alleviated	by	using	a	blending	region	of
300	pixels?	Justify	your	answer.

c.	 When	using	this	wider	blending	region,	what	 is	 the	resulting
size	of	the	image?

d.	 Which	solution	the	linear	ramp	of	300	pixels	or	cosine	ramp
of	10	pixelswould	yield	better	blending?	Justify	your	answer.

e.	 Do	you	anticipate	choosing	the	lower	blending	width	for	any
other	reason	than	blending	quality?

7.	 Both	 image	 blending	 and	 image	 cuts	work	 best	 if	 applied	 on	 images
with	similar	color	 temperature.	 In	 the	absence	of	such	a	precondition,
what	 technique	should	you	apply	to	the	images	before	compositing	to
assure	a	better	quality	result?

8.	 One	way	 to	handle	 shadows	 in	photometric	 stereo	 is	 to	use	weighted
light	 vector.	 What	 inaccuracies	 in	 the	 depth	 reconstruction	 do	 you
expect	if	this	is	not	done?	Justify	your	answer.

Part	V

Visual	Content	Synthesis

12.1

12

The	Diverse	Domain
So	 far	 we	 have	 explored	 concepts	 where	 we	 start	 with	 inputs	 captured	 from
devices	and	systems	and	try	to	reverse	engineer	the	properties	of	the	scene.	For
example,	spectral	analysis	techniques	allow	us	to	analyze	information	about	the
color	 at	 any	 point	 on	 a	 surface	 from	 a	 camera	 captured	 image.	 Or;	 feature
detection	techniques	allow	us	to	detect	lines	and	corners	in	an	image	which	can
be	 used	 subsequently	 for	 object	 detection	 or	 image	 segmentation.	 Epipolar
geometry	helps	us	 to	find	correspondences	between	stereo	pair	of	 images	from
which	we	can	find	the	3D	geometry	of	an	object.	Therefore,	these	can	be	thought
of	as	image/scene	analysis	techniques.
In	the	next	section	of	this	book,	we	are	going	to	explore	the	inverse	problem	of
generating	 a	 digital	 image	 similar	 to	 one	 generated	 by	 a	 device	 (e.g.	 camera)
with	the	3D	scene	of	the	world	as	the	input.	This	process	is	that	of	image/scene
synthesis.	Synthesis	therefore	takes	as	input	(a)	a	scene	described	as	a	collection
of	objects,	lights,	materials	and	textures	represented	using	precise	formal	digital
representation;	(b)	a	view	set	up	specifying	the	constraints	on	the	eye/viewer	that
is	viewing	the	scene;	and	outputs	a	2D	image	similar	to	one	captured	by	a	device
(e.g.	 camera,	 photometer)	 or	 seen	 by	 a	 viewer.	 Synthesis	 can	 be	 broken	 down
into	 three	 steps:	 modeling,	 processing	 and	 rendering.	 Modeling	 deals	 with
computer	representation	of	objects	and	associated	processes.	Processing	involves
computation	on	 the	models	 for	 some	 specified	outcomes	and	goals.	Rendering
involves	drawing	an	image	to	convey	the	appearance	of	the	model/processes	to	a
human	user.

Modeling
Modeling	 is	 the	process	of	digitally	 representing	 an	object	 or	 a	phenomena	 so
that	it	can	be	interpreted	and	processed	by	the	computer.	For	example,	there	can
be	multiple	ways	 to	model	 an	 object—a	 dense	 collection	 of	 points,	 or	 a	 large
number	 of	 planar	 triangles	 each	 of	which	 approximates	 a	 small	 almost	 planar
region	of	the	object,	or	a	number	of	curved	patches	to	represent	the	object.	All

the	 above	 surface	 representations	 are	 used	 to	 represent	 only	 the	 surface
properties	 of	 the	 object	 (e.g.	 geometric	 appearance	 given	 by	 gradients	 or
curvature,	color	appearance	given	by	textures	or	RGB	colors).	Alternatively,	we
may	 want	 a	 representation	 for	 the	 volume	 occupied	 by	 the	 object	 and	 its
associated	 properties	 (e.g.	 density	 of	 the	 material	 in	 a	 human	 body	 part).
Therefore,	 the	 primitives	we	 choose	 for	modeling	 inherently	 depends	 on	what
we	would	like	 to	model	(e.g.	3D	volume	or	2D	surface)	and	the	operations	we
would	like	to	perform.	For	example,	 in	aeronautical	simulations,	representation
using	surface	patches	may	provide	a	more	accurate	simulation	of	fluid/air	on	the
surface	 than	 triangular	 mesh.	 Therefore,	 one	 may	 want	 to	 use	 patch	 based
representation	 for	 running	 mathematical	 simulation	 while	 using	 mesh	 based
representation	 for	 rendering	using	an	 interactive	graphics	 renderer.	Figure	12.1
illustrates	different	representations	for	the	same	object.

Figure	12.1	 .	This	 figure	 shows	multiple	ways	 to	model	 an	object.	From	 left	 to	 right:	We	 show	a	 teapot
modeled	by	a	set	of	points,	a	mesh	of	quadrilateral	polygons,	a	set	of	surface	patches	(each	patch	shown	in	a
different	color)	and	finally	we	show	a	volume	representation	of	an	object	with	tissue	density	values	at	every
volume	 location	which	 can	be	used	 to	 visualize	 the	 tissue	density	 as	 transparency	values	 (mapping	 least
dense	to	transparent	and	most	dense	to	opaque).

Figure	12.2	.	This	figure	shows	modeling	of	different	phenomena.	(a)	creates	beautiful	cloth	rendering	by
micro‐scale	simulation	of	how	every	fibre	of	the	cloth	interacts	with	light.(b)	and	(c)	show	the	physically
based	modeling	of	sub‐surface	scattering	for	accurate	appearance	modeling	of	translucent	objects.	(d)	show
the	effects	of	modeling	illumination	accurately.

Modeling	need	not	be	of	objects	alone.	We	can	even	model	different	natural
phenomena	 as	 illustrated	 in	 Figure	 12.2.	 For	 example,	 we	 can	 model	 the
phenomenon	 of	 subsurface	 scattering	 that	 can	 be	 used	 to	 render	 translucent
objects	(Figure	12.2b	and	c),	or	light	transport	from	the	emitter	through	reflector,
absorbers	 and	 refractors	 resulting	 in	 the	 realistic	 lighting	 of	 a	 scene	 (Figure

12.2

12.2d).	 We	 can	 model	 how	 every	 micro-fibre	 of	 a	 fabric	 interacts	 with	 the
environment	 to	 create	 beautiful	 cloth	 renderings	 (Figure	 12.2a).	 In	 fact,
modeling	need	not	be	physically	accurate	also.	At	times,	the	objectives	that	drive
the	modeling	can	be	entirely	different.	For	example,	modeling	of	movements	of
ocean	 water	 in	 the	 animation	 movies	 typically	 are	 not	 physically	 realistic	 or
accurate	—	but	it	 is	artistically	appealing	for	 the	purpose	of	story	telling,	as	 in
rendering	of	water	in	the	movie	‘Finding	Nemo’.

Figure	12.3	 .	 (a)	 shows	model	 simplification	and	how	 the	appearance	 is	acceptable	 from	 larger	distances
even	when	 the	model	 is	 rendered	at	 lower	 level	of	details.	 (b)	 shows	 the	 stripification	of	 a	 small	 simple
model.	(c)	shows	stripification	of	a	complex	model.	Same	colored	triangles	belong	to	the	same	strip.

Processing
Processing	refers	to	methods	or	techniques	that	are	used	on	models	of	objects	or
phenomena	 usually	 driven	 by	 objectives	 like	 accuracy,	 performance	 (usually
faster	 rendering)	 or	 application	 dependent	 efficiencies.	 Examples	 of	 such
processing	 includes	model	simplification	or	stripification.	Model	simplification
is	 the	 process	 where	 an	 object	 is	 stored	 at	 different	 levels	 of	 details	 that	 use
different	number	of	primitives	to	represent	the	same	object.	Objects	need	larger
number	 of	 primitives	 when	 represented	 at	 higher	 level	 of	 details	 and	 fewer
primitives	when	represented	at	lower	level	of	details.	When	rendering,	the	right
level	of	detail	to	be	rendered	is	chosen	based	on	how	far	the	object	is	from	the
viewer.	When	the	object	is	farther	away,	a	lower	level	of	detail	would	suffice	for
acceptable	appearance	but	can	be	rendered	much	more	efficiently	 in	much	less
time	due	to	fewer	primitives.	This	is	illustrated	in	Figure	12.3.
Similarly,	 let	 us	 take	 the	 example	 of	 streaming	 a	 3D	 mesh,	 a	 popular

application	today	for	e-commerce.	The	goal	here	is	to	stream	the	3D	mesh	to	a
remote	location	for	rendering.	Streaming	would	entail	sending	three	vertices	per
triangle	 of	 the	 mesh	 to	 send	 the	 geometry	 information	 and	 then	 send	 the
connectivity	 information	 (refer	 to	 Chapter	 1).	 However,	 if	 we	 can	 stream	 one
triangle	 after	 another	 such	 that	 every	 triangle	 is	 adjacent	 to	 the	 previous	 one

12.3

streamed,	we	will	need	to	send	three	vertices	for	the	first	triangle	and	one	vertex
per	triangle	for	every	subsequent	triangle,	thereby	reducing	the	amount	of	data	to
be	sent	by	almost	66%.	Such	a	set	of	 triangles	 is	 said	 to	 form	a	 triangle	strip.
Therefore,	 a	 common	 kind	 of	 processing,	 called	 stripification,	 is	 to	 take	 a
triangle	mesh	and	represent	it	as	multiple	triangle	strips	(Figure	12.3).

Figure	12.4	.	This	figure	shows	several	non‐photorealistic	rendering	that	can	imitate	painterly	rendering	or
charcoal	sketches,	mechanical	illustrations,	and	newsprint.

Unlike	processing	such	as	compression	and	strip	generation	that	may	change
the	 object	 models,	 processes	 such	 as	 collision	 detection	 just	 use	 objects	 to
generate	 other	 application	 specific	 results.	 A	 collision	 detection	 operation
computes	the	locations	of	the	moving	objects	and	detect	if	any	of	the	triangles	in
the	 object	 intersect	 with	 any	 triangle	 of	 another	 object	 thereby	 causing	 a
collision.	 Processing	 can	 also	 be	 motivated	 via	 higher	 performance	 as	 in
organizing	 the	model	 in	 a	 special	 data	 structure,	 like	 octree	 or	BSP	 trees,	 that
would	enable	fast	access	and	retrieval	of	objects	using	a	spatial	index.	Such	data
structures	 are	 useful	 in	 ray-tracing,	 culling	 of	 objects	 that	 are	 outside	 the
observer’s	field	of	view,	collision	detection,	etc.

Rendering
Rendering	 is	 the	 process	 of	 taking	 as	 input	 a	 3D	 scene,	 a	 view	 set	 up	 and
creating	 the	 2D	 image	 of	 the	 3D	 scene	 that	 will	 be	 seen	 from	 the	 particular
viewpoint.	The	 two	main	aspects	of	 rendering	are	 the	quality	of	appearance	of
the	2D	image	generated	and	the	time	it	takes.
Quality:	It	is	easy	to	assume	that	quality	means	accuracy	of	rendering.	Instead,

quality	 is	 an	 application	 dependent	 notion.	 Quality	 is	 determined	 by	 what	 is

acceptable	 based	 on	 the	 goal	 of	 the	 application.	 For	 example,	when	 playing	 a
game	 where	 players	 are	 moving	 fast	 and	 are	 focused	 on	 specific	 tasks	 (e.g.
picking	up	 treasures	or	killing	adversaries),	 they	may	not	notice	 if	 the	scene	 is
lighted	very	realistically.	On	the	other	hand,	when	watching	an	animation	movie,
unrealistic	 lighting	 would	 most	 likely	 get	 noticed.	 When	 rendering	 fluid
simulation	results	to	evaluate	and	improve	the	design	of	a	car	before	it	is	built,
accuracy	is	probably	of	the	highest	priority,	irrespective	of	the	appearance.	Uut,
when	 creating	 special	 effects	 for	 movie,	 quality	 is	 guided	 by	 how	 close	 the
digital	 content	matches	 the	 real.	 Further,	 the	 style	 of	 the	 appearance	 need	 not
always	 be	 photorealistic	 (i.e.	 like	 a	 photo)	 though	 it	 has	 been	 the	 focus	 of
mainstream	computer	 graphics	 historically.	More	 recently,	we	have	discovered
an	immense	opportunity	in	creating	non-photorealistic	renderings.	For	example,
a	student	of	mechanical	engineering	would	not	like	to	see	the	photo	of	a	greasy
part	of	a	motor	to	learn	about	it.	He	would	rather	want	an	illustration	of	the	3D
parts	which	abstracts	 the	different	components	and	 their	 functionality	better.	A
student	of	medicine	would	not	want	 to	study	the	human	digestive	system	from
its	photo.	He	would	rather	want	a	colored	highlighted	illustration	of	the	same	to
learn	more	about	the	anatomy.	Such	renderings	that	are	specifically	designed	to
be	 not	 like	 photos	 are	 called	 non-photorealistic	 renderings,	 a	 few	 examples	 of
which	 are	 shown	 in	 Figure	 12.4.	 These	 kind	 of	 effects	 were	 also	 used	 in
animation	 movies.	 For	 example,	 specific	 artistic	 effects	 of	 fur	 and	 grass	 was
extensively	used	in	animation	movies	like	Monsters	Incorporated	or	Lorax.
Speed:	 The	 speed	 of	 rendering	 a	 scene	 is	 always	 dependent	 on	 how	much

complexity	 is	 modeled	 and	 rendered.	 The	 most	 fundamental	 parameter	 that
dictates	speed	is	the	number	of	primitives	since	it	is	inversely	proportional	to	the
speed	 of	 rendering.	 Complex	 phenomena	 like	 caustic	 effects	 or	 realistic
illumination	effects	can	make	 the	 rendering	very	slow.	 In	popular	 terms,	 if	 the
rendering	can	be	achieved	at	a	video	rate,	 i.e.	30	 frames	per	second	(fps),	 it	 is
called	 an	 interactive	 rendering.	 But,	 it	 should	 be	 kept	 in	 mind	 that	 the	 term
interactive	is	also	application	dependent.	For	example,	a	game	application	may
need	to	be	rendered	at	30	fps	to	be	termed	as	interactive,	but	a	sketch	application
can	 respond	at	10	 fps	and	 the	user	may	still	 feel	 that	 the	system	 is	 responding
appropriately	 to	 the	 sketch	 strokes.	However,	more	often	 than	not,	 rendering	a
frame	 for	 minutes	 or	 hours	 is	 termed	 as	 non-interactive.	 Most	 complex
phenomena	like	subsurface	scattering	or	cloth	appearance	modeling	are	usually
associated	with	non-interactive	rendering.	Therefore,	almost	all	the	renderings	in
Figure	 12.2	 have	 taken	multiple	machines	 and	many	 hours	 to	 render	 a	 single
frame.
Quality	vs	 Interactivity	Trade-off:	 In	 the	domain	of	 image	synthesis,	 there	 is

an	 omnipresent	 issue	 of	 the	 tradeoff	 between	 quality	 and	 interactivity.	 The
choice	is	often	purely	based	on	an	application.	A	game	application	favors	speed
over	quality	while	an	animation	movie	favors	quality	over	speed.	The	available
computing	 resource,	 whether	 it	 is	 a	 mobile	 device	 or	 a	 farm	 of	 powerful
machines,	 is	 allocated	 to	 the	 appropriate	 need,	 namely	 to	 enhance	 speed	 or
quality.
The	next	question	is	how	much	can	the	quality	be	compromised	when	speed	is

of	 concern.	 It	 is	 imperative	 that	 if	 the	 quality	 goes	 down	 beyond	 a	 certain
‘acceptable’	level,	it	will	affect	the	user	experience	even	if	rendering	speed	is	at
its	best.	Therefore,	in	interactive	graphics	we	see	several	techniques,	which	can
be	thought	of	‘tricks’	that	try	to	mimic	complex	visual	phenomenon	so	that	they
do	 not	 stand	 out	 to	 be	 jarringly	wrong.	 For	 example,	 the	 technique	 of	 texture
mapping	 pastes	 images	 on	 geometric	 primitives	 such	 as	 triangles	 to	 provide
visual	 complexity	 to	 the	 scene	 without	 increasing	 the	 number	 of	 primitives.
Similarly,	 bump	 mapping	 simulates	 the	 effects	 of	 small	 bumps	 by	 perturbing
normals	 thereby	 creating	 lighting	 effects	 visible	 in	 bumps,	 again	 without
increasing	the	number	of	primitives	(Figure	12.5).	Environment	mapping	pastes
an	 image	 of	 the	 environment	 on	 the	 object	 to	 simulate	 a	 shiny	 object	 in	 the
scene.

Figure	12.5	 .	This	shows	 that	a	plain	3D	model	can	be	used	 in	conjunction	with	a	 richer	 image	 to	create
texture	mapped	objects	(left)	and	bump	mapped	objects	(right).

12.4

The	aforementioned	discussion	may	bring	forth	an	idea	that	realism	is	always
good	 and	 you	 cannot	 go	wrong	with	 non-interactive	 realistic	 image	 synthesis.
This	 impression	 is	 also	 not	 accurate.	 Note	 that	 the	 complexity	 of	 a	 realistic
image	 is	 phenomenal	 and	 it	 is	 not	 true	 that	 a	 rendering	 as	 close	 to	 realistic	 as
possible	is	always	desired.	The	phenomenon	of	‘uncanny	valley’	is	well-known
among	artists.	If	the	realistic	replication	is	very	close	but	not	absolutely	correct,
it	can	create	discomfort	in	users	despite	being	very	realistic.	In	fact,	more	often
than	not	it	creates	a	disturbing	experience.	In	fact,	the	uncanny	valley	has	been
attributed	 to	 the	 failure	 of	 very	 expensively	 made	 animation	movies	 like	 The
Polar	Express	or	robots	like	Cubo	girl	(Figure	12.6).

Application
The	domain	of	visual	content	 synthesis	 is	 literally	 innumerable	and	diverse.	 In
this	 section	 we	 will	 discuss	 some	 popular	 applications,	 specifically	 focusing
towards	3D	content	synthesis.
The	rise	of	the	field	of	computer	graphics	was	motivated	from	its	inception	by

a	concept	that	is	well-defined	today	as	virtual	reality	or	VR.	The	goal	here	was
to	 simulate	 environments	 and	 experiences	 that	 are	 virtual	 and	 yet	 so	 real	 that
people	 can	 use	 them	 for	 training.	 Examples	 of	 such	 environments	 are	 flight
simulators	 for	pilots,	 training	environments	 for	Army,	Navy	and	Airforce.	The
name	`virtual	reality’	stems	from	the	fact	that	the	virtual	environment	would	be
the	reality	for	the	users	for	some	time	and	at	some	space.	The	basic	concept	of
virtual	 reality	 lies	 in	 having	 an	 immersive	 display	 on	 which	 a	 computer
generated	 scene	 is	 presented	 to	 create	 a	 sense	 of	 immersion	 in	 a	 virtual
environment.	 In	 addition,	 users	 can	 have	 different	 interactive	 devices	 (e.g.
joystick)	 for	 navigating	 the	 3D	 world	 or	 interacting	 with	 it.	 The	 immersive
display	can	be	instrumented	by	a	surround	seamless	large	area	display	made	of
multiple	 projectors.	 The	 perception	 of	 depth	 can	 be	 achieved	 by	 active	 stereo
glasses	that	switch	synchronously	with	the	projectors	time	multiplexing	between
the	views	for	 the	 two	different	eyes.	 It	can	also	be	achieved	via	passive	stereo
glasses	where	 superimposed	projectors	of	different	polarity	 are	used	 to	project
the	 views	 of	 two	 eyes.	 The	 glasses	 are	 equipped	with	 identical	 polarizers	 the
allow	the	different	projections	to	reach	two	eyes.	The	display	can	also	be	a	head
mounted	display	(HMD)	where	two	different	views	of	the	scene	are	generated	in
real	time	and	presented	to	the	two	eyes	synchronously	(e.g.	Occulus	Rift,	Google
cardboard).	The	head	of	the	user	is	usually	tracked	(e.g.	using	cameras)	which	is
used	to	determine	the	viewpoint	from	which	the	scene	will	be	rendered.	Today,

we	are	seeing	the	advent	of	retinal	displays	where	light	is	shone	into	the	retina
for	 the	 user	 to	 experience	 the	 same	 images	 as	 projected	 on	 a	 HMD.	 Virtual
reality,	even	today,	is	one	of	biggest	consumer	for	computer	graphics.	These	are
now	routinely	being	used	for	3D	gaming	experiences.	Further,	with	the	advent	of
high-speed	 networking,	 it	 is	 now	 also	 being	 used	 for	 applications	 like
teleconferencing.	Some	of	such	applications	are	shown	in	Figure	12.7.

Figure	12.6	.	This	shows	the	user	evaluated	empathy	towards	several	digital	characters	in	animation	movies.

Figure	12.7	 .	 This	 figure	 shows	 some	 use	 of	 computer	 generated	 scenes	 in	 virtual	 reality	 environmentsa
military	 training	 simulator	 (left)	 and	 a	 flight	 simulator	 (middle).	 More	 recently	 real	 content	 is	 being
streamed	on	such	systems	for	immersive	teleconferencing	(right).

Fun	Facts

Though	it	may	seem	that	concepts	of	VR	and	AR	are	very	futuristic,	these
concepts	were	 envisioned	by	visionaries	more	 than	50	years	 ago.	Morton
Hellig	 built	 the	 first	VR	 environment	 in	 1962	 to	 enable	 his	 vision	 of	 the
“experience	 theatre”	 or	 “cinema	 of	 the	 future”	 This	 was	 called	 the
sensorama	 (left),	 a	VR	 environment,	 fully	 equipped	with	 3D	 wide-vision
moving	color	images	along	with	stereo	sound,	aromas,	wind	and	vibrations
—	much	of	which	 is	not	available	 today	in	our	3D	cinema	experience.	 In
1968,	Ivan	Sutherland,	a	professor	at	the	University	of	Utah,	built	the	first

head-tracked	head-mounted	display	which	he	called	“Sword	of	Damocles”.
Later	on,	he	founded	the	first	computer	graphics	company	in	the	US,	Evans
and	Sutherland,	with	his	colleague	David	Evans.	They	were	the	only	name
in	 flight	 simulators	 in	 the	 early	 days	 and	 are	 still	 in	 business	 building
projection	environments	for	planetariums.

In	the	past	decade,	we	have	seen	merging	of	the	virtual	and	real	world	in	what
is	called	augmented	reality	(AR).	Figure	12.8	shows	an	example	of	augmented
reality	using	both	tablets	or	see	through	displays.	In	the	former,	the	real	world	is
captured	 in	 the	 tablet	 and	 augmented	 with	 the	 virtual	 world.	 Therefore	 the
augmentation	happens	in	the	virtual	space.	In	the	latter,	the	augmented	world	is
presented	 on	 see	 through	 displays	 and	 is	 automatically	 merged	 with	 the	 real
world	when	seen	through	(e.g.	Microsoft	Hololens).	Note	that	in	this	case,	it	 is
not	a	mere	composition	of	images.	The	3D	virtual	models	are	merged	with	 the
3D	real	world	which	is	much	more	challenging	than	the	image	composition.	For
example,	 light	 from	 the	 real	 world	 should	 interact	 with	 the	 virtual	 objects	 to
make	 the	 experience	 believable.	 Also,	 it	 is	 worth	 appreciating	 that	 AR	 is	 a
domain	which	 sees	 a	 hand-in-hand	 functioning	 of	 computer	 vision	 and	 image
synthesis.	The	real	world	needs	to	be	reconstructed	at	some	level	 to	decide	the
location	where	virtual	objects	should	be	placed	or	merged.

Figure	12.8	 .	This	figure	shows	some	tablet	based	and	other	see‐through‐display	based	augmented	reality
systems.

Currently,	we	are	seeing	the	advent	of	spatially	augmented	reality	where	real
objects	 are	 augmented	with	projected	 light	 to	 change	 their	 appearance	without
encumbering	the	human	being	with	a	device.	For	example,	a	white	model	of	Taj
Mahal	 can	 be	 augmented	 with	 projected	 light	 to	 show	 the	 intricately	 detailed
artwork	 in	 different	 illumination	 conditions	 starting	 from	 rosy	 dawn	 to	 white
moonlight.	 Similarly,	 other	 cultural	 heritage	 artifacts	 can	 be	 restored	 to	 their
original	 appearance	 using	 projected	 light,	 and	 movements	 or	 bumps	 can	 be
simulated	on	static	models	using	projected	illumination	(Figure	12.9).
VR,	AR	and	spatially	augmented	reality	all	have	many	applications	in	many

different	 domains.	 Augmenting	 a	 patient	 with	 previously	 captured	 2D	 or	 3D

images	 that	 registered	 accurately	with	 his	 body	 can	make	 surgeries	minimally
obtrusive	 (e.g.	 extraction	 of	 tissue	 for	 biopsy).	 Inexpensive	 VR	 training
environments	 for	 law	 enforcement	 departments	 can	 provide	 extensive	 training
for	officers	before	they	face	tough	real	situations.	Visualization	of	large	3D	data
like	seismic	data	or	weather	data	is	extremely	crucial	to	predict	and	prepare	for
natural	disasters.

Figure	 12.9	 .	Real	 objects	 (left)	 augmented	with	 light	 projected	 from	 three	 different	 projectors	 to	 create
spatially	augmented	reality	objects	(right).

Animation	 and	 special	 effects	 offer	 many	 applications	 of	 visual	 content
synthesis.	The	animation	industry	strives	to	discover	methods	to	render	different
styles	 and	 feelings	 to	 their	 characters,	 provide	 realistic	 body	motions,	 provide
realistic	draping	of	clothes	and	dresses	consistent	with	the	animation	movements
etc.	Special	effects,	on	the	other	hand,	strive	to	match	the	realism	of	the	virtual
world	with	that	of	the	real	world	similar	to	augmented	reality.	For	example,	in	a
special	effect	scene	with	both	virtual	and	real	characters,	 the	 real	 lights	should
affect	 the	 virtual	 scene	 accurately	 and	 vice	 versa—a	 great	 challenge	 in	 the
industry.
Geometric	modeling	and	processing	has	been	the	keystone	for	computer	aided

design	 and	 modeling	 (CAD,	 CAM)	 for	 a	 long	 time.	 With	 the	 advent	 of	 3D
printing,	this	domain	of	computer	graphics	is	again	coming	back	to	the	limelight
via	varied	applications	in	the	domain	of	3D	manufacturing.	How	do	we	print	3D
objects	with	minimum	material	wastage?	Can	we	design	a	geometric	model	this
is	printable,	 stable	and	 functional	and	yet	 stackable?	Can	we	design	objects	 in
pieces	in	such	a	manner	so	that	their	assembly	instructions	will	have	simpler	or	a
reduced	number	of	steps?
Designing	 novel	 graphics	 hardware	 is	 also	 a	 very	 vibrant	 area	 related	 to

12.5

computer	graphics.	Until	the	mid-1990s,	interactive	graphics	rendering	was	only
possible	 on	 super-expensive	mammoth	machines	 (e.g.	 SGI	Onyx,	 SGI	 infinite
reality)	 which	 used	 to	 be	 hosted	 in	 large	 rooms	 under	 very	 controlled
environment.	Even	then,	rendering	a	few	million	triangles	at	30fps	was	a	major
achievement.	 Radical	 changes	 in	 the	 graphics	 architecture	 borrowing	 heavily
from	 parallel	 processing	 architectures	 has	 resulted	 in	 todays	 inexpensive
graphics	processing	units	or	GPUs	which	can	be	put	in	any	laptop	or	desktop	and
can	perform	a	 few	orders	 of	magnitude	better	 than	 the	mammoth	machines	 of
yesteryear.	GPUs	today	are	so	powerful	that	they	are	being	used	as	resources	for
even	 general	 purpose	 computing	 and	 scientific	 computing.	 Therefore	 GPU
design	and	programming	is	also	a	very	attractive	domain	of	computer	graphics.

Fun	Facts
Toy	Story	was	 a	 big	milestone	 for	 computer	 graphics	 being	 the	 first	 ever
feature	 length	 computer	 animated	 movie.	 It	 was	 produced	 by	 Pixar
Animation	 Studios	 and	 released	 by	 Walt	 Disney	 Pictures.	 Pixar	 was
approached	 by	 Disney	 to	 make	 toy	 story	 following	 their	 success	 of	 the
short	film	‘Tin	Toy’	in	1988.	Pixar	used	to	make	such	short	films	from	time
to	 time	 to	 promote	 their	 computers.	 They	 started	 as	 part	 of	 the	 graphics
group	 in	 the	 computer	 division	 of	 Lucasfilm	 in	 1979.	 They	 spun	 out	 a
corporation	 in	 1986	 when	 they	 were	 funded	 by	 Steve	 Jobs.	 Though
produced	under	some	financial	constraints,	Toy	Story	was	the	top	grossing
film	 on	 its	 opening	 weekend	 and	 went	 on	 to	 earn	 over	 $361	 million
worldwide.	It	is	still	widely	considered	by	many	critics	as	the	best	animated
film	ever	made.	In	2005	it	won	the	Special	Achievement	Academy	Award
and	 was	 inducted	 in	 the	 National	 Film	 Registry	 as	 being	 “cuturally,
historically	or	aesthetically	significant”.

Conclusion
The	material	 covered	 in	 this	 book	 is	 not	 comprehensive	 by	 any	measure.	 The
goal	of	 this	book	 is	 to	provide	you	with	 fundamentals	 to	get	you	 interested	 in
exploring	one	or	more	of	 these	domains	 in	depth.	For	 this	purpose	we	will	 be
focusing	 primarily	 on	 interactive	 graphics	 techniques	 which	 will	 provide	 you
with	all	the	fundamentals	needed	to	move	from	3D	to	2D,	the	main	objective	of
any	 image	 synthesis	 pipeline.	 We	 will	 be	 providing	 you	 pointers	 for	 more
advanced	readings	on	non-interactive,	often	physically-based,	rendering.	We	will

cover	 a	 number	 of	 processing	 and	 modeling	 techniques	 in	 the	 context	 of
interactive	 rendering.	 The	 sections	 are	 organized	 based	 on	 the	 well-known
graphics	pipeline.	We	will	refrain	from	limiting	the	content	to	a	particular	GPU
hardware	 or	 a	 particular	 programming	 language.	This	 section	of	 the	 book	will
introduce	 you	 to	 the	 basic	 mathematical	 concepts	 of	 visual	 content	 synthesis
which	can	be	implemented	on	any	GPUs	using	any	programming	language	once
you	learn	each	of	them	respectively.
To	learn	more	details	of	non-interactive	processes,	please	refer	to	[Shirley	and

Marschner	09,	Foley	 et	 al.	 90].	OpenGL	 is	 still	 the	most	 flexible	 and	 popular
cross-language	 corss-platform	 API	 for	 graphics	 programming	 and	 interacting
with	GPUs.	To	learn	more	of	how	to	implement	graphics	techniques	in	OpenGL,
refer	 to	 [Angel	 08,	 Hearn	 and	 Baker	 10]	 .	 For	 extensive	 details	 on	 CUDA
programming	for	GPUs,	refer	to	[Cook	12,	Cheng	et	al.	14].	To	understand	how
to	 use	 GPUs	 as	 general	 purpose	 computing	 for	 massively	 parallelizing	 your
general	purpose	application	(e.g.	massive	sparse	matrix	multiplications),	refer	to
[Kirk	and	mei	W.	Hwu	12]	.

Bibliography
[Angel	08]	AngelEdward.	Interactive	Computer	Graphics:	A	Top-Down	Approach	Using	OpenGL.	Addison

Wesley;	2008.
[Cheng	 14]	 John	 ChengMaxGrossman,	 and	 TyMcKercher.	 Professional	 CUDA	 C	 Programming.	 Wrox,

2014.
[Cook	 12]	CookShane.	CUDA	 Programming:	 A	 Developer’s	 Guide	 to	 Parallel	 Computing	 with	 GPUs.

Morgan	Kaufmann;	2012.
[Foley	 90]	 James	 D.Foley,	 Andries	 van	 Dam,	 Steven	 K.Feiner,	 and	 John	 F.Hughes.	 Computer

Graphics:Principles	and	Practice	(2	Nd	Ed.)	Addison-Wesley	Longman	Publishing	Co.,	Inc.,	1990.
[Hearn	and	Baker	10]	DonaldD.	Hearn	and	M.	Pearson:	Pauline	Baker.	Computer	Graphics	with	OpenGL;

2010.
[Kirk	 and	 mei	 W.	 Hwu	 12]	 David	 B.Kirk	 and	 Wen	 mei	 W.Hwu.	 Programming	 Massively	 Parallel

Processors:	A	Hands-on	Approach.	Morgan	Kaufmann,2012.
[Shirley	 and	Marschner	 09]	 ShirleyPeter,	 MarschnerSteve.	Fundamentals	 of	 Computer	 Graphics.	 Peters

Ltd:	A.	K;	2009.

13

Interactive	Graphics	Pipeline
The	goal	 of	 the	 visual	 content	 synthesis	 pipeline	 is	 to	 take	 a	 3	D	scene	 and	 a
view	point	 setup	as	 input	 and	generate	 a	2	D	 image.	We	assume	 that	 this	3	D
scene	is	 represented	as	a	 triangular	mesh,	as	discussed	 in	Chapter	1.	Therefore
the	input	data	is	given	as	a	set	of	triangles	whose	vertices	are	defined	with	their
position,	 at	 least	 one	 attribute	 (e.g.	 normal	 vectors,	 RGB	 color)	 and	 their
connectivity.	Let	us	consider	Figure	13.1	 in	which	 the	3	D	scene	consists	of	 a
very	simple	model	of	a	pyramid	defined	by	the	vertices	A,		B,		C	and	D.	At	every
vertex,	at	least	one	attribute,	namely	its	3	D	location	is	defined.	Other	attributes
can	be	color,	normal	and	so	on.	The	connectivity	or	 topological	 information	 is
given	 via	 four	 triangles	 ABC,	DBC,	DAC	 and	 ABD	 that	 define	 the	 way	 the
vertices	 are	 connected	 by	 edges.	 The	 eye	 or	 view	 point	 or	 the	 position	 of	 the
camera	is	defined	by	E	and	the	image	plane	(or	screen)	by	I.	Let	us	describe	the
steps	in	the	graphics	pipeline	that	would	draw	a	given	object	from	the	point	of
view	of	the	eye	E	on	the	image	plane	I.

1.	 Geometric	 Transformation	 of	 Vertices:	 The	 first	 aspect	 of	 the	 image
synthesis	pipeline	 is	 to	 find	 the	2D	 location	of	 the	vertices	 in	 the	3D
scene	on	the	image	plane	after	transforming	the	vertices	based	on	their
perspective	projection	 from	 the	eye	E.	These	2D	 locations	are	 shown
by	the	vertices	a,		b,		c	and	d	found	by	perspectively	projecting	the	3D
object	on	I.	This	entails	connecting	the	vertices	A,		B,	 	C	and	D	to	the
eye	 E	 via	 straight	 line	 rays	 and	 finding	 their	 intersections	 with	 the
plane	I.

2.	 Clipping	and	Vertex	Interpolation	of	Attributes:	Due	the	finite	extent	of
I,	 	all	 the	vertices	may	not	fall	within	 the	 image	plane	I.	We	are	only
concerned	with	drawing	the	part	of	the	scene	that	is	inside	I.	Therefore,
the	 projected	 triangles	 should	 be	 clipped	 by	 the	 boundaries	 of	 the
image	 introducing	new	vertices	 at	 the	 intersection	point	 of	 the	 image
boundary	 and	 the	 triangle	 edges.	 Let	 us	 describe	 the	 steps	 in	 the
graphics	pipeline	that	would	draw	a	given	object	from	the	point	of	view
of	 the	 eye	 on	 the	 screen.	 For	 example,	 in	 Figure	 13.1,	 new	 vertices

f,	 e,	h	 and	 g	 are	 introduced	 to	 clip	 the	 projected	 triangles	 shown	 in
orange.	 The	 required	 attributes	 at	 the	 new	 vertices	 are	 computed	 via
bilinear	 interpolation	 (see	 Chapter	 2)	 from	 the	 other	 vertices	 of	 the
clipped	triangle.	This	is	called	the	vertex	interpolation	of	attributes.

3.	 Rasterization	and	Pixel	Interpolation	of	Attributes:	Finally,	we	have	to
paint	 the	 polygons	 formed	 by	 the	 clipped	 and/or	 unclipped	 vertices.
This	is	done	by	computing	all	the	discrete	pixel	locations	on	the	screen
that	 is	 covered	 by	 the	 rendered	 polygon,	 and	 computing	 the	 color	 of
these	pixels.	First	the	pixels	representing	the	edges	of	the	polygon	are
computed,	 and	 the	 colors	 at	 these	 pixels	 are	 computed	 by	 linear
interpolation	 of	 the	 colors	 at	 the	 end	 vertices	 representing	 the	 edge.
Then	each	row	of	pixels	 is	scanned	to	compute	 the	range	of	pixels	 in
that	 row	 that	 are	 inside	 the	 polygon.	 The	 colors	 at	 these	 pixels	 are
interpolated	from	the	colors	at	either	extreme	of	the	range.	This	process
of	painting	the	triangles	traversing	the	pixels	in	scanline	order	is	called
rasterization	(shown	by	green	pixels	in	Figure	13.1)	and	computing	the
attributes	at	the	pixels	is	called	pixel	interpolation	of	the	attributes.

13.1

13.1.1

Figure	13.1	 .	This	 figure	 shows	 the	 different	 steps	 of	 the	 graphics	 pipeline	when	 rendering	 a	 simple	 3D
model	of	a	pyramid	defined	by	the	vertices	A,		B,		C	and	D.

Geometric	Transformation	of	Vertices
The	 geometric	 pipeline	 consists	 of	 a	 sequence	 of	 transformations	 applied	 to
every	 vertex	 of	 every	 triangle	 to	 find	 its	 corresponding	 2	D	 coordinate	 in	 the
final	 image	output.	Chapter	6	discusses	various	geometric	 transformations	 that
would	be	used	in	the	current	chapter.
The	 first	 step	 is	 the	model	 transformation.	 This	 is	 the	 transformation	 of	 the

objects	 from	 the	 object	 specific	 3	D	coordinates	 to	 the	 single	 reference	world
coordinates.	 Second,	 the	 view	 setup	 describes	 the	 position	 of	 the	 eye	 and	 the
orientation	 of	 the	 head	 which	 are	 used	 to	 apply	 a	 view	 transformation	 that
represents	 a	 scene	 in	 a	 canonical	 view	 coordinate	 system.	 Third,	 in	 the
perspective	 projection	 step	 2	D	 projections	 of	 the	 3	D	 vertices	 are	 computed.
This	step	also	includes	making	preparations	to	resolve	occlusions.	The	final	step
in	 this	 process	 is	 the	 window	 coordinate	 transformation	 which	 maps	 all	 the
vertices	on	 to	 the	exact	window	on	the	display	 in	which	 the	3	D	scene	will	be
rendered.

Geometric	Transformation	of	Vertices
The	model	 transformation	 aids	 significantly	 in	 scene	 building.	Consider	 every
object	 defined	 in	 its	 own	 object	 specific	 coordinate	 system.	 When	 geometric
models	 of	 various	 objects	 are	 downloaded	 from	 different	 places	 to	 populate	 a
scene,	 it	 is	 rather	 natural	 that	 each	 of	 these	 will	 be	 defined	 in	 a	 different
coordinate	system.	The	goal	of	model	transformation	is	to	place	these	objects	in
different	 places	 in	 the	 scene	 in	 different	 forms	 (maybe	 scaled	 differently	 or
oriented	 differently).	 Therefore,	model	 transformation	 is	 the	 transformation	M
from	the	object	coordinate	system	to	one	global	world	coordinate	system	of	the
entire	scene	where	all	the	objects	are	placed.
The	model	transformation	step	also	allows	multiple	instantiation	of	the	same

object	in	different	position,	orientation	and	scale.	For	example,	if	we	are	trying
to	create	a	3	D	scene	of	a	classroom,	instead	of	storing	the	model	of	100	chairs
in	 the	 classroom,	 we	 can	 store	 one	 instance	 of	 the	 3	 D	 chair	 in	 an	 object
coordinate	 system	and	 then	 instantiate	100	of	 them	at	different	positions	when
building	the	scene.	Figure	13.2	shows	an	example.	Here	there	are	three	objects—
a	 pyramid,	 a	 cylinder	 and	 a	 cube—	 defined	 in	 their	 own	 object	 coordinate
system	X	 o	Y	 o	Z	 o	 .	 These	 are	 then	 converted	 to	 the	 global	 world	 coordinate

13.1.2

system	 X	 w	 Y	 w	 Z	 w	 to	 create	 the	 scene.	 For	 example,	 the	 pyramid	 has	 been
translated,	while	the	cube	has	been	scaled	and	translated.	The	cylinder	has	been
instantiated	 three	 times,	 each	 time	 with	 a	 different	 scaling,	 rotation	 and
translation.	Therefore,	for	the	pyramid	M	p		=	T	p	while	for	the	cube	M	c		=	T	c	S	c
and	for	the	cylinders	there	are	three	different	transformations	given	by	M	1	=	T	1
R	1	S	1,		M	2	=	T	2	R	2	S	2	and	M	3	=	T	3	R	3	S	3.	One	important	point	to	note	here	is
that	all	the	matrices	−M	p	,	M	c	,		M	1,	M	2	and	M	3	-		are	of	size	4	×	4	since	we	are
transforming	4	D	homogeneous	coordinates.

Figure	13.2	.	This	figure	shows	the	model	transformation.	Every	object	(e.g.	cylinder,	pyramid	and	cube)	is
defined	 in	 its	 own	 object	 coordinate	 system	 i.e.	 each	 of	 their	 vertices	 is	 defined	 in	 its	 own	 coordinate
system.	Then	using	model	transformation	they	are	instantiated	multiple	times	and	transformed	differently	to
form	the	completely	scene.

View	Transformation
The	input	defining	the	view	setup	allows	the	rendering	of	the	3	D	scene	for	the
defined	 view.	The	 view	 setup	 is	 defined	 by	 the	 3	D	location	 of	 the	 eye	E,	 an
image	 plane	 usually	 defined	 by	 a	 normal	 vector	 to	 the	 image	 plane	N	 -	 	 also
called	the	principle	axis,	and	a	view‐up	vector	V	which	provides	the	up	direction
of	 the	head.	 Ideally	N	 and	V	 should	be	perpendicular	 to	 each	other.	But	when
providing	 a	 view‐up	 vector,	 it	 is	 often	 difficult	 on	 the	 part	 of	 the	 application
programmer	to	provide	a	vector	that	is	exactly	orthogonal	to	N.	Therefore,	most
graphics	application	programming	interfaces	(APIs)	allow	defining	V	as	a	vector

close	 to	 the	 view‐up	 vector	 from	 which	 the	 actual	 view‐up	 vector	 that	 is
perpendicular	to	N	is	computed.
The	 output	 of	 the	 graphics	 pipeline	 is	 a	 2	D	 image	 rendered	 from	 the	 3	D

scene,	 that	 needs	 to	 be	 updated	 every	 time	 the	 view	 setup	 or	 part	 of	 the	 3	D
scene	 is	changed.	Note	 that	a	change	of	 the	view	set‐up	can	be	expressed	as	a
change	in	the	entire	3	D	scene.	For	example,	if	the	eye	moves	to	the	right,	it	is
equivalent	to	the	scene	moving	to	the	left.	The	advantage	of	this	approach	is	two
fold:	(a)	All	the	transformations	due	to	view	point	change	can	be	applied	to	the
model,	and	so	the	model	transformation	which	is	already	applied	to	the	models
can	 be	 combined	 with	 the	 view	 transformation	 and	 this	 composition	 of
transformation	can	be	applied	once	to	the	model/scene;(b)	since	the	view	set‐up
and	 hence	 the	 image	 plane	 does	 not	 change,	 the	 perspective	 projection
transformation	remains	the	same.	Therefore,	most	graphics	APIs	define	a	default
view	so	that	the	scene	is	transformed	in	such	a	way	that	the	view	set‐up	remains
at	the	default	view.	The	most	common	default	view	is	to	have	the	eye	at	origin,
the	normal	to	the	image	plane	to	be	the	Z‐axis	and	the	view‐up	vector	to	be	the
Y‐axis.	 Therefore,	 the	 default	 view	 setup	 can	 be	 defined	 as
E	=	(0,	0,	0),	V	=	(0,	1,	0)	and	N	=	(0,	0,	1).	This	is	illustrated	in	Figure	13.3.
The	goal	of	view	transformation	is	to	convert	an	arbitrary	view	setup	given	by

an	arbitrary	E,		N	and	V	to	the	default	view.	There	are	two	steps	to	achieve	this.
First,	 the	eye	should	be	moved	to	the	origin	which	is	achieved	by	a	translation
T(-	E)	 .	Second,	N	 should	be	 aligned	with	 the	Z	 axis	which	 is	 achieved	 by	 a
rotation	R.	The	rotation	matrix	R	can	be	computed	by	defining	a	view	coordinate
system	 and	 aligning	 the	 view	 coordinate	 system	with	 the	 standard	 coordinate
system	(X,	Y,	Z	 axes).	Let	 the	 unit	 vectors	 defining	 the	 coordinate	 axes	 of	 the
view	coordinate	system	be	u	x	,		u	y	,	and	u	z	given	by

(13.1)
u	z	=	N	|	|	N	|	|

(13.2)
u	x	=	N	×	V	|	|	N	×	V	|	|

(13.3)
u	y	=	u	z	×	u	x

13.1.3

Figure	13.3	.	This	shows	the	default	view	setup	with	eye	at	the	origin,	the	Z	axis	perpendicular	to	the	image
plane	(often	called	near	plane	in	the	computer	graphics	context),	and	the	Y	axis	as	the	view‐up	vector.

Therefore	R	is	given	by

(13.4)
R	=	u	x	0	u	y	0	u	z	0	0	0	0	1	.

Since	R	 is	a	function	of	N	and	V,	we	often	denote	 it	as	R	(N	 ,	V)	 .	Thus,	 the
final	view	transformation	is	given	by	(N	,	V)	T	(-	E)	 .Combining	 the	model
and	 view	 transformation,	 the	 transformation	 applied	 to	 a	 model	 vertex	 P	 via
matrix	pre-multiplication	is	given	by	R	(N	,	V)	T	(-	E)	M	.	This	4	×	4	matrix	R
(N	,	V)	T	(-	E)	M	is	 identical	 to	 the	3	×	3	extrinsic	parameter	matrix	of	 the
cameras	discussed	in	Chapter	7	except	for	the	last	row	which	is	(0,	0,	0,	1)	that	is
used	 to	 maintain	 the	 transformed	 3D	 point	 to	 be	 in	 4	 ×	 1	 homogeneous
coordinates.

Perspective	Projection	Transformation
The	perspective	 transformation	matrix	does	 the	final	 transformation	from	the	3
D	scene	to	the	2	D	projection	on	the	image	plane.	We	now	define	the	parameters
to	limit	the	extent	of	2	D	image	plane	in	order	to	define	a	field-of-view	(FOV).
The	geometry	on	which	 the	perspective	projection	 transformation	 is	defined	 is

shown	in	Figure	13.3.
The	 eye	 or	 camera	 is	 viewing	 in	 the	 direction	 of	 the	 Z	 axis	 after	 the	 view

transformation.	In	order	to	limit	the	data	that	is	being	processed,	two	planes,	the
near	plane	and	the	far	plane,	parallel	to	XY	planes,	are	defined	along	the	Z	axes.
Objects	that	are	closer	than	the	near	plane	and	those	that	are	farther	than	the	far
plane	 are	 not	 projected	 and	 drawn.	 These	 two	 planes	 are	 defined	 by	 their	 Z
coordinates	n	and	,		f	,	n	<	f	.	The	near	plane	also	serves	as	the	image	plane	on
which	the	3	D	objects	are	projected.	The	axis‐aligned	rectangular	window	on	the
near	plane	 through	which	we	 see	 the	3	D	scene	 from	 the	 eye	 point	 (origin)	 is
called	 the	viewport.	Viewport	 is	 defined	 by	 the	 x	 coordinates	 of	 left	 and	 right
vertical	 edges,	 and	 y	 coordinates	 of	 top	 and	 bottom	 horizontal	 edges.	 A
rectangular	viewport	in	graphics	is	more	to	mimic	the	rectangular	sensor	in	the
camera	 than	 to	 mimic	 the	 circular	 retinal	 image	 of	 the	 human	 eye.	 The	 four
edges	of	the	viewport	−x	=	l,	x	=	r,	y	=	t	and	y	=	b	-		along	with	the	origin	(eye)
define	 four	 planes.	 The	 truncated	 pyramidal	 structure	 formed	 by	 these	 four
planes,	 the	near	plane	and	 far	plane	 is	called	 the	view	frustum	and	 the	volume
enclosed	by	the	view	frustum	is	called	the	view	volume.	Only	the	objects	inside
the	view	volume	are	rendered	on	the	image	plane.	In	the	context	of	 the	human
eye,	the	depth	between	n	and	f	is	usually	termed	as	the	depth	of	field	and	defines
the	 range	 of	 depth	 in	 which	 objects	 form	 a	 focused	 and	 sharp	 image	 on	 the
retina.
However,	the	viewport	need	not	be	centered	around	the	Z	axis.	While	E,	V	and

N	 of	 the	view	 set	 up	describes	 the	head	position	 and	orientation,	 the	viewport
describes	the	gaze	or	the	orientation	of	the	eye,	when	the	head	is	fixed.	The	ray
from	the	eye	(0,	0,	0)	to	the	center	of	the	viewport	in	the	near	plane	l	+	r	2	,	t	+	b
2	,	n	is	called	the	gaze	direction.	This	effect	of	moving	the	gaze	is	very	different
from	moving	the	entire	head.	Try	the	following	experiment.	Stand	in	front	of	a
tiled	wall.	With	head	fixed	look	at	and	observe	the	tiles	30‐45	degrees	above	or
below.	Then	 just	 rotate	your	head	 (but	not	 change	 the	position)	 to	observe	 the
same	tiles	straight	ahead.	The	former	effect	keeps	the	image	plane	the	same	but
changes	gaze.	The	latter	effect	is	created	by	the	tilting	of	the	image	plane	since
the	normal	to	the	image	plane	changes	with	the	rotation	of	the	your	head.	Notice
the	 effect	 of	 these	 two	 perspectives	 is	 very	 different	 from	 each	 other.	 When
changing	the	gaze,	the	tiles	will	look	stretched,	but	when	rotating	your	head	they
will	be	not.
The	primary	function	of	the	perspective	projection	is	to	project	the	3	D	scene

in	 the	 view	 volume	 onto	 the	 viewport.	 In	 addition,	 to	 simplify	 further
computations	 of	 window	 coordinates	 and	 resolve	 occlusions,	 we	 need	 the
perspective	 projection	 transformation	 to	 also	 convert	 the	 truncated	 pyramidal

view	frustum	into	a	cuboid	that	extends	in	each	of	the	X,	Y,	and	Z	direction	from
-	 1	 to	 +	 1.	 This	 is	 illustrated	 in	 Figure	 13.4.	 In	 order	 to	 illustrate	 this
transformation,	consider	the	point	P	v	=	R	(N	,	V)	T	(-	E)	M	P	=	(X	,	Y	,	Z)	T
where	P	v	denotes	the	vertex	after	model	and	view	transformation.

Figure	13.4	.	This	shows	the	transformation	from	the	shear.	Let	the	parameters	of	truncated	conical	frustum
to	the	cuboid	shaped	frustum	as	part	of	the	perspective	projection.

The	 first	 step	 is	 to	 coincide	 the	 general	 gaze	 direction	 to	 the	 default	 gaze
direction	that	coincides	with	the	normal	to	the	image	plane	when	the	viewport	is
such	D	that	l	=	-	r	and	b	=	-	t.	This	is	achieved	by	a	shear	that	brings	the	point	l	+
r	2	,	t	+	b	2	,	n	to	(0	 ,	0	 ,	n)	 .	Since	 the	z	coordinate	 remains	unchanged,	 this
transformation	is	a	Z	this	shear	be	(a	,	b)	.	Therefore,

(13.5)
0	0	n	1	=	1	0	a	0	0	1	b	0	0	0	1	0	0	0	0	1	l	+	r	2	t	+	b	2	n	1

From	this	we	can	find	the	parameters	a	and	b	of	shear	to	be

(13.6)
a	=	-	l	+	r	2	n

(13.7)
b	=	-	t	+	b	2	n

Therefore,	the	first	matrix	for	perspective	projection	of	P	v	is	S	h	z	-	l	+	r	2	n	,	-	t
+	b	2	n	and	it	provides	the	transformation	to	account	for	the	off‐axis	viewport.
The	next	step	is	to	transform	the	view	frustum	from	a	truncated	pyramid	to	a

cuboid.	 Let	 us	 assume,	 for	 the	moment,	 that	 the	 z	 coordinate	 does	 not	matter
since	after	projecting	to	the	image	plane,	all	 the	vertices	will	have	the	depth	n.
We	will	 revisit	 the	 depth	 issue	 later.	 Therefore,	 if	 z	 coordinate	 is	 ignored,	 the
goal	is	to	map	the	viewport	which	extends	from	l	to	r	in	the	x	direction	to	-	1	to
+	1	in	the	x	direction,	and	from	t	to	b	in	the	y	direction	to	-	1	to	+	1	in	y	direction.
This	means	that	lengths	of	r	-	l	horizontally	and	t	-	b	vertically	should	be	mapped

13.1.4

to	2.	Since	the	center	is	already	at	(0,	0)	following	the	shear,	this	can	be	achieved
by	 a	 scaling	 transformation	 S	 2	 r	 -	 l	 ,	 2	 t	 -	 b	 ,	 1	 .	 Therefore,	 the	 complete
transformation	until	this	step	for	a	vertex	P	v	is	given	by	P	s	=	S	(2	r	-	l	,	2	t	-	b	,
1)	S	h	z	(-	l	+	r	2	n	,	-	t	+	b	2	n)	P	v	.
Now,	 finally	 let	 us	 consider	 the	 perspective	 projection.	We	 know	 from	 our

camera	calibration	model	in	Chapter	7	that	the	perspective	projection	(x	p	,	y	p)
of	3D	point	(X	,	Y	,	Z)	is	given	by

(13.8)
x	p	=	X	n	Z

(13.9)
y	p	=	Y	n	Z

which	can	be	expressed	as

(13.10)
x	p	y	p	n	1	=	n	0	0	0	0	n	0	0	0	0	n	0	0	0	1	0	X	Y	Z	1

(13.11)
=	D	(n)	X	Y	Z	1

In	 our	 case,	 the	 3	 D	 point	 is	 what	 we	 achieve	 after	 cuboid	 transformation.
Therefore,	the	complete	transformation	is	given	by	(n)	S	2	r	-	l	,	2	t	-	b	,	1	S	h	z
l	+	r	2	n	,	-	 t	+	b	2	n	P	 v	 .	Since	 this	matrix	depends	only	on	 the	view	frustum
parameters	–	r	,	l	,	t	,	b	,	n	and	f	-		let	us	call	this	L	(n	,	r	,	l	,	t	,	b)	.	Therefore,

(13.12)
L	(n	,	r	,	l	,	t	,	b)	=	D	(n)	S	(2	r	-	l	,	2	t	-	b	,	1)	S	h	z	(l	+	r	2	n	,	-	t	+	b	2	n)	,

and	let	LP	v		=	P	l	.

Occlusion	Resolution
The	z	coordinate	P	l	will	be	n	always.	This	is	expected	since	all	the	vertices	are
projected	on	the	image	plane	at	a	depth	of	n.	However,	during	image	synthesis,
the	information	about	the	depth	of	the	projected	vertex	from	the	image	plane	or
eye	is	very	important	to	resolve	occlusion	and	visibility.
Consider	the	triangles	T	1	and	T	2	in	Figure	13.5	that	intersect	in	3	D	and	when

viewed	from	the	view	direction	different	parts	of	these	two	triangles	are	visible.
Therefore,	during	scan	conversion	at	each	pixel	only	one	of	T	1	and	T	2	should	be
drawn	accurately	based	on	this	visibility	from	the	view	direction.	Therefore,	the
depth	information	at	the	vertices	of	the	triangles	is	retained	as	an	attribute	of	the

projected	vertex	to	be	used	later	on	to	interpolate	the	depth	of	interior	pixels.
Let	 us	 consider	 this	 case	 of	 z-interpolation	 illustrated	 in	 Figure	 13.6	 in	 the

projection	of	a	2	D	line	between	the	points	A	=	(X	0	,	Z	0)	and	B	=	(X	1	,	Z	1)
where	Z	0	and	Z	1	are	the	depths	of	A	and	B	respectively	from	the	view	point.	The
image	 plane	 is	 represented	 by	 the	 red	 line.	 The	 projection	 of	 the	 line	 on	 this
image	plane	would	be	given	by	1	D	coordinates	s	0	and	s	1.	These	are	called	the
screen	space	coordinates	of	the	3	D	primitive.	Let	us	assume	that	we	have	stored
the	depth	of	these	two	projected	verticesZ	0	and	Z	1.

Figure	13.5	.	The	shows	two	inter-	secting	triangles	viewed	from	a	the	shown	view	direction.	The	orange
regions	 shows	 the	 visible	 parts	 of	 each	 triangle	 from	 this	 view	direction	which	 should	 be	 rendered	 after
occlusion	resolution.

Let	 us	 now	 consider	 the	 future	 stage	 of	 scan	 conversion	 where	 we	 are
interpolating	 the	 attributes	 of	 a	 point	 half-way	 between	 s	 0	 and	 s	 1	 in	 screen
coordinates,	i	.	e	.	s	0	+	s	1	2	.	Therefore,	we	will	compute	the	depth	of	this	point
using	the	same	interpolation	coordinates	as	z	0	+	z	2	.	However,	the	depth	of	the
object	point	C	that	is	projected	at	the	screen	coordinate	s	0	+	s	1	2	is	not	z	0	+	z	2
.	The	green	curve	 in	 the	object	 space	 in	Figure	13.6	plots	 the	depth	 computed
through	linear	 interpolation	in	 the	screen	space.e	 shows	 the	difference	between
the	 actual	 depth	 and	 the	 linearly	 interpolated	 depth	 in	 the	 screen	 space.	 Of
course,	the	shape	of	the	green	curve	and	the	amount	of	error	will	change	based
on	the	exact	positions	of	A	and	B.
Therefore,	 the	question	 is	what	kind	of	 interpolation	would	yield	 the	correct

result?	For	this,	let	us	consider	the	point	(X	t	,	Z	t)	between	A	and	B	defined	by
the	interpolation	coefficient	t	in	3	D	.	Therefore,

(13.13)
X	t	=	X	0	+	t	(X	1	-	X	0)

(13.14)
Z	t	=	Z	0	+	t	(Z	1	-	Z	0)

Let	their	projection	on	the	image	plane	be	between	s	0	and	s	1	defined	by	the	2	D
interpolation	coefficient	,		u	,	s	u	.	Therefore,

(13.15)
s	u	=	s	0	+	u	(s	1	-	s	0)	=	X	0	Z	0	+	u	X	1	Z	1	-	X	0	Z	0

Since	s	u	is	the	image	of	(X	t	,	Z	t)	,	we	can	derive	the	following.

(13.16)
s	u	X	t	Z	t

(13.17)
Or,	X	0	Z	0	+	u	X	1	Z	1	-	X	0	Z	0	=	X	0	+	t	(X	1	-	X	0)	Z	0	+	t	(Z	1	-	Z	0)

Figure	13.6	.	This	figure	illustrates	the	error	that	occurs	if	depth	(z)	is	interpolated	in	screen	space	to	find
the	depth	of	points	internal	to	the	triangles	from	the	depth	of	the	vertices.

Solving	the	above	equation,	we	can	find	u	as

(13.18)
u	=	Z	1	t	Z	0	+	t	(Z	1	-	Z	0)	.

Rearranging	terms	in	the	above	equation,	we	can	find	t	as

(13.19)
t	=	u	Z	0	Z	1	-	u	(Z	1	-	Z	0)	.

Using	the	above	equations,	we	can	now	compute	Z	t	,	the	accurate	3	D	depth	of

the	point	as

(13.20)
Z	t	=	Z	0	+	t	(Z	1	-	Z	0)

(13.21)
=	Z	0	+	u	Z	0	Z	1	-	u	(Z	1	-	Z	0)	(Z	1	-	Z	0)

(13.22)
=	Z	0	Z	1	Z	1	-	u	(Z	1	-	Z	0)

(13.23)
=	1	1	Z	0	+	u	1	Z	1	-	1	Z	0	.

The	above	derivation	shows	that

(13.24)
1	Z	t	=	1	Z	0	+	u	1	Z	1	-	1	Z	0	,

i.e.	the	reciprocal	of	Z	t	can	be	linearly	interpolated	from	the	reciprocal	of	depth
at	A	 and	B	 using	 the	 screen	 space	 interpolation	 parameter	 u.	 Hence,	 linearly
interpolating	the	reciprocal	of	Z	instead	of	Z	would	yield	the	correct	answer.
Therefore,	the	depth	of	a	point	C	half‐way	in	3D	between	A	and	B,		Z	c	can	be

computed	as

(13.25)
1	Z	c	=	1	2	Z	0	+	1	2	Z	1

Therefore,	when	retaining	the	depth	in	the	third	coordinate	after	applying	L,	we
should	retain	1	Z	instead	of	Z	so	that	we	can	readily	apply	linear	interpolation	of
depth	during	scan	conversion.	Intuitively,	this	is	due	to	the	fact	that	perspective
projection	is	not	directly	proportional	to	the	depth	but	inversely	proportional	to
depth.
Next,	we	will	 deduce	 the	 transformations	 required	 to	 retain	 1	z	as	 the	 third

coordinate.	From	equation	13.12,	L	(n	,	r	,	l	,	t	,	b)	=	D	(n)	S	(2	r	-	l	,	2	t	-	b	,	1
)	S	h	z	(l	+	r	2	n	,	-	t	+	b	2	n)	and	LP	v		=	P	l	.	Let	P	v	=	(X	v	 ,	Y	v	 ,	Z	v)	 .
Replacing	L	with	multiplication	of	the	matrices	in	Equation	13.12	we	get

(13.26)
P	l	=	L	P	v	=	L	X	v	Y	v	Z	v	1	=	2	X	v	r	-	l	-	(l	+	r)	Z	v	n	(r	-	l)	2	Y	t	-	b	-	(t	+	b
)	Z	v	n	(t	-	b)	Z	v	Z	v	n	=	2	X	v	n	Z	v	r	-	l	-	l	+	r	r	-	l	2	Y	v	n	Z	v	(t	-	b)	-	t	+	b	t
-	b	n	1

In	the	above	equation,	the	third	coordinate	of	P	l	is	n.	To	retain	the	depth	in	this

coordinates,	we	want	 the	 third	coordinate	of	P	 l	 to	be	1	Z	v	 .	Not	 only	 so,	we
need	 the	 third	coordinate	 to	be	normalized	between	 -	1	and	+	1	as	1	Z	v	 goes
between	1	n	to	1	 f	 to	 transform	the	 truncated	pyramid	 to	a	cuboid	as	shown	in
Figure	13.4.
To	achieve	this,	we	have	to	map	1	n	to	-	1,		1	f	to	+	1,	and	 the	center	of	 the

range	1	n	,	1	f	to	0.	The	center	is	given	by

(13.27)
1	f	+	1	n	2	=	f	+	n	2	n	f	.

This	movement	of	the	center	is	achieved	by	a	translation	by	-	f	+	n	2	n	f	.	Then,
the	extent	between	1	n	to	1	f	is	scaled	to	2	via	a	scale	factor	of

(13.28)
2	1	f	-	1	n	=	2	n	f	n	-	f	.

Therefore	the	final	expression	for	the	third	coordinate	of	P	l	is	given	by

(13.29)
1	Z	v	-	f	+	n	2	n	f	2	n	f	n	-	f	=	2	n	f	(n	-	f)	Z	v	+	f	+	n	f	-	n	=	2	n	f	n	-	f	-	n	+	f	n	-
f	Z	v	Z	v

Therefore,	P	l	that	we	would	like	to	achieve	is	given	by

(13.30)
2	X	v	n	Z	v	r	-	l	-	l	+	r	r	-	l	2	Y	v	n	Z	v	(t	-	b)	-	t	+	b	t	-	b	Z	v	2	n	f	n	-	f	-	n	+	f	z	-
f	Z	v	Z	v	1	=	2	X	v	n	r	-	l	-	l	+	r	r	-	l	Z	v	2	Y	v	n	t	-	b	-	t	+	b	t	-	b	Z	v	2	n	f	n	-	f	-	n
+	f	z	-	f	Z	v	Z	v

This	can	be	achieved	by	making	D(n)	into	a	matrix	that	depends	on	both	n	and	f
and	is	given	by

(13.31)
D	(n	,	f)	=	n	0	0	0	0	n	0	0	0	0	-	n	+	f	n	-	f	2	f	n	n	-	f	0	0	1	0

Therefore,	the	entire	perspective	projection	matrix	L,	now	dependent	on	f	also,	is
given	by

(13.32)
D	(n	,	f)	S	(2	r	-	l	,	2	t	-	b	,	1)	S	h	z	(-	l	+	r	2	n	,	-	t	+	b	2	n)

(13.33)
=	n	0	0	0	0	n	0	0	0	0	-	n	+	f	n	-	f	2	n	f	n	-	f	0	0	1	0	2	r	-	l	0	0	0	0	2	t	-	b	0	0	0	0	1	0
0	0	0	1	1	0	-	r	+	l	2	n	0	0	1	-	t	+	b	2	n	0	0	0	1	0	0	0	0	1

(13.34)

13.1.5

13.1.6

=	2	n	r	-	l	0	0	0	0	2	n	t	-	b	0	0	0	0	-	n	+	f	n	-	f	2	n	f	n	-	f	0	0	1	0	1	0	-	r	+	l	2	n	0	0	1
-	t	+	b	2	n	0	0	0	1	0	0	0	0	1

(13.35)
=	2	n	r	-	l	0	-	r	+	l	r	-	1	0	0	2	n	t	-	b	-	t	+	b	t	-	b	0	0	0	-	n	+	f	n	-	f	2	n	f	n	-	f	0	0	1	0

This	matrix	L	(n	 ,	 f	 ,	 r	 ,	 l	 ,	 t	 ,	 b)	 is	 often	 called	 the	 frustum	 transformation
matrix	since	it	is	dependent	on	the	parameters	that	define	the	view	frustum.
The	top‐left	3	×	3	submatrix	of	Equation	13.35	looks	exactly	like	the	intrinsic

parameter	matrix	in	Equation	7.10	where	the	focal	length	is	n,	the	horizontal	and
vertical	 scale	 factor	 are	 2	 r	 -	 l	 and	 2	 r	 -	 l	 respectively	 and	 the	 horizontal	 and
vertical	offsets	are	-	l	+	r	2	and	-	t	+	b	2	respectively.	 In	other	words,	while	 the
view	 transformation	 is	 essentially	 the	 extrinsic	 parameter	 matrix,	 the	 frustum
transformation	matrix	L	is	essentially	the	intrinsic	parameter	matrix.	The	camera
model	 in	 the	 synthesis	 pipeline	 is	 essentially	 the	 same	 as	 the	 pinhole	 camera
model,	but	we	arrive	at	 the	same	equations	from	different	directions	and	use	 it
differently.

Window	Coordinate	Transformation
The	 perspective	 transformation	 normalizes	 each	 of	 the	 three	 coordinates	 to	 be
between	-	1	to	+	1.	However,	the	final	drawing	in	any	image	synthesis	has	to	be
done	 on	 a	 window	 on	 the	 display	 screen	 which	 is	 usually	 defined	 by	 integer
coordinates	of	the	top	left	and	bottom	right	corner	of	the	window.	Therefore,	this
is	exactly	similar	to	providing	the	viewport.	Let	the	coordinates	of	these	top,	left,
right	 and	 bottom	 window	 boundaries	 be	 t	 w	 ,	 	 l	 w	 ,	 	 b	 w	 and	 r	 w	 respectively.
Therefore,	the	center	of	the	window	is	given	by	l	w	+	r	w	2	,	t	w	+	b	w	2	and	the
length	and	height	of	the	window	is	given	by	r	w		-	l	w	and	t	w	 	 -	b	w	 respectively.
The	transformation	to	the	window	coordinates	involve	a	translation	by	l	w	+	r	w
2	,	t	w	+	b	w	2	and	a	scaling	by	r	w	-	 l	w	2	and	 t	w	-	b	w	2	 in	horizontal	and
vertical	directions	respectively	while	keeping	the	z‐coordinate	unaffected.	This	is
achieved	by	the	transformation

(13.36)
W	(t	w	,	l	w	,	b	w	,	r	w)	=	r	w	-	l	w	2	0	0	l	w	+	r	w	2	0	t	w	-	b	w	2	0	t	w	-	b	w	2
0	0	1	0	0	0	0	1

The	Final	Transformation
Therefore	the	complete	transformation	G	of	a	point	P	is	given	by

(13.37)

G	=	W	(l	w	,	r	w	,	t	w	,	b	w)	L	(n	,	f	,	r	,	l	,	t	,	b)	R	(N	,	V)	T	(-	E)	M

The	above	transformation	projects	the	point	from	the	object	coordinate	system	to
the	 window	 coordinates.	 This	 is	 exactly	 how	 the	 vertices	 a,	 	 b,	 	 c	 and	 d	 are
generated	in	Figure	13.1	from	the	3D	vertices	A,		B,		C	and	D.
Clipping	 is	 usually	 done	 in	 the	 graphics	 hardware	 and	 the	 application

programmer	 does	 not	 need	 to	 worry	 about.	 Yet,	 we	 provide	 a	 very	 short
overview	here.	Clipping	 is	done	 in	2	D	following	 the	projection	of	points.	We
will	 discuss	 some	 3	D	 clipping	 methods	 in	 later	 chapters.	 Any	 2	 D	 clipping
algorithm	fundamentally	depends	on	finding	intersections	of	primitive	(lines	or
polygons)	 with	 the	 edges	 of	 the	 window.	 Therefore,	 the	 mathematics	 behind
these	algorithms	are	straight	forward.	However,	what	makes	it	challenging	in	the
context	of	 the	 interactive	graphics	pipeline	 is	 its	 efficiency.	Every	primitive	or
triangle	needs	to	go	through	the	process	of	clipping	and	when	the	scene	consists
of	millions	of	triangles	efficiency	of	the	algorithm	becomes	important	even	if	it
is	 done	 in	 the	 hardware.	 Following	 are	 some	 of	 the	 ways	 to	 increase	 the
efficiency;	they	are	most	likely	to	be	deployed	one	after	the	other	in	sequence.

Fun	Facts

In	computer	graphics	you	will	come	across	the	revered	Utah	teapot	model
which	 has	 become	 synonymous	 to	 CG	 innovation	 ever	 since	 Martin
Newall,	 a	 graduate	 student	 at	 the	 University	 of	 Utah,	 modeled	 and
introduced	 the	 object	 to	 the	 computer	 graphics	 community.	 The	 actual
teapot	that	Newall	used	to	create	the	digital	model	resides	at	the	Computer
History	Museum	in	Mountain	View,	California.	So	why	a	teapot?	It	is	said
that	Newall’s	wife	suggested	the	object	while	the	two	were	having	tea.	But
her	idea	was	perfect	technically	due	to	a	large	number	of	reasons	cited	over
the	years.	 It	 is	 round,	 has	 saddle	 points,	 has	 a	 non‐zero	genus	due	 to	 the
hole	in	the	handle,	can	project	a	shadow	on	itself,	can	have	a	self‐reflection,
and	looks	reasonably	aesthetic	even	when	rendered	without	a	texture.	It	is
amazing	that	such	a	simple	object	provided	computer	graphics	researchers
with	so	much	complexity	so	as	to	become	the	benchmark	geometric	model.
In	2006,	Professor	Peter	Shirley	of	the	University	of	Utah	paid	homage	to

this	model	through	his	Siggraph	Talk	“The	Teapot	Through	the	Ages”	Each
year	 at	 SIGGRAPH	 (the	 biggest	 conference	 for	 computer	 graphics
academicians,	 industry	 and	 enthusiasts)	 Pixar	 hands	 out	 hundreds	 of	 tiny
wind‐up	teapot	to	collectors.

Performing	 a	 number	 of	 floating	 point	 intersection	 operations	 for	 every
primitive	is	definitely	not	the	most	efficient	way	to	achieve	clipping,	especially
when	a	large	majority	of	triangles	can	fall	either	completely	outside	the	window
or	 completely	 inside	 it	 and	 only	 a	 few	 will	 actually	 intersect	 the	 window
boundaries.	One	way	 to	 improve	performance	 is	 to	make	sure	 that	 intersection
computations	 are	 only	 performed	 when	 there	 is	 a	 high	 probability	 that	 the
primitive	actually	intersects	the	window	boundaries.	Therefore,	a	fast	acceptance
or	 rejection	 test	 for	 primitives	 completely	 inside	 or	 outside	 the	 window	 is
critical.	Such	tests	can	be	achieved	in	multiple	ways.
Using	 Bounding	 Boxes:	We	 can	 compute	 the	 axis	 aligned	 bounding	 box	 of

each	triangle	and	see	if	it	lies	completely	inside	or	outside	the	window.	An	axis
aligned	 bounding	 box	 is	 the	 smallest	 box	 enclosing	 the	 primitive,	 with	 sides
parallel	 to	 the	axes	of	 the	window.	 If	 this	bounding	box	 is	completely	outside,
the	primitive	is	rejected.	If	it	is	completely	inside,	it	is	accepted.	An	axis‐aligned
bounding	box	for	each	primitive	can	be	computed	by	just	finding	the	minimum
and	 maximum	 extent	 of	 the	 vertices	 in	 the	 horizontal	 and	 vertical	 direction.
Testing	 of	 this	 bounding	 box	 is	 also	 easily	 achieved	 without	 any	 intersection
computation	 by	 checking	 for	 intersection	 between	 the	 extents	 of	 the	 bounding
box	and	window.	Only	primitives	whose	bounding	box	intersects	the	window	go
through	 the	 intersection	 computation.	 In	 Figure	 13.7,	 both	 the	 horizontal	 and
vertical	 ranges	 of	 the	 bounding	box	of	A	 are	 completely	within	 the	 respective
ranges	of	the	window.	So	A	is	inside	the	window.	In	case	of	D,	while	the	vertical
range	of	the	bounding	box	intersects	that	of	the	window,	the	horizontal	range	of
the	bounding	box	is	completely	outside	that	of	the	window.	So	D	lies	outside	the
window.	For	the	other	two	cases,	both	the	horizontal	and	vertical	ranges	of	the
bounding	 box	 and	 that	 of	 the	 window	 partially	 intersect	 leading	 to	 possible
intersection	 of	 the	 primitive	 with	 the	 window.	 The	 primitive	 B	 intersects	 the
window	and	will	be	clipped	via	intersection	computation.	However,	there	can	be
cases	like	C	where	the	bounding	box	intersects	though	the	triangle	does	not.	The
actual	intersection	computation	in	such	cases	will	yield	negative	results.

Figure	 13.7	 .This	 figure	 illustrates	 some	 of	 the	 efficiency	 improvements	 in	 clipping	 algorithms	 using
bounding	boxes	or	binary	codes.

Using	Logic	Operations:	Another	 technique	 to	 expedite	 acceptance/rejection
tests	is	to	divide	the	2	D	image	plane	into	regions	and	assign	binary	codes	to	the
regions.	For	example,	we	can	have	four	bits,	b	1	b	2	b	3	b	4	associated	with	each
projected	vertex	(x	,	y)	such	that	b	1	=	y	<	t	w	,		b	2	=	y	>	b	w	,		b	3	=	x	>	r	w	,	and	b
4	=	x	<	l	w	.	The	four-bit	code	divides	the	image	plane	into	nine	different	regions,
each	with	an	unique	code	(shown	by	green	codes	in	Figure	13.7).	Consider	 the
four	bit	codes	of	two	end	points	of	a	line	segment.	If	the	bitwise	AND	of	these
two	 codes	 is	 not	 zero,	 then	 both	 end	 points	 are	 outside	 the	 same	 window
boundary	and	the	line	is	completely	outside	the	window	and	therefore	rejected.
If	each	of	the	two	codes	is	zero	then	the	line	segment	is	inside	the	window	and
therefore	 accepted.	 If	 at	 least	 one	 of	 the	 two	 codes	 is	 not	 zero,	 but	 the	AND
operation	of	the	two	codes	is	zero,	then	the	line	intersects	with	the	boundary	of
the	window	and	therefore	an	accurate	intersection	test	has	to	be	performed.	Such
logic	 operations	 can	 be	 extended	 to	 triangles	 also	 to	 efficiently	 clip	 them.	An
acceptance	or	 rejection	 test	using	 logic	operations	 is	equivalent	 to,	yet	 simpler
than,	the	test	using	a	bounding	box.
Using	Integer	Operations:	 Intersection	of	 the	 lines	and	 triangles	 that	are	not

trivially	accepted/rejected	with	the	window	boundaries	have	to	be	computed.	For
this	we	first	find	the	window	boundary	that	intersects	the	primitive	and	then	find
the	exact	intersection.	For	both	of	these	steps,	it	is	far	more	efficient	if	they	can
be	 achieved	 primarily	 via	 integer	 computation	 rather	 than	 floating	 point
computation.	Let	us	consider	the	red	and	green	lines	shown	in	Figure	13.8.	The
green	line	intersects	the	left	window	boundary	before	the	top.	This	indicates	that
the	line	is	entering	the	window	at	the	left	boundary.	But,	the	red	line	meets	the
top	 boundary	 before	 left	 that	 can	 only	 happen	 when	 the	 line	 is	 completely
outside	 the	 window	 and	 should	 be	 rejected.	 Therefore,	 to	 figure	 out	 which
boundary	 intersection	 computation	 needs	 to	 be	 performed,	 it	may	 be	 useful	 to

find	 the	 parametric	 value	 α	 of	 the	 line	 intersection	 with	 different	 window
boundaries.	Denoting	the	alpha	boundaries	by	α	l	,	 	α	r	,	 	α	t	and	α	 b	 for	 the	 left,
right,	top	and	bottom	boundary	and	simply	ordering	these	parametric	values	we
can	find	 the	portion	of	 the	 line	 that	 is	 inside	 the	window.	However,	computing
these	parametric	values	involve	floating	point	operation.	So,	the	next	question	is
how	can	we	make	this	operations	more	efficient?

Figure	 13.8	 .	 This	 figure	 shows	 the	 computation	 of	 which	 boundaries	 to	 intersect	 with	 using	 integer
computations.

Consider	a	line	given	by	two	points	defined	by	integers	(x	1	,	y	1)	and	(x	2	,
y	2)	where	x	 1	<	x	 2	and	y	 1	<	y	 2	α	 1	 (assuming	 the	 bottom	 left	 corner	 of	 the
screen	to	be	origin).	We	know

(13.38)
α	t	=	t	-	y	1	y	2	-	y	1

(13.39)
α	l	=	l	-	x	1	x	2	-	x	1
If	α	t		<	α	l	,	i.e.

(13.40)
t	-	y	1	y	2	-	y	1	<	<	l	-	x	1	x	2	-	x	1	,

the	 line	 should	 be	 rejected.	 Instead	 of	 carrying	 this	 test	 on	 the	 floating	 point
numbers	α	l	and	α	t	,	 the	same	results	can	be	obtained	 if	we	derive	 the	decision
factor	from	Equation	13.40	to	be

(13.41)
(l	-	x	1)	(y	2	-	y	1)	<	(t	-	y	1)	(x	2	-	x	1)	.

The	advantage	of	Equation	13.41	is	that	it	is	completely	in	integers	and	does	not
involve	 any	 floating	 point	 computation.	 The	 methods	 of	 clipping	 are	 fraught
with	 such	 techniques	 to	 avoid	 floating	 point	 computation	 thereby	making	 the
pipeline	extremely	efficient.

Put	a	Face	to	the	Name

Z-buffer	 (also	 called	 depth	 buffer)	 is	 considered	 one	 of	 the	 milestone
concepts	of	interactive	computer	graphics.	Prior	to	that	primitives	had	to	be
sorted	in	3D	and	rendered	from	back	to	front	to	resolve	occlusion	and	there
was	no	easy	way	to	handle	intersecting	primitives	other	than	to	split	them.
Edwin	Catmull,	president	of	Pixar	and	Disney	Animation	Studios,	was	the
first	 to	 invent	 this	 concept	 though	 it	 was	 invented	 independently	 by
Wolfgang	Straber.	Catmull	was	also	the	inventor	of	the	concept	of	texture
mapping	which	 brought	 in	 an	 unforeseen	 realism	 in	 interactive	 graphics.
Born	in	1945	in	West	Virginia,	he	was	raised	in	a	Mormon	family	in	Utah.
Though	from	very	early	in	life	he	dreamed	of	becoming	a	feature	animator,
instead	of	pursuing	a	career	in	the	movie	industry	he	pursued	his	talent	in
math	and	science	to	study	physics	and	computer	science	at	 the	University
of	Utah	where	he	returned	as	a	graduate	student	in	the	1970s	to	pursue	his
PhD	 under	 Ivan	 Sutherland.	 His	 discoveries	 of	 texture	 mapping,	 bicubic
patches	(also	called	Clark-Catmull	patches),	subdivision	surfaces	and	anti-
aliasing	methods	changed	the	face	of	graphics	forever.	His	first	contribution
to	the	movie	industry	was	in	1972	via	an	animated	version	of	his	left	hand
which	 was	 picked	 up	 by	 a	 Hollywood	 producer	 to	 be	 used	 in	 the	 1976
movie	Futureworld	and	its	sequel	Westworld	which	were	the	first	films	to
use	3D	computer	graphics.	This	sequence,	simply	known	as	the	Computer
Animated	Hand	was	chosen	for	preservation	by	the	National	Film	Registry
in	 2011.	He	 started	 the	 computer	 graphics	 division	 in	 Lucasfilm	 in	 1979
which	was	 later	bought	by	Steve	Jobs	 in	1986	 to	be	called	Pixar.	Popular
among	 peers	 as	 Ed	 Catmull,	 he	 developed	 the	 first	 complete	 rendering
system	 to	 be	 used	 in	 movies,	 Renderman,	 while	 at	 Pixar	 for	 which	 he
received	the	Academy	Award	in	1993.	Since	Disney’s	acquisition	of	Pixar
in	 2006,	 Ed	 Catmull	 has	 been	 the	 president	 of	 both	 Pixar	 and	 Disney
Animation	studios.	He	has	won	many	awards	since	then	for	his	pioneering
contributions	 to	 modeling	 animation,	 and	 rendering	 including	 another

Academy	Award	in	1996,	the	IEEE	John	von	Neumann	Medal	in	2006,	and
the	Gordon	E.	Sawyer	Award	in	2008.

Using	Pipelining:	Finally,	one	more	technique	that	is	often	used	for	efficiency
is	pipelining.	For	example,	once	we	have	detected	that	intersection	computations
need	to	be	done,	the	polygon,	represented	as	a	list	of	vertices,	can	pass	through
the	 four	 stages	 of	 clipping	 against	 left,	 top,	 right	 and	 bottom	 edges	 of	 the
window,	in	a	pipelined	fashion.	Clipping	against	an	edge	of	the	window	clips	out
the	part	of	 the	polygon	that	 lies	 in	 the	half	plane	formed	by	the	edge	that	does
not	contain	the	window.	This	half	plane	is	denoted	by	OUT	while	the	other	one
that	contains	the	window	is	denoted	by	IN.	In	the	Sutherland‐Hodgeman	method
(Figure	13.9),	a	polygon	clipping	is	attained	by	such	successive	clipping	of	the
polygon	against	the	top,	left,	bottom	and	right	edges	of	the	window.	The	input	to
each	of	 these	 steps	 is	a	cyclic	 list	of	vertices	 (i.e.	 starting	and	ending	with	 the
same	vertex)	defining	the	polygon.

Figure	13.9	.	This	figure	shows	the	Sutherland	Hodgeman	algorithm	for	clipping	attained	via	clipping	the
orange	polygon	against	 the	 top,	 left,	bottom	and	right	edges	of	 the	blue	window	successively.	The	 list	of
vertices	input	to	each	of	these	steps	is	also	shown	above	the	red	arrows.

Let	us	first	consider	the	list	of	vertices	of	the	polygon	ABCDEA	in	Figure	13.9
going	 through	 clipping	 against	 the	 top	 edge	 of	 the	 window.	 The	 clipping
algorithm	parses	 this	 list	of	vertices	 in	 sequence	 from	 left	 to	 right	and	outputs
one	 existing	 or	 a	 new	 vertex	 per	 parsed	 vertex	 based	 on	 transitions	 in	 the
locations	of	the	vertices	in	terms	of	the	IN	and	OUT	half	planes	as	follows.

1.	 If	first	vertex	is	IN	output	the	same,	or	else	nothing;
2.	 Loop	through	the	rest	of	the	vertices	testing	transitions.

13.3

3.	 If	IN‐TO‐OUT,	output	intersection	with	edge;
If	IN‐TO‐IN,	output	the	vertex;
If	OUT‐TO‐IN,	output	intersection	with	edge	and	the	vertex;
If	OUT‐TO‐OUT,	output	nothing;

We	will	now	execute	the	top	clip	with	the	cyclic	list	ABCDEA.	The	first	vertex
A	is	OUT	resulting	in	no	output.	The	next	vertex	is	B	and	the	transition	from	A	to
B	 is	 that	of	OUT‐TO‐IN	 resulting	 in	 the	output	of	 the	 intersection	of	edge	AB
with	the	top	edge,	A	′′	and	B.	The	next	transitions	from	B	to	C,		C	to	D,	and	D	to
E	 are	 all	 IN‐TO‐IN	 leading	 to	 the	 output	 for	 the	 vertices	 C,	 	 D	 and	 E
respectively.	Finally,	 the	 transition	from	E	 to	A	 is	 IN‐TO‐OUT	resulting	 in	 the
output	of	the	intersection	of	EA	with	the	top	edge,	A	Therefore,	the	output	vertex
list	is	A	′	BCDEA	′′	which	is	made	into	a	cyclic	list	by	repeating	the	first	vertex	at
the	 end	 resulting	 in	 the	 list	A	 ′	 B	C	D	E	A	 ″	A	 ′	 which	 acts	 as	 an	 input	 for
clipping	against	the	next	window	edge.	This	process	continues	for	all	four	edges
as	shown	in	Figure	13.9	finally	creating	the	clipped	polygon	A	′	B	′	B	 ′′	C	 ′	D	 ′	E	’
E	′′	A	′′	A	′.
The	 pipelining	 is	 possible	 due	 to	 the	 fact	 that	 each	 stage	 of	 the	 clipping

against	 a	window	 edge	 can	 output	 a	 vertex	 as	 soon	 as	 it	 reads	 vertex	without
waiting	for	the	entire	list	of	vertices	to	be	parsed.	Further,	the	output	vertex	can
be	pushed	as	input	to	the	next	stage	before	the	entire	input	list	is	created	from	the
previous	 step.	 This	 improves	 throughput	 tremendously	 since	 each	 step	 hands
over	partial	results	to	the	next	which	can	work	with	it.
There	 are	 several	 clipping	 method	 that	 use	 one	 or	 more	 of	 the	 above

techniques.	 The	 Cohen‐Sutherland	 method	 use	 logic	 operations,	 the	 Liang‐
Barsky	method	 uses	 integer	 operations	 and	 the	 Sutherland‐Hodgeman	method
uses	pipelining.	However,	they	can	be	combined	in	multiple	ways	to	create	more
efficient	methods,	some	variant	of	which	is	probably	being	implemented	by	the
current	graphics	hardware.

Rasterization	and	Pixel	Interpolation	of
Attributes

Rasterization	 is	 the	 last	 step	 of	 the	 interactive	 graphics	 pipeline	where	 all	 the
pixels	 inside	 the	 clipped	 polygons	 (triangles	 may	 not	 remain	 triangles	 after
clipping)	have	to	be	computed,	and	colors	and	other	attributes	interpolated	from
the	 those	 of	 the	 vertices	 of	 the	 polygon.	 During	 the	 clipping	 operation,	 the
attributes	at	the	edge‐window	intersection	points	are	themselves	computed	using

interpolation	 of	 colors	 at	 the	 vertices	 of	 the	 given	 triangle.	 The	 process	 of
rasterization	is	performed	in	the	graphics	hardware.	We	only	provide	very	basic
methods	 and	 some	 key	 insights	 of	 how	 such	methods	 are	made	 efficient.	 The
buffer	 in	which	we	 draw	 the	 color	 is	 called	 the	 framebuffer	 and	 the	 buffer	 in
which	we	handle	 the	depth	 is	called	 the	z‐buffer	or	depth	buffer.	Both	of	 these
buffers	 are	 the	 size	 of	 the	window	 defined	 by	 the	API.	We	 start	 with	 a	 clear
framebuffer	 (all	pixels	 initialized	 to	black)	and	 the	depth‐buffer	set	 to	0.	Since
we	will	deal	with	reciprocal	of	depth	in	the	Z‐buffer,	initializing	it	to	0	means	the
depth	is	at	∞.
The	rasterization	process	is	applied	to	each	primitive	and	it	proceeds	line	by

line	 from	 top	 left	 of	 the	 window	 to	 the	 bottom	 right.	 For	 every	 scanline,	 the
intersection	of	the	scanline	is	computed	with	all	the	edges	of	the	polygon	and	the
intersections	sorted	in	the	increasing	order	of	their	x	(note	all	of	them	have	the
same	 y	 since	 we	 are	 dealing	 with	 a	 horizontal	 scanline).	 Consider	 the	 two
triangles	 in	Figure	13.10	 and	 the	 black	 scanline.	 The	 intersection	 points	when
ordered	will	be	p	0,	p	1,	p	2,	p	3.	Next,	the	pixels	within	pairs	of	their	intersections
are	filled	up.	Therefore,	p	0	to	p	1	and	p	2	to	p	3	is	filled	up.	When	filling	up	these
pixels,	their	color	and	depth	are	also	interpolated.	For	every	pixel	on	a	scanline
that	 has	 been	 detected	 to	 be	 inside	 the	 triangle,	 first	 its	 reciprocal	 of	 depth	 is
interpolated	from	the	reciprocal	of	the	depths	stored	at	the	intersection	points	of
the	 scanline	 and	 the	 edges.	 If	 the	 interpolated	value	 is	 larger	 than	 the	 existing
value	 at	 that	 pixel	 in	 the	 Z‐buffer	 (i.e.	 depth	 is	 smaller),	 only	 then	 the
framebuffer	 is	updated	at	 that	pixel	with	 the	 interpolated	color.	Otherwise,	 this
pixel	is	occluded	and	is	not	drawn	in	the	framebuffer.

Figure	 13.10	 .	 This	 figure	 illustrates	 the	 process	 of	 polygon	 rasterization	 (left)	 and	 shows	 a	 rasterized
triangle	with	interpolated	gray	scale	values	(right).

The	 polygon	 rasterization	 is	 also	 made	 efficient	 by	 several	 measures	 like
incrementally	 updating	 the	 intersection	 of	 a	 polygon	 edge	with	 a	 scan	 line	 by
using	 the	 results	with	 the	 previous	 scanline	 and	 the	 slope	 of	 the	 edge	 thereby
avoiding	computation	of	the	intersections	anew	for	every	scanline.	Several	data

13.4

structures	 are	 used	 to	 reduce	 computation.	 For	 example,	 the	 extent	 of	 the
scanlines	 that	 a	 triangle	 spans	 (showed	 using	 red	 and	 orange	 dotted	 lines	 in
Figure	13.10)	can	be	maintained	 so	 that	only	 the	 triangles	whose	 span	 include
the	scanline	under	consideration	are	included	in	the	processing	for	that	scan	line.
Other	more	 complicated	data	 structure	 like	 edge	 table	 (that	 is	 a	 bucket	 sort	 of
edges	bucketed	by	scanlines)	are	used.	Several	improvements	are	also	achieved
by	using	integer	computation	for	as	much	of	the	process	as	possible.	Details	of
such	 processes	 are	 available	 in	most	 traditional	 computer	 graphics	 books.	The
final	rasterized	polygon	painted	with	interpolated	color	or	gray	values	is	shown
in	Figure	13.10.

Conclusion
We	 learnt	 about	 the	 interactive	 graphics	 pipeline	 in	 this	 chapter.	 We	 have
deliberately	 kept	 this	 treatise	API	 independent	 and	 given	 you	 the	 fundamental
concepts.	We	hope	 that	 following	 this	you	can	 adapt	API	 specific	 aspects	 into
the	pipeline	easily.	For	example,	OpenGL	assumes	the	normal	to	the	image	plane
in	the	view	set‐up	to	be	negative	Z.	This	means	the	view	transformation	and	the
perspective	 transformation	 will	 change	 slightly	 and	 we	 hope	 you	 can	 work
through	 it.	 In	 this	 chapter	 we	 have	 not	 given	 you	 details	 about	 clipping	 and
rasterization	methods	assuming	they	will	be	done	 in	 the	graphics	hardware.	To
learn	more	about	 such	 techniques,	please	 look	up	 [Foley	et	al.	90,	Shirley	 and
Marschner	09,	Watt	99].

Bibliography
[Foley	 90]	 FoleyJames	 D,	 van	 DamAndries,	 FeinerSteven	 K,	 HughesJohn	 F.	 Computer	 Graphics:

Principles	and	Practice.	2nd	ed.	Boston,	MA:	Addison-Wesley	Longman	Publishing	Co.,	Inc;	1990.
[Shirley	and	Marschner	09]	ShirleyPeter,	MarschnerSteve.	Fundamentals	of	Computer	Graphics.	 PetersA.

K.;	Ltd:	2009.
[Watt	99]	WattAlan.	3D	Computer	Graphics.	Addison	Wesley;	1999.

Summary:	Do	you	know	these	concepts?

Model	Tranformation
View	Transformation
Perspective	Transformation

View	Frustum
Window	Coordinate	Transformation
Framebuffer
Depth	Buffer
Clipping
Scan	Conversion
Rasterization
Interpolation	of	Attributes

Exercises
1.	 Consider	a	2	D	square	on	the	XY	plane	with	side	2	units,	the	center	at

the	 origin	 and	 four	 sides	 parallel	 or	 perpendicular	 to	 the	 coordinate
axes.

a.	 Draw	 the	picture	of	 the	 transformed	 square	 after	performing
the	 following	 sequence	 operations:	 rotation	 of	 45	 degrees
counter	 clockwise	about	Z‐axis,	 translation	by	 (2	 ,	0	 ,	 0)	 ,
and	again	a	rotation	of	45	degrees	counter	clockwise	about	Z‐
axis.	Can	you	reduce	the	transformations	thus	giving	the	new
sequence	of	transformation	to	achieve	the	same	result?

b.	 Draw	 the	picture	of	 the	 transformed	 square	 after	performing
the	following	sequence	of	operations:	 translation	by	(2,	2,0),
scaling	by	(3,	2,	1).

c.	 Draw	the	picture	of	 the	square	if	 these	two	operations	in	the
previous	question	were	swapped.

d.	 We	would	like	to	achieve	the	result	of	the	transformations	of
the	 previous	 questions	 where	 scaling	 is	 followed	 by
translation	by	applying	a	translation	followed	by	scaling.	How
would	 the	 parameters	 of	 the	 translation	 and	 the	 scaling
change?

2.	 A	 viewer	 is	 defined	 by	 the	 following.	 (a)	 Eye	 position:	 (0,	 0,	 0),	 (b)
View	up	vector:	(0,	2,	0),	(c)	Equation	of	the	image	plane:	x	+	y	+	z	=	6.
Find	the	view	transformation	matrix	generated	for	this	view‐setup.	Let
the	 left,	 right,	 top	 and	 bottom	 planes	 be	 at	 -	 2,	 	 +	 2,	 4,	 and	 8
respectively.	Let	the	far	plane	be	at	10.	Find	the	perspective	projection
matrix	given	by	L.	Find	what	would	be	projected	coordinates	of	a	point

P	=	(10,	4,	6)	for	this	viewer.
3.	 The	model	transformation	for	a	scene	is	a	rotation	R	about	the	Y	axis	in

the	 counter	 clockwise	 direction	 by	 90	 degrees,	 followed	 by	 a
translation	 T	 in	 the	 positive	 X	 direction	 by	 20	 units.	 What	 is	 the
resulting	transformation?

4.	 Consider	 a	 default	 view	 with	 the	 near	 plane	 (or	 image	 plane)	 at	 a
distance	5.	The	gaze	direction	is	at	(2,	1)	and	the	size	of	the	window	in
X	and	Y	direction	in	which	it	is	centered	are	10	and	6	respectively.

a.	 Provide	the	r,	l,	t,	b	for	the	view	frustum?
b.	 Provide	the	transformation	that	would	make	the	gaze	direction

coincident	with	the	normal	to	the	image	plane?
c.	 Following	this,	 find	the	 transformation	to	normalize	X	and	Y

coordinates	between	-	1	to	+	1.

5.	 Provide	 the	 window	 coordinate	 transformation	 for	 a	 window	 whose
center	is	located	at	(200,	400)	and	whose	width	and	height	are	given	by
800	and	600	respectively?

6.	 We	say	that	interpolation	of	Z	in	screen	space	is	mathematically	wrong
and	we	should	 interpolate	 the	 reciprocal	of	Z	 to	 correct	 for	 the	 effect
Yet,	we	interpolate	colors	using	the	same	screen	space	interpolation.	Is
this	mathematically	correct?	Justify	your	answer.

14.1

14

Realism	and	Performance
In	 the	 last	 chapter,	we	discussed	 the	geometric	 fundamentals	of	 the	 interactive
graphics	pipeline.	However,	a	 scene	 rendered	using	 this	basic	pipeline	with	no
lighting	 effects	 (e.g.	 specular	 highlights	 or	 shadows)	 or	 finer	 details	 or	 some
patterns	or	 bumps	on	objects	would	not	 look	 realistic.	 In	 this	 chapter,	we	will
study	a	number	of	 techniques	 that	will	 allow	us	 to	 render	more	 realism	 in	 the
scene.	 However,	 these	 do	 not	 come	 for	 free,	 rather	 with	 a	 risk	 of	 degrading
performance	(e.g.	 frame	rate).	Therefore,	we	will	also	discuss	some	techniques
to	enhance	realism	without	compromising	performance.

Illumination
Computing	illumination	of	a	scene	is	an	extremely	complex	problem.	The	total
amount	 of	 illumination	 at	 any	 surface	 point	 is	 due	 to	 both	direct	 and	 indirect
illumination.	Direct	 illumination	 accounts	 for	 the	 light	 coming	 directly	 from	 a
light	 source	 and	 reaching	 a	 surface	 point	 on	 the	 object.	 In	 addition,	 light
reflected	off,	 transmitted	 through	or	 refracted	by	other	 surfaces	 can	 also	 reach
the	 same	 surface	 point	 after	 multiple	 bounces	 and	 is	 called	 the	 indirect
illumination.	Thus,	in	order	to	compute	that	total	amount	of	illumination	at	any
surface	 point	 on	 an	 object	 we	 need	 to	 compute	 all	 the	 indirect	 illumination
resulting	from	multiple	bounces	across	multiple	surfaces	in	addition	to	the	direct
illumination	from	the	light	source,	as	summarized	in	Equation	9.23	of	Chapter	9.
Such	compute-intensive	complex	light	models	can	be	extremely	time-consuming
and	 therefore	 not	 suitable	 for	 interactive	 graphics.	 Therefore,	 much	 simpler
illumination	models	are	used	to	meet	the	interactive	rates	performance	criterion.
The	 first	 simplification	 comes	 from	 assuming	 point	 light	 sources	where	we

will	start	our	discussion.	Second,	only	the	direct	illumination	(i.e.	the	light	that
comes	at	a	point	on	 the	object	directly	 from	the	point	 light	source)	 is	modeled
while	all	 the	 indirect	 illumination	(i.e.	 light	 that	 reaches	a	point	after	bouncing
multiple	 times	 from	multiple	 objects)	 is	 combined	 under	 a	 single	 term	 called
ambient	illumination.

Let	 us	 consider	 a	 single	 light	 source	 illuminating	 a	 surface	 point	 P	 with
normal	 N	 from	 the	 direction	 L	 and	 the	 eye	 looking	 at	 this	 point	 from	 the
direction	V	as	in	Figure	14.1.	Let	R	be	the	vector	formed	by	reflecting	L	about
the	 normal	N.	 Note	 the	 similarity	 between	 the	 figures	 14.1	 and	 9.1.	 Let	 the
intensity	 of	 the	 light	 be	 I.	 The	 ambient	 illumination	 I	 a	 is	 modeled	 very
simplistically	as

(14.1)
I	a	=	c	a	I

Figure	 14.1	 This	 illustrates	 the	 parameters	 for	 the	 simple	 ambient,	 diffused	 and	 specular	 illumination
models	at	P.

where	c	a	is	called	the	coefficient	for	ambient	illumination.
The	 direct	 illumination	 is	 modeled	 in	 two	 parts	 —	 the	 view	 independent

component	 (that	 remains	 constant	 with	 change	 in	 view	 point	 and	 direction)
called	the	diffused	component	and	the	view	dependent	component	(that	changes
with	 change	 in	 view	 point	 and	 direction)	 called	 the	 specular	 component.
Different	 illumination	 models	 differ	 in	 the	 way	 they	 compute	 the	 specular
component.	We	will	discuss	the	most	commonly	used	Phong	Illumination	model
named	after	Bui	Tong	Phong.	But	more	complicated	models	(e.g.	Cook	Torrance
model)	can	also	be	employed	for	this	purpose	at	the	cost	of	performance.
The	view-independent	diffused	illumination	I	d	is	given	by

(14.2)
I	d	=	c	d	I	(N	·	L)	=	c	d	I	c	o	s	θ
where	c	 d	 is	 called	 the	 coefficient	 of	 diffused	 reflection.	Note	 the	 similarity	 of
this	equation	with	Equation	9.22	in	Chapter	9.	c	d	in	Equation	14.2	is	equivalent
to	 ρ	 in	 Equation	 9.22.However,	 since	 the	 amount	 of	 light	 reflected	 in	 the
direction	of	the	viewer	is	independent	This	figure	shows	the	of	his	location,	c	d
does	not	have	any	dependency	on	V.
A	specular	component	of	the	Phong	illumination	model	is	given	by

Figure	14.2	This	figure	shows	the	function	coss(ϕ)	for	di_erent	values	of	s.

(14.3)
I	s	=	c	s	I	c	o	s	(R	.	V)	s	=	c	s	I	(c	o	s	(ϕ))	s
where	 c	 s	 is	 the	 coefficient	 for	 specular	 reflection	 and	 s	 is	 a	 parameter	 that
controls	 the	 size	 of	 the	 view-dependent	 specular	 highlight.	 Figure	 14.2	 shows
how	 the	 cosine	 fall	 off	 becomes	 steeper	 as	 s	 increases	 to	 achieve	 this	 effect.
Since	R	depends	on	the	incident	direction	L	with	respect	to	the	normal	vector	N,
and	 the	measurement	of	 light	 is	done	 in	 the	outgoing	direction	V,	 the	 term	c	 s
(R.V)	in	Equation	14.3	is	equivalent	to	ρ	(k	i	,	k	o)	in	Equation	9.22.

Figure	14.3	This	illustrates	effect	of	the	parameters	c	d	and	c	 s	of	the	simple	illumination	model.	(a)	and	(b)
show	diffused	illumination	where	c	d	for	latter	is	smaller	than	that	of	the	former.	(c),	(d)	and	(e)	show	the
specular	illumination	where	(c)	and	(d)	has	smaller	s	than	(e)	while	(d)	has	smaller	c	s	than	(c)	and	(e).

Figure	 14.3	 shows	 the	 effect	 of	 these	 parameters	 on	 the	 illumination.
Assuming	 that	 light	 direction,	 intensity	 and	 distance	 from	 the	 surface	 point
remians	 that	 same	 (given	 by	L),	 we	 consider	 a	 sampling	 of	 the	 light	 vectors,
indicating	 the	 amount	of	 light	 seen	 in	 that	 direction,	 in	 red.	 (a)	 and	 (b)	 shows
diffused	 reflection	 where	 equal	 amount	 of	 light	 is	 reflected	 in	 all	 directions
illustrated	by	the	equal	length	of	the	red	vectors.	Therefore,	the	amount	of	light
received	by	the	viewer	V	is	the	same	irrespective	of	the	angle	between	R	and	V.
However,	 (b)	has	a	smaller	c	 d	 illustrated	by	 the	fact	 that	 the	vectors	 in	 (b)	are
shorter	than	those	in	(a).	(c),	(d)	and	(e)	all	show	specular	reflection	where	the
length	 of	 the	 reflected	 vectors,	 indicating	 the	 amount	 of	 light	 seen	 in	 that
direction,	 change	 based	 on	 how	much	 the	 vector	V	 deviate	 from	 the	 reflected
vector	R.	If	V	is	aligned	with	R,	the	light	reaching	V	would	be	the	maximum	and

would	 diminish	 as	 the	 angle	 between	 R	 and	 V	 reduce.	 Hence,	 specular
illumination	is	view-dependent.	(d)	has	smaller	c	s	than	(c)	while	the	directions	in
which	 they	 are	 reflected	 remain	 the	 same.	 However,	 (e)	 has	 a	 sharper	 view
dependency	shown	by	a	sharper	lobe	in	the	outgoing	light	direction.	Therefore,	s
controls	the	sharpness	of	the	view-dependency	as	shown	in	Figure	14.2.
Figure	 14.4	 shows	 the	 effect	 of	 different	 parameters	 of	 the	 aforementioned

Phong	 illumination	model.	Note	 that	with	 the	 increase	 in	c	 a	 ,	 the	entire	object
looks	brighter	and	shows	no	dependence	on	the	direction	of	light,	as	is	expected.
On	 the	 contrary,	 when	 c	 d	 is	 increased	 the	 shadow	 effect	 becomes	 more
prominent	since	the	directionality	of	the	lighting	plays	a	role.	You	can	also	see
the	effect	of	c	s	and	s	on	specular	lighting.	While	c	s	changes	the	amount	of	light
reflected	without	changing	the	size	of	the	highlight,	changing	s	changes	the	size
of	the	highlight.

Figure	14.4	This	 figure	shows	 the	effect	of	our	 simple	ambient,	diffused	and	specular	 illumination	on	an
object.

Finally,	Figure	14.5	 shows	 the	combined	effect	of	 the	ambient,	diffused	and
specular	 illumination	 under	 a	 point	 light	 source.	Athough	 the	 Phong	model	 is
restrictive	and	may	not	be	able	to	provide	the	visual	effect	of	a	large	number	of
materials,	it	is	quite	effective	in	interactive	applications	due	to	its	simplicity.

Figure	14.5	This	 figure	shows	 the	effect	of	our	 simple	ambient,	diffused	and	specular	 illumination	on	an
object	from	two	different	viewpoints.

For	both	diffused	and	specular	lighting,	often	an	attenuation	parameter	is	used
to	 model	 the	 attenuation	 of	 intensity	 of	 light	 as	 the	 distance	 from	 the	 source
increases.	Therefore,	instead	of	I	we	use	I	f	where	 f	 is	a	 function	dependent	on
the	distance	d	of	the	point	light	source	from	the	surface	point.	Physically,	f	 	d
2.	But	in	order	to	provide	more	control	parameters	to	the	application,	f	is	defined
as	 f	 =	 ad	 2	 +	bd	 +	 c	 where	 a,	b	 and	 c	 are	 parameters	 that	 can	 be	 set	 by	 the
application.

Figure	14.6	This	 figure	 shows	 the	effect	of	 the	 same	 lights	with	 flat	 (left),	Gouraud	 (middle)	 and	Phong
shading	(right).	Note	how	Gouraud	shading	misses	the	specular	highlight	on	the	pyramid	captured	by	the
Phong	shading.

Recall	 that	 the	 aforementioned	 model	 assumed	 point	 light	 sources.	 Other
kinds	 of	 light	 sources	 are	 directional	 or	 area	 light	 sources.	 Directional	 light
sources	 are	 lights	 that	 shine	 in	 a	 single	 uniform	 direction,	 i.e.	 all	 the	 rays
originating	 from	 the	 source	 are	 parallel	 to	 each	 other.	 Area	 light	 sources	 are
more	 like	 light	 panels	 instead	of	 a	 point	 of	 light.	Directional	 light	 sources	 are
commonly	used	in	computer	graphics	to	mimic	strong	distant	light	sources	like
the	sun.	Directional	light	sources	can	be	modeled	by	point	light	sources	that	are
infinitely	 far	away.	Therefore,	only	 the	 light	direction	vector	L	 is	used	and	 the
attenuation	factor	is	ignored	(by	assigning	it	to	1).	Area	or	extended	light	sources

14.2

are	modeled	by	a	set	of	closely	place	point	light	sources.	Another	kind	of	light
source	that	is	often	useful	in	computer	graphics	is	a	spotlight.	This	is	modeled	as
a	light	source	whose	angular	extent	is	restricted.	The	angle	is	given	by	the	angle
of	 the	 cone	 defined	 by	 the	 point	 light	 source	 and	 circle	 on	 the	 surface	 that
defines	the	spot	to	be	lighted	by	the	spotlight.

Shading
Once	we	have	computed	 the	 illumination	at	every	vertex,	we	need	 to	compute
the	 illumination	of	a	point	 inside	 the	 triangle	during	rasterization.	This	process
of	painting	the	interior	of	the	triangle	based	on	the	illumination	at	the	vertices	is
called	shading.	There	are	three	shading	algorithms	used	in	interactive	graphics.
Flat	Shading:	Here	we	compute	the	illumination	once	for	each	triangle.	This

can	be	done	by	averaging	the	normal	vectors	at	the	three	vertices	of	the	triangle.
Then,	we	can	compute	the	color	using	an	illumination	model	once	for	the	entire
triangle	 and	 apply	 the	 same	 color	 to	 every	 pixel	 of	 the	 triangle	 during
rasterization.	The	advantage	of	 flat	 shading	 is	 its	 simplicity.	However,	an	edge
can	 get	 two	 vastly	 different	 colors	 from	 the	 two	 triangles	 incident	 on	 it.
Therefore,	 it	 creates	 a	 gradient	 discontinuity	 in	 the	 shading	 of	 the	 surface
creating	visible	artifacts,	such	as	Mach	bands.
Gouraud	Shading:	This	technique	is	named	after	its	inventor,	Henri	Gouraud.

Here,	 the	RGB	color	 is	computed	at	each	of	 the	vertices	using	an	 illumination
model.	The	 color	 inside	 the	 triangle	 is	 computed	 from	 the	 color	 at	 its	 vertices
using	 screen	 space	 interpolation.	 Therefore,	 an	 edge	will	 always	 get	 the	 same
color	 from	multiple	 incident	 triangles.	This	makes	 the	 shading	continuous,	but
cannot	still	guarantee	gradient	continuity.	Hence,	the	Mach	band	artifacts	are	less
than	in	flat	shading,	but	still	exist.
A	bigger	problem	of	the	Gouraud	shading	is	diffusion	or	missing	of	specular

highlights.	For	a	piecewise	linear	interpolation	of	a	smooth	surface,	the	interior
of	 the	 triangle	 represents	 a	 small	 smooth	 surface	 patch	with	 smoothly	 varying
normal.	One	way	to	compensate	for	the	shading	artifacts	in	the	piecewise	linear
(or	triangular)	approximation	of	curved	surfaces	is	to	use	accurate	normals	at	the
vertices.	Gouraud	shading	computes	the	illumination	only	at	 the	vertices	of	the
triangle	then	using	then	normal	at	the	vertices,	and	interpolates	the	color	in	the
interior	of	the	triangle,	without	reconstructing	the	normals	in	the	interior	of	the
triangles.	Gouraud	 shading,	 therefore,	 cannot	 capture	 a	 specular	 highlight	 that
exists	in	the	interior	of	the	triangle	but	not	at	its	vertices.	This	is	essentially	the
problem	 of	 not	 sampling	 the	 normals	 adequately	 when	 reconstructing	 the

14.3

shading	function.
Phong	Shading:	To	alleviate	this	problem,	Phong	proposed	a	shading	model	in

which	 the	 normal	 is	 interpolated	 across	 the	 triangle	 using	 screen	 space
interpolation	of	its	normals	at	its	vertices	during	rasterization	and	then	the	color
is	 computed	 at	 each	 pixel	 using	 an	 illumination	 model.	 Note	 that	 this	 does
address	 the	 issue	 of	 inadequate	 sampling—	per	 pixel	 sampling	 is	 the	 best	 one
can	 do.	 However,	 this	 still	 does	 not	 guarantee	 that	 the	 shading	 will	 have	 no
gradient	discontinuities.	So,	though	Mach	bands	are	greatly	reduced,	they	are	not
entirely	 non-existant	 with	 Phong	 shading.	 The	 differences	 among	 these	 three
shading	 techniques	 are	 illustrated	 in	 Figure	 14.6.	 Also,	 note	 that	 Phong
illumination	 is	 a	 model	 for	 illumination,	 while	 Phong	 shading	 is	 an	 entirely
different	 technique	for	shading.	Therefore,	be	careful	not	 to	confuse	these	two,
just	because	they	are	invented	by	the	same	person.

Shadows
Though	 we	 have	 discussed	 illumination	 models,	 we	 have	 not	 yet	 discussed
rendering	shadows.	However,	shadows	can	completely	change	our	perception	of
a	 scene	 as	 shown	 in	 Figure	 14.7.	 Note	 that	 the	 location	 of	 the	 spheres	 with
respect	to	the	checkered	ground	is	exactly	the	same	in	the	image,	but	only	with
the	shadows	can	we	perceive	their	correct	height	with	respect	to	the	ground.
In	 the	 context	 of	 interactive	 rendering,	 we	 use	 a	 very	 simple	 definition	 of

shadows.	 If	 a	 point	 is	 not	 visible	 from	 the	 light	 source,	 it	 is	 in	 shadow	with
respect	 to	 that	 light	 source.	Also,	we	would	 not	 attempt	 to	 compute	 the	 exact
attenuation	of	each	pixel	in	shadow	for	its	accurate	physical	representation	in	the
form	of	umbra	or	penumbra.	 Instead	we	will	 focus	on	a	 relative	attenuation	of
the	pixel	color	that	would	help	provide	the	missing	cues	that	location	of	shadows
provide	(e.g.	depth).
The	primary	concept	behind	shadows	is	to	detect	if	a	particular	screen	pixel	is

visible	from	the	 light	or	not.	A	pixel	 is	 in	shadow	if	 the	depth	of	 the	3D	point
corresponding	to	that	pixel	from	the	light	is	more	than	the	value	in	the	z-buffer
of	 the	 corresponding	 reprojected	 rendering	 from	 the	 light.	 The	 shadow	 pixels
thus	detected	are	marked	and	stored	as	an	image.	This	means	some	other	object
with	smaller	depth	is	in	front	of	the	3D	point	in	front	of	the	visible	pixel	as	seen
from	the	light	and	therefore	the	3D	point	is	in	shadow.	It	is	evident	that	to	make
this	 decision,	we	 have	 to	 render	 the	 scene	multiple	 times,	 once	 from	 the	 light
position	 and	 another	 time	 from	 the	 viewer	 position.	 Such	 methods	 are	 often
called	multi-pass	rendering	methods	which	we	will	explore	next	in	greater	detail.

Figure	14.7	This	figure	shows	the	perceptual	effect	of	shadows	on	our	perception	of	depth.	The	position	of
the	spheres	with	 respect	 to	 the	checkered	ground	 is	 identical	 in	both	 images,	but	 the	height	 thereof	on13
becomes	clear	with	the	presence	of	shadows.

Let	the	first	pass	render	the	scene	from	the	light’s	viewpoint.	Let	Z	l	denote	the
depth	of	a	closest	3D	point	at	a	pixel,	which	is	taken	from	the	depth	buffer	from
the	first	rendering	pass.	Therefore,	any	3D	point	that	projects	on	the	same	pixel
from	the	light	and	has	greater	depth	than	Z	l	at	that	point	will	be	in	shadow.	The
depth	map	consistingZ	l	for	all	pixels	is	called	the	shadow	map	and	is	stored	to	be
used	 in	 the	 later	 rendering	 pass.	 The	 3D	 to	 2D	 projection	 matrix	 post	 view
transformation,	M	 l	 ,	 is	 stored	and	used	 in	 this	pass.	There	will	be	one	shadow
map	associated	with	each	light.	Since	we	will	only	consider	the	depth	buffer	in
this	 stage,	 we	 do	 not	 need	 to	 render	 illumination	 or	 shading	 or	 any	 other
complexities	during	this	first	rendering	pass.

Put	a	Face	to	the	Name

Bui	 Tuong	 Phong	 is	 considered	 one	 of	 the	 stalwart	 figures	 in	 the
advancement	 of	 interactive	 computer	 graphics	 due	 to	 his	 work	 on	 a

computationally	 in-expensive	 simple	 illumination	 model	 that	 enabled
lighting	 at	 video	 rates	 of	 30	 frames	per	 sec.	He	 is	 known	 for	 his	 famous
quote	((We	do	not	expect	to	be	able	to	display	the	object	exactly	as	it	would
appear	 in	 reality,	 with	 texture,	 overcast	 shadows,	 etc.	 We	 hope	 only	 to
display	 an	 image	 that	 approximates	 the	 real	 object	 closely	 enough	 to
provide	 a	 certain	 degree	 of	 realism”	 which	 summarizes	 the	 philosophy
behind	interactive	graphics.	Bui	Tuong	Phong	was	born	in	1942	in	Hanoi,
part	 of	French	 Indo	China.	He	 later	moved	 to	Saigon	 and	 then	 to	France
where	 he	 received	 his	 Licences	 Sciences	 from	 Grenoble	 Institute	 of
Technology	 in	 1966	 and	 his	 Diplome	 d’Ingnieur	 from	 the	 ENSEEIHT
Toulouse,	 in	 1968.	 In	 1968,	 he	 joined	 the	 Institut	 de	 Recherche	 en
Informatique	et	en	Automatique	(then	INRIA)	as	a	researcher	in	Computer
Science,	 working	 in	 the	 development	 of	 operating	 systems	 for	 digital
computers.	He	went	 to	 the	University	 of	Utah	College	 of	Engineering	 in
September	 1971	 for	 his	 Ph.D.	 and	 graduated	 in	 1973	 thereafter	 joining
Stanford	 as	 a	 professor.	 Phong	 knew	 that	 he	 was	 terminally	 ill	 with
leukemia	 while	 he	 was	 a	 student	 and	 died	 not	 long	 after	 finishing	 his
dissertation.	Though	he	 lived	 for	only	33	years,	he	has	 left	a	 long	 lasting
impression	in	the	domain	of	interactive	computer	graphics.

Let	 us	 now	consider	 the	 second	pass	 of	 the	 rendering	 from	 the	 viewer.	The
depth	buffer,	Z	v	,	created	in	this	process	records	the	depths	of	only	the	3	D	points
visible	to	the	viewer.	The	rest	of	the	3	D	points	are	 irrelevant	 in	our	context	of
deciding	whether	it	is	in	shadow	or	not.	For	these	visible	points	from	the	viewer,
we	need	to	find	their	depth	from	the	light.	Let	us	consider	a	3	D	point	P	=	(X	,	Y
,	Z	v)	that	is	the	final	rendered	point	at	(x	v	,	y	v)	after	3	D	to	2	D	projection
(post	view	transformation)	using	matrix	M	v	and	occlusion	resolution.	We	know
that

(14.4)
M	v	-	1	i	x	v	y	v	1	z	v	1	=	X	Y	Z	v

Figure	14.8	This	figure	shows	pipeline	for	rendering	shadows.	From	left	to	right:	The	3	D	scene	rendered
without	shadows,	the	shadow	map	after	the	first	rendering	pass,	the	points	in	the	framebuffer	which	are	in
shadow	 denoted	 by	 non-green	 values,	 these	 non-green	 pixel	 colors	 are	 attenuated	 to	 create	 the	 effect	 of

14.4

14.4.1

shadow.	Note	that	balls	cast	shadow	on	each	other	also.

The	depth	of	the	same	point	from	the	light,	Z	v	l	,	can	therefore	be	found	using

(14.5)
x	l	y	1	l	Z	v	l	=	M	l	X	Y	Z	v	=	M	l	M	v	-	1	x	v	y	v	1	z	v	1

Multiplication	by	a	4	×	4	matrix	M	l	M	v	-	1	matrix	yields	the	projection	and	the
depth	of	the	same	point	P	from	the	light.	If	Z	l	(x	l	,	y	l)	<	Z	v	l	,	then	the	point
P	is	in	shadow	and	the	framebuffer	at	(x	v	,	y	v)	is	attenuated	by	a	factor	less
than	1.0	to	create	the	effect	of	shadow.	The	whole	process	is	illustrated	in	Figure
14.8.

Texture	Mapping
Texture	mapping	is	the	process	of	pasting	a	2	D	image	on	an	object	in	order	to
increase	the	richness	and	visual	detail	of	a	digital	scene.	Texture	mapping	uses
three	coordinate	systems:	2	D	 texture	space,	3	D	object	 space,	 and	2	D	 screen
space.	Texture	image’s	2	D	coordinates	are	defined	in	the	2	D	texture	space.	The
3	D	coordinates	of	the	vertices	of	the	object	in	the	scene	are	defined	in	the	3	D
object	 space.	 Finally,	 the	 pixel	 coordinates	 of	 the	 interior	 of	 the	 projected
primitives	 of	 the	 object	 are	 defined	 in	 the	 2D	 screen	 space.	 Each	 3	D	 vertex
coordinate	 in	 the	 object	 space	 is	 assigned	 a	 texture	 coordinate	 in	 the	 texture
space.	Screen	space	is	used	during	rasterization	to	map	the	image	to	the	interior
of	the	primitives	of	the	projected	object	during	the	texture	mapping	process.

Texture	to	Object	Space	Mapping
In	 this	step	a	 rectangular	2	D	 image	gets	mapped	onto	an	arbitrary	3	D	shape.
Informally,	 this	 is	 akin	 to	gift	wrapping	a	 complex	3	D	object	 (e.g.	 vase,	 fruit
bowl,	 a	 tray).	The	more	complex	 the	 shape,	 the	more	difficult	 is	 this	mapping
(e.g.	a	book	is	easy	to	gift	wrap	while	a	globe	is	not).	Therefore,	when	mapping
2	D	images	on	 complex	 shapes,	 different	 amounts	 of	 stretching	or	wrinkles	 in
different	places	can	be	seen	which	are	completely	dependent	on	the	underlying
local	geometry	and	how	we	choose	to	wrap	the	texture	around	it	locally.	Let	us
define	the	texture	space	with	two	coordinates	s	and	t	where	0	≤	s,	t	≤	1.	Let	(x	,
y	,	z)	 represent	 the	3	D	coordinate	of	 the	vertex	 in	object	space	for	which	we
need	to	assign	the	2	D	texture	coordinate.	In	this	section	we	will	describe	ways
to	compute	the	2	D	texture	coordinates	for	3	D	object	coordinates.	There	are	two
ways	to	compute	such	a	mapping.

Parametric	Shapes:	There	are	shapes	that	have	2D	parametric	representations,
such	as	a	sphere	or	a	cylinder.	In	such	cases,	we	will	map	the	two	coordinates	of
the	 texture	 space	 to	 the	 two	 parameters	 used	 for	 the	 parametric	 surface
representation.	Consider	an	example	of	a	cylinder.	A	3D	point	(x	,	y	 ,	z)	on	a
cylinder	of	radius	r	can	be	described	using	two	parameters:	u	,	-	180	≤	u	≤	180	,
defining	 the	angle	around	 the	axis	and	v,	0	≤	v	≤	1,	defining	 the	height	of	 the
cylinder	(Figure	14.9).	Therefore,	a	3D	point	(x	,	y	 ,	z)	on	 the	surface	can	be
expressed	by	the	two	parameters	(u	,	v)	as	follows.

(14.6)
x	=	r	c	o	s	(u)	;

(14.7)
y	=	r	s	i	n	(u)	;

(14.8)
z	=	v	.

Figure	14.9	This	figure	shows	the	parametric	representation	of	the	object	or	surface	to	be	texture	mapped
using	two	parameters	for	a	cylinder	(left)	and	sphere	(right).

By	solving	the	above	equations,	we	can	compute	the	2	D	parameters	(u	,	v)
associated	with	any	vertex	(x	,	y	,	z)	on	the	cylinder.	Next,	we	can	relate	the	(u
,	v)	to	the	normalized	texture	coordinates	(s	,	t)	as

(14.9)
s	=	u	+	180	360	;

(14.10)
t	=	v	.

Similarly,	a	sphere	can	be	parametrized	by	two	angles	u,	-	180	≤	u	≤	180,	and	v,	-
90	≤	u	≤	90	(Figure	14.9).	Again,	we	can	define	 the	2	D	parametrization	for	a
point	(x	,	y	,	z)	on	the	sphere	as	follows.

Figure	 14.10	 This	 shows	 the	 effect	 of	 parametrization	 on	 texture	 mapping.	 The	 two	 different
parametrization	for	the	same	triangle	is	shown	along	with	the	mapped	(s	,	t)	coordinates	 at	 each	 vertex.
Note	that	the	appearance	changes	dramatically	with	two	different	parametrization.

(14.11)
x	=	r	c	o	s	(v)	c	o	s	(u)	;

(14.12)
y	=	r	c	o	s	(v)	s	i	n	(u)	;

(14.13)
z	=	r	s	i	n	(v)	.

The	(u	,	v)	coordinates	related	to	a	3	D	point	(x	,	y	,	z)	can	then	be	mapped	to
texture	coordinates	(s	,	t)	as

(14.14)
s	=	u	+	180	360	;

(14.15)
t	=	v	+	90	180	.

The	mappings	from	the	(s	,	t)	 to	 (x	 ,	y	 ,	z)	coordinates	 thus	achieved	 in	 the
above	two	cases	are	called	cylindrical	and	spherical	mapping	respectively.	Once
the	 texture	 coordinates	 have	 been	 defined	 as	 above	 for	 every	 3D	 vertex,	 the
vertex	is	colored	based	on	the	color	at	the	mapped	texture	image	coordinate	(s	,
t)	 .	Note	 that	 color	 is	 defined	only	 at	 integer	 values	 of	 (s	 ,	 t)	 ,	 often	 called
texels.	 However,	 after	 mapping,	 there	 is	 no	 guarantee	 that	 (s	 ,	 t)	 will	 be
integers.	Therefore,	if	(s	,	t)	falls	between	integer	values,	the	color	value	can	be
interpolated	 from	 the	 nearest	 texels	 either	 by	 picking	 the	 color	 of	 the	 nearest
texel	or	interpolating	the	colors	from	the	a	few	nearest	texels	in	the	texture.
An	 important	 point	 to	 note	 in	 the	 context	 of	 texture	 mapping	 is	 that	 the

appearance	of	 the	 textured	objects	 depends	 completely	on	 the	parametrization.
Let	us	consider	a	black	and	white	checker	texture	on	a	triangle	to	illustrate	the
importance	 of	 parametrization	 as	 shown	 in	 Figure	 14.10.	 A	 planar	 triangle	 is
parameterized	 differently	 to	 create	 two	 different	 mappings	 of	 the	 texture
coordinates	at	its	vertices	creating	two	different	appearances.

More	Complex	Shapes:	For	more	complex	shapes,	it	is	difficult	to	find	an	easy
2	D	parametrization.	In	such	cases,	we	enclose	or	project	the	complex	shape	to	a
simpler	shape	that	can	be	easily	parametrized	and	for	which	texture	coordinates
can	be	assigned	using	the	above	method.	Then	we	find	a	way	to	map	vertices	of
the	 complex	 shape	 to	 the	 vertices	 of	 the	 simple	 shape	 and	 assign	 the	 texture
coordinates	 to	 the	 corresponding	 vertex	 in	 the	 complex	 shape.	Many	methods
can	be	designed	to	achieve	this	mapping	from	the	complex	to	the	simpler	shape
and	we	consider	a	few	examples	here.
The	object	can	be	enclosed	in	a	simple	geometry	like	a	sphere	(Figure	14.11).

At	any	vertex	of	the	complex	shape,	the	normal	can	be	extended	and	the	texture
coordinates	at	the	point	where	this	extended	normal	meets	the	enclosing	simpler
geometry	can	be	used	as	 the	texture	coordinates	at	 the	vertex.	Or,	a	ray	can	be
drawn	 from	 the	 center	 of	 the	 complex	 object	 through	 the	 vertex	 at	which	 the
texture	 coordinate	 needs	 to	 be	 assigned.	 The	 texture	 coordinate	 at	 the
intersection	of	this	ray	with	the	enclosing	simple	geometry	can	be	used	to	define
the	 texture	 coordinate	 at	 the	 vertex	 of	 the	 complex	 geometry.	 Similarly,	 a
cylindrical	mapping	can	use	a	cylinder	as	an	intermediate	geometry.	Far	simpler
mappings	can	also	be	done.	For	example,	the	texture	coordinates	can	be	assigned
by	 an	 orthogonal	 projection	 of	 the	 vertices	 on	 a	 textured	 plane.	This	 is	 called
orthogonal	mapping.	Perspective	projection	mapping	can	also	be	used	where	the
texture	 is	 treated	 as	 the	 image	 plane	 in	 perspective	 projection.	 The	 texture
coordinate	at	a	3D	point	is	defined	by	the	intersection	of	a	ray	that	connects	the
single	center	of	projection	to	the	3D	point.	This	is	also	called	projective	textures.
Such	textures	are	often	used	to	simulate	the	effect	of	projections	in	large	theaters
or	virtual	reality	environments.

Figure	 14.11	 .This	 figure	 shows	 a	 complex	 shape	 being	 texture	 mapped	 using	 a	 spherical	 (top)	 and	 an
orthogonal	 (bottom)	mapping.	The	 spherical	mapping	 uses	 the	 normals	 (left)	 or	 rays	 going	 out	 from	 the
center	of	the	object	to	pick	the	texture	coordinates.

14.4.2

Figure	14.12	This	figure	shows	orthogonal	(left)	and	cylindrical	(right)	mapping	on	a	vase	and	a	cylindrical
mapping	(top)	and	a	spherical	mapping	(bottom)	on	a	teapot.

However,	the	closer	the	geometry	of	the	object	to	the	enclosing	geometry,	the
better	 the	results	achieved.	Figure	14.12	 illustrates	 this.	The	vase	 is	closer	 to	a
cylinder	 in	 shape	 and	 therefore	 the	 orthogonal	 mapping	 shows	 severe	 and
unrealistic	 distortion	 than	 in	 cylindrical	mapping.	Even	 in	 cylindrical	mapping
distortions	are	high	only	in	places	that	deviate	from	the	cylindrical	structure	like
the	neck	and	the	base	of	the	vase.	However,	for	some	objects	like	the	teapot,	it
maybe	hard	 to	choose	an	enclosing	geometry	since	 it	 is	close	 to	both	a	 sphere
and	 a	 cylinder.	 In	 such	 cases,	 note	 that	 the	 distortions	 do	 not	 differ	 too	much
other	than	the	colors	that	land	in	specific	regions	of	the	object	and	it	is	entirely
up	to	the	user’s	discretion	to	choose	the	one	that	is	best	for	their	applications.

Figure	14.13	A	 texture	mapped	polygon	with	depth	going	 from	 the	 front	 to	back.	The	 texture	coordinate
assignment	 on	 the	 left	 does	 not	 account	 for	 perspective	 projection	 and	 therefore	 the	 shrinkage	 of	 the
checkerboard	squares	 is	only	 in	 the	horizontal	direction	due	 to	 the	 trapezoidal	shape	of	 the	polygon.	The
size	 squares	of	 the	checkerboard	on	 the	 right	change	based	on	 the	depth	due	 to	 the	perspectively	correct
texture	coordinate	assignment.

Object	to	Screen	Space	Mapping
After	 assigning	 texture	 coordinates	 to	 vertices,	 it	 is	 treated	 like	 any	 other
attribute	such	as	color.	The	texture	coordinates	in	the	interior	of	the	triangle	are
interpolated	 and	 computed	 from	 those	 at	 the	 vertices.	 This	 interpolation	 is
computed	during	rasterization.
We	have	learned	in	the	last	chapter	that	correct	interpolation	of	depth	in	screen

14.4.3

space	 is	 achieved	 by	 interpolating	 the	 reciprocal	 of	 the	 depth.	Let	 us	 consider
two	points	P	1	and	P	2	in	3	D	with	depth	Z	1	and	Z	2.	Let	us	consider	the	depth	Z	t
of	a	point	P	t	on	the	line	connecting	these	two	points	given	by	the	parameter	q,	0
≤	q	≤	1	as

(14.16)
Z	q	=	Z	1	+	q	(Z	2	-	Z	1)	.

We	know	from	Chapter	13	that	if	the	screen	space	parameter	for	the	same	point
is	given	by	p	,	0	≤	q	≤	1	,	then

(14.17)
1	Z	q	=	1	Z	1	+	p	1	Z	2	-	1	Z	1

From	the	above	two	equations	we	can	find	the	relationship	between	p	and	q	as

(14.18)
q	=	p	Z	1	p	Z	1	+	(1	-	p)	Z	2

When	interpolating	the	texture	coordinates	we	would	like	to	achieve	the	correct
coordinate	 based	 on	 their	 correct	 depth.	 Therefore,	 if	 the	 mapping	 from	 the
texture	space	to	object	space	assigns	texture	coordinates	T	1	and	T	2	to	P	1	and	P	2
respectively,	then	the	texture	coordinate	at	P	q	is	given	by

(14.19)
T	q	=	T	1	+	q	(T	2	-	T	1)	=	T	1	Z	1	+	p	T	2	Z	2	-	T	1	Z	1	1	Z	q

Figure	 14.13	 shows	 the	 effect	 of	 perspectively	 correct	 texture	 coordinate
assignment.
Instead	of	coloring	a	vertex	from	the	object	color,	texture	coordinates	provide

a	color	that	 is	picked	up	from	a	texture.	Therefore,	 texture	mapped	objects	can
be	 illuminated	 just	 as	 a	 (a)	 colored	 object	 is	 illuminated.	 One	 can	 compute	 a
diffused	 or	 phong	 illumination	 based	 on	 the	 color	 picked	 from	 the	 texture	 to
have	an	illuminated	textured	object	as	shown	in	Figure	14.14.

Figure	 14.14	 This	 figure	 shows	 the	 spherical	 mapping	 of	 the	 texture	 (a)	 on	 the	 3D	 sphere	 (b)	 and	 3D
cylinder	(c).	The	texture	mapped	sphere	in	(b)	is	now	illuminated	in	(d).

Mipmapping

The	final	rendered	primitive	gets	assigned	a	texture	coordinate	at	every	pixel	in
it.	Therefore,	one	can	think	of	the	pixels	in	a	triangle	as	samples	of	the	texture
image.	For	example,	if	one	side	of	a	triangle	is	rasterized	to	have	5	pixels	and	is
mapped	 along	 one	 side	 of	 the	 texture	 image	 that	 is	 180	 texels	 in	 size,	we	 are
expecting	 these	 5	 pixels	 to	 sample	 a	 function	 of	 180	 pixels	 and	 provide	 an
accurate	 representation.	As	we	 know	 from	 the	Nyquist	 sampling	 criterion	 that
this	leads	to	undersampling	and	therefore	incorrect	reconstruction	of	the	signal.
This	 problem	 is	 illustrated	 in	 Figure	 14.15.	 Let	 us	 consider	 the	 rasterized

triangle	 on	 the	 right	 shown	 by	 the	 gray	 pixels.	 The	 center	 of	 these	 pixels	 are
shown	 with	 different	 colored	 dots	 and	 the	 corresponding	 interpolated	 texture
coordinates	 during	 rasterization	 are	 shown	 with	 similar	 colored	 dots	 on	 the
texture.	 Note	 that	 since	 these	 coordinates	 sample	 the	 texture	 at	 much	 lower
frequency	than	is	desired	to	capture	the	stripes,	though	the	triangle	is	supposed
to	get	an	appearance	of	green	and	white	striping	via	texture	mapping,	it	will	end
up	 appearing	 a	 flat	 green.	 This	 is	 the	 artifact	 of	 aliasing	 due	 to	 insufficient
sampling	of	the	texture	via	the	pixels	of	the	rendered	triangle.

Figure	14.15	The	colors	picked	by	the	pixels	of	a	rasterized	triangle	(right)	from	the	texture	(left).	Note	that
though	the	texture	is	that	of	green	stripes,	the	triangle	will	only	get	painted	a	flat	green.

The	best	way	to	avoid	this	problem	is	to	keep	a	Gaussian	pyramid	of	textures
where	 the	 texture	 is	 filtered	 to	have	different	 frequency	cut	offs.	Based	on	 the
number	of	 pixels	 in	 the	 rendered	 triangle	 an	 appropriate	 level	 of	 the	Gaussian
pyramid	 is	 chosen	 such	 that	 the	 pixels	 are	 more	 than	 double	 the	 size	 of	 the
texture	at	 that	 level	and	can	 therefore	capture	all	 the	different	 frequencies	 in	 it
adequately.
Let	us	consider	 the	 texture	 to	be	of	size	2	N	×	2	N	organized	 in	a	Gaussian

pyramid	with	ln(N)	levels	where	the	image	at	level	i,	1	≤	ln(N),	is	of	size	2	N-i+1	×
2	N-i+1.	Mipmapping	offers	 a	 compact	way	 to	 store	 this	Gaussian	 pyramid.	The
size	of	the	mipmapped	RGB	texture	is	4	×	2	N	×	2	N	bytes.	The	image	is	divided
into	four	quadrants,	each	of	size	2	N	×	2	N	.	Three	of	these	are	used	to	store	the	R,
G	and	B	channels	of	the	first	level	of	the	Gaussian	pyramid	while	the	fourth	one
is	used	to	store	the	next	level	RGB	image	of	size	2	N-1	x2	N-1	The	fourth	quadrant

14.5

is	 recursively	 divided	 into	 four	 quandrants	 as	 before	 to	 store	 the	 ,	G,	 and	B
components	 separately,	 and	 the	 fourth	quadrant	 is	 again	used	 to	 store	 the	next
level	of	the	RGB	image	of	size	2	N-2	x2	N-2.	This	continues	until	the	original	image
is	filtered	down	to	a	single	pixel	image.	The	sequence	of	images	is	also	called	a
Gaussian	 pyramid	 representation.	During	 run-time	 the	 appropriate	 level	 of	 the
pyramid	 is	 accessed	 based	 on	 the	 instruction	 provided	 in	 the	 application
program.	 Figure	 14.16	 shows	 the	 mipmap	 organization	 and	 a	 scene	 rendered
with	and	without	mipmapping.

Figure	14.16	This	figure	shows	the	Gaussian	pyramid	organized	in	a	mipmap	(left)	and	rendering	a	ground
scene	viewed	from	an	oblique	perspective	texture	mapped	with	a	checkerboard	without	(middle)	and	with
(right)	mipmapping	 being	 used.	Note	 the	 strong	 aliasing	 artifacts	without	mipmapping	 is	 removed	 once
mipmapping	is	applied.	The	gray	that	is	visible	at	the	distance	area	of	the	ground	is	exactly	how	our	brain
will	perceive	this	scene.

Bump	Mapping
Bump	mapping	 is	 a	 technique	 by	which	we	 can	 simulate	 the	 effects	 of	 small
bumps	on	the	surface	of	an	object	without	changing	the	number	of	primitives,	as
shown	 in	 Figure	 14.17.	 The	 two	 tori	 in	 this	 figure	 have	 the	 same	 number	 of
triangles.	 But	 one	 looks	 much	 richer	 geometrically	 than	 the	 other	 due	 to	 the
bumps.	Note	 that	both	objects	are	also	 texture	mapped	with	a	blue	and	yellow
texture.	 The	 bumps	 are	 simulated	 by	 perturbing	 the	 normal	 vectors	 in	 a
predefined	way	so	that	 the	 lighting	changes	 in	a	manner	 that	 is	consistent	with
the	presence	of	 the	bump.	This	makes	us	 perceive	 the	bumps	 even	 if	 they	 are
absent	in	the	mesh.

Figure	14.17	The	same	object	rendered	without	bump	mapping	(left)	and	with	bump	mapping	(right).

Let	us	consider	a	surface	parametrized	with	two	parameters	(u	,	v)	.	This	 is
akin	to	what	we	did	for	texture	mapping.	Let	us	consider	the	point	P	(u	,	v)	with
normal	 N.	 Let	 P	 u	 and	 P	 v	 denote	 the	 tangents	 at	 P	 in	 u	 and	 v	 direction
respectively.	 In	bump	mapping,	we	want	 to	perturb	 the	normals	at	 the	vertices
based	on	a	scalar	bump	function	B	(u	,	v)	Consider	B	to	be	a	gray	scale	image
where	white	 indicates	 the	maximum	bump	and	black	 the	minimum.	Therefore,
we	would	like	to	move	the	point	P	(u	,	v)	to	P	′	(u	,	v)	in	 the	direction	of	 its
normal	such	that

(14.20)
P	′	(u	,	v)	=	P	(u	,	v)	+	B	(u	,	v)	N	.

Figure	14.18	This	figure	shows	the	bump	image	B	(u	,	v)	(a)	,	its	derivative	in	u,	B	u	,	direction	found	by
subtracting	every	pixel	from	its	right	neighbor	(b),	 its	derivative	in	v	direction,	B	v	,	 found	by	subtracting
every	pixel	from	its	bottom	neighbor	(c),	and	the	normal	map	(d).

Note	 that	 the	 above	 addition	 is	 a	vector	 addition.	Given	 this	displacement,	we
would	 like	 to	 find	 the	 perturbed	 normal	 so	 that	 we	 can	 use	 this	 normal	 in
illumination	computation	instead	of	N.	For	this,	we	find	the	tangent	vectors	P	u	′
and	P	v	 ′	 in	u	and	v	direction	 respectively	at	 the	displaced	point	P	 ′	 (u	 ,	v)	 .
These	are	given	by	partial	derivatives	of	Equation	14.20	in	u	and	v	directions	as

(14.21)
P	u	′	=	P	u	+	B	u	N	+	B	N	u	=	P	u	+	B	u	N	,

(14.22)
P	v	′	=	P	v	+	B	v	N	+	B	N	v	=	P	v	+	B	v	N	,
where	 B	 u	 and	 B	 v	 are	 the	 partial	 derivatives	 of	 the	 bump	 function	 in	 the
horizontal	 and	 vertical	 derivation.	 Although	N	 u	 and	N	 v	 represent	 directional
curvatures	along	u	and	v,	assuming	a	locally	planar	surface	we	consider	them	to
be	zero,	i.e.	N	u	=	N	v	=	0.	Figure	14.18	shows	an	example	bump	image	and	 its
derivative,	B	u	and	B	v	,	obtained	by	subtracting	the	value	at	a	pixel	from	its	right
(or	left)	and	bottom	(or	top)	neighbor	respectively.
Therefore,	the	perturbed	normal	N	’	at	P	’	is	given	by

(14.23)
N	′	=	P	u	′	×	P	v	′

(14.24)
=	P	u	×	P	v	+	B	v	(P	u	×	N)	+	B	u	(P	v	×	N)	+	B	v	B	u	(N	×	N)

(14.25)
=	N	+	B	v	(P	u	×	N)	+	B	u	(P	v	×	N)

since	N	 ×	N	 =	 0.	 Note	 that	N,	P	 u	×	N	 and	P	 v	×	N	 are	 unit	 vectors	 that	 are
orthogonal	 to	each	other.	Therefore,	 they	define	a	 local	coordinate	system	at	P
with	P	 v	×	N,	P	 u	×	N	and	N	denoting	 the	X,	Y	 and	Z	 coordinates	 respectively.
Therefore,	the	coordinates	of	N	’	in	this	coordinate	system	are	given	by	(B	u	,	B
v	,	1)	.	Therefore,	we	can	store	these	perturbed	normals	as	an	image	whose	RGB
value	at	location	(u	,	v)	is	(B	u	,	B	v	,	1)	and	denotes	the	perturbed	normal	at	(
u	,	v)	.	This	image	will	be	bluish	in	color	and	is	called	a	normal	map,	denoted	by
n	(u	,	v)	(Figure	14.18).

Figure	14.19	This	figure	shows	some	results	of	bump	mapping:	Original	object	on	the	left,	the	bump	image
in	the	middle	and	the	bump	mapped	object	on	the	right.

We	 can	 now	 use	 this	 normal	 map	 to	 achieve	 the	 bump	mapping	 using	 the
following	steps.

1.	 Define	 a	 local	 coordinate	 system	 at	 parameter	 (u	 ,	 v)	 on	 a	 surface
using	its	normal	and	tangent	vectors.

2.	 Find	the	transformation	from	the	global	coordinate	system	to	this	local
coordinate	system.

3.	 Transform	the	light	and	view	vectors	to	this	local	coordinate	system.
4.	 Find	the	perturbed	normal	(u	,	v)	.
5.	 Compute	 the	 lighting	using	 the	perturbed	normal	and	 the	 transformed

light	and	view	vectors.

14.6

Figure	14.20	This	shows	an	example	of	displacement	map	of	a	sphere.

Figure	14.19	shows	some	results.	Can	you	see	what	is	missing?	First,	note	that
no	bumps	show	up	at	the	silhouette.	This	is	because	there	is	no	real	displacement
of	pixels	and	the	silhouette	where	geometry	is	most	easily	visible	fails	to	fool	the
eye.	Also,	since	geometry	is	not	changed,	self	shadowing	effects	are	not	visible
giving	the	trick	away.
Another	 technique,	 more	 commonly	 called	 a	 displacement	 map	 actually

perturbs	 the	 geometry	 from	 P	 to	 P	 ’	 guided	 by	 an	 image.	 In	 this	 case,
microgeometry	needs	to	be	created	and	rendered,	something	that	the	bump-map
avoids.	 With	 displacement	 map,	 therefore,	 we	 can	 see	 the	 bumps	 at	 the
silhouettes,	self-occlusions	and	self-shadowing.	Figure	14.20	shows	an	example.

Environment	Mapping
In	the	real	world,	we	often	see	objects	that	are	extremely	shiny	(Figure	14.21).
Environment	 mapping,	 also	 referred	 to	 as	 reflection	 mapping,	 is	 a	 technique
used	 in	 computer	 graphics	 to	 render	 such	 shiny	 objects	 interactively.	 The	 key
feature	 of	 a	 very	 shiny	 object	 is	 that	 you	 can	 find	 the	 entire	 environment
reflected	 off	 it.	 Sometimes	 the	 environment	 in	 which	 people	 are	 (e.g.	 home,
cafe)	are	not	inside	the	field	of	view	of	rendering,	but	can	be	deduced	from	the
reflection	of	this	environment	off	the	rendered	shiny	object.	However,	to	create
such	an	effect	can	be	quite	expensive	via	accurate	tracing	of	light	rays	between
the	 object	 and	 the	 environment.	 Such	 accurate	 rendering	 will	 also	 show	 the
effects	of	self-reflection	(e.g.	the	handle	of	the	teapot	reflected	off	its	main	body
as	in	Figure	14.21).	As	we	already	know,	this	is	rather	complicated	to	achieve	in
interactive	graphics.

Figure	14.21	Examples	of	real	world	shiny	objects.

We	can	achieve	a	rudimentary	approximation	of	the	accurate	reflection	of	the
environment	 off	 a	 shiny	 object	 by	 first	 creating,	what	we	 call	 an	 environment
map.	 This	 is	 a	 simple	 geometry	 (e.g.	 a	 cube	 or	 a	 sphere)	 on	 which	 the
environment	is	mapped.	In	real	world,	this	can	be	achieved	by	taking	an	image
using	a	fish	eye	lens.	This	image	has	180	and	90	degrees	horizontal	and	vertical
field	 of	 view	 respectively.	 Two	 such	 images	 (left	 and	 right	 or	 top	 and	 bottom
hemispheres)	can	create	a	spherical	 environment	map.	For	a	digital	 scene,	one
can	employ	a	multi-pass	rendering	of	a	digital	scene,	where	each	pass	generates
a	 face	 of	 a	 cube	 of	 a	 cubic	 environment	 map.	 Six	 passes	 will	 be	 required	 to
capture	the	entire	field	of	view	from	a	viewpoint	placed	at	an	appropriate	loca-
tion,	maybe	the	center	of	the	object	on	which	the	environment	will	be	mapped.
Alternatively,	a	spherical	environment	map	can	also	be	created	by	a	ray	tracing
process	 where	 rays	 are	 traced	 from	 the	 center	 of	 the	 sphere	 out	 to	 the
environment.	The	color	of	the	point	in	the	environment	where	the	ray	hits	first	is
used	 to	color	 the	point	where	 the	ray	meets	 the	sphere.	Figure	14.22	shows	an
example	of	a	cubic	and	spherical	environment	map.

Figure	 14.22	 This	 shows	 a	 cubic	 and	 spherical	 environment	 map.	 The	 cubic	 map	 is	 shown	 unfolded
(middle)	and	is	generated	by	using	a	6-pass	rendering	each	rendering	a	face	of	a	cube	(left)	seen	from	the
center	of	the	cube.	The	spherical	map	(right)	is	generated	from	images	of	a	cafe	taken	using	a	fish-eye	lens
camera.

Fun	Facts

Reflection	mapping	have	been	used	in	movies	for	a	long	time,	especially	on
robots	 in	 science	 fiction	 movies,	 even	 before	 it	 became	 a	 common
computer	graphics	technique.	The	technique	was	developed	independently
by	 Gene	 Miller	 working	 with	 Ken	 Perlin,	 and	 also	 by	 Michael	 Chou
working	with	Lance	Williams,	around	1982	or	1983.	The	first	two	instances

in	which	reflection	mapping	was	used	to	place	objects	into	scenes	were	of	a
synthetic	shiny	robot	standing	next	to	Michael	Chou	in	a	garden,	and	of	a
reflective	blobby	dog	floating	over	a	parking	lot.	In	1985,	Lance	Williams
was	 part	 of	 a	 team	 at	 the	 New	 York	 Institute	 of	 Technology	 who	 used
reflection	mapping	 in	 a	moving	 scene	with	an	animated	CG	element	 in	 a
piece	called	“Interface”	that	featured	a	young	woman	kissing	a	shiny	robot.
In	 reality,	 she	was	 filmed	kissing	 a	 10-inch	 shiny	 ball,	 and	 the	 reflection
map	was	taken	from	the	reflection	of	the	ball.	The	first	feature	film	to	use
the	 technique	 was	 Randal	 Kleiser’s	 Flight	 of	 the	 Navigator	 in	 1986	 to
render	a	shiny	morphing	spaceship	flying	over	and	reflecting	fields,	cities,
and	 oceans.	 Its	 ground	 breaking	 appearance	 as	 an	 instrument	 concept
exhibited	through	a	movie	was	in	films	by	James	Cameron,	The	Abyss	and
Terminator	2.

Once	the	environment	map	is	generated,	it	is	mapped	onto	an	arbitrary	shaped
object	 in	 a	 fashion	 which	 is	 very	 similar	 to	 texture	 mapping	 on	 complex
surfaces,	but	is	guided	by	the	location	of	the	viewer	with	respect	to	the	object.	In
Figure	14.23,	let	us	consider	the	arbitrary	blue	shape	to	be	environment	mapped.
Let	 us	 consider	 a	 spherical	map	 enclosing	 it.	 Let	P	 be	 a	 vertex	 on	 the	 object
whose	environment	map	coordinates	 (i.e.	 the	coordinates	on	 the	 spherical	map
whose	color	will	be	picked	to	color	P)	we	would	like	to	compute.	Let	V	be	the
view	 vector	 usually	 achieved	 by	 connecting	 the	 viewpoint	 to	P.	 Let	N	 be	 the
normal	 at	P.	 Reflecting	V	 about	N	 creates	 the	 vector	R.	 Note	 that	 if	 the	 blue
shape	were	mirror	like	shiny	object,	the	3D	point	where	R	hits	the	environment
will	be	 the	color	 seen	by	 the	viewer	after	getting	 reflected	off	P.	This	point	 is
captured	by	the	point	Q	where	a	ray	R	’	parallel	to	R	passing	through	the	center
of	the	spherical	map	intersects	the	environment	map.	Therefore,	the	point	Q	will
be	mapped	on	to	P	thereby	imparting	its	color	to	P.

Figure	14.23	Left:	The	figure	illustrates	the	environment	mapping	process	for	mapping	the	blue	geometry
enclosed	in	the	spherical	environment	map.	Q	is	the	point	mapped	at	P	on	the	object.	Middle:	This	shows	a
torus	mapped	 using	 the	 cubic	 environment	map	 in	 Figure	 14.22.	Right:	A	wine	 glass	mapped	 using	 the

14.7

spherical	map	in	Figure	14.22.

However,	 since	we	do	not	do	an	accurate	environment	map	computation	we
do	miss	out	on	some	effects.	For	example,	we	cannot	see	self-reflections,	a	very
common	 phenomenon	 in	 reflective	 objects	 as	 in	 the	 reflection	 of	 a	 spout	 or	 a
handle	of	a	teapot	off	the	surface	of	the	teapot.	So,	environment	mapping	creates
a	 compelling	 realism	 via	 only	 a	 rudimentary	 approximation	 of	 the	 real
phenomena.	But	such	anomalies	may	go	unnoticed	to	a	few,	such	as	a	gamer	in
interactive	gaming	applications.

Transparency
So	 far,	 we	 have	 only	 considered	 rendering	 opaque	 objects.	 However,	 we
encounter	a	large	number	of	materials	in	the	real	world	which	are	transparent	or
transluscent	(e.g.	glass,	liquids).	In	order	to	achieve	interactive	rendering	of	such
objects,	we	 introduce	 the	 concept	 of	 alpha	 blending.	 For	 this,	we	 introduce	 a
new	channel	of	attributes	in	addition	to	the	3-channel	RGB	color.	This	is	called
the	alpha	channel,	A.	The	alpha	value	A	allows	a	rendering	application	to	have	a
fractional	 contribution	 of	 the	 color	 from	a	 source	 pixel	S	 (i.e.	 the	 color	 of	 the
pixel	 that	 is	 being	 rendered)	 blended	 with	 a	 fractional	 contribution	 from	 the
destination	 pixel	D	 (i.e.	 the	 color	 already	 existing	 in	 the	 framebuffer	 at	 that
pixel).	Let	the	color	at	S	and	D	be	(s	r	,	s	g	,	s	b	,	s	a)	and	(d	r	,	d	g	,	d	b	,	d	a)
respectively	where	s	a	and	d	a	are	values	of	the	alpha	channel.	Note	that	prior	to
the	 introduction	 of	 the	 alpha	 channel,	 we	 assumed	 that	 the	 new	 value	 at	 the
destination	pixel	D	′	=	S,	i.e.	the	new	source	color	replaces	the	destination	color.
However,	in	alpha	blending,	we	adopt	a	more	general	way	to	achieve	D	 ′	as	a

combination	of	D	and	S	given	by

(14.26)
D	′	=	f	s	(s	a	,	d	a)	S	+	f	d	(s	a	,	d	a)	D
where	f	s	and	f	d	provide	fractional	values	between	0	and	1.	Note	that	 the	above
equation	 is	 general	 and	 can	 be	 used	 to	 achieve	 a	 large	 variety	 of	 effects	 by
different	 choices	 of	 f	 s	 and	 f	 d	 .	 For	 the	 particular	 case	 of	 transparency	 or
translucency,	the	functions	we	use	are

(14.27)
D	′	=	s	a	S	+	(1	-	s	a)	D	.

Figure	 14.24	 This	 figure	 shows	 the	 effect	 of	 alpha	 channel	 blending.	 Left:	 Chicken=1,	 Egg=0;	Middle:
Chicken	=	Egg	=	0.5;	Right:	Chicken=0,	Egg=1.

Therefore,	 if	 the	pixel	being	rendered	is	 transparent,	s	a	=	0	achieving	D	 ’	=	D,
i.e.	 the	 destination	 pixel	 will	 not	 change	 color	 at	 all	 since	 the	 source	 pixel	 is
transparent.	 If	 the	 source	 pixel	 is	 opaque,	 as	we	 have	 been	 assuming	 so	 long,
then	s	a	=	1.	Therefore,	D	’	=	S.	i.e.	the	destination	pixel	gets	overwritten	by	the
color	of	the	source	pixel.	Ifs	a	is	any	other	fraction	between	0	and	1,	we	would
get	 a	 combination	 of	 the	 source	 and	 destination	 colors	 to	 create	 the	 effect	 of
translucency.	Figure	14.7	 shows	 the	concept.	Assume	 the	egg	 to	be	 the	 source
and	 chicken	 to	 be	 the	 destination.	 The	 images	 from	 left	 to	 right	 are	 achieved
with	the	above	functions	for	transparency	using	s	a	=	0,	0.5	and	1	respectively.	It
should	 also	be	noted	 that	 the	order	 in	which	 the	 translucent	 objects	 are	drawn
also	determines	the	final	color.	Let	O	1	and	O	2	be	two	objects	with	alpha	values
s	 1	 and	 s	 2	 respectively.	Let	B	 be	 the	 background	 color	 to	 start	with.	 If	O	 1	 is
drawn	first	and	then	O	2,	then	the	final	color	will	be	O	2	s	2	+	(1	-	s	2)(O	1	s	1	+	(1
-	s	 1)B)	 .	 If	 the	order	 is	 reversed,	 then	 the	 final	 color	using	 the	 same	blending
function	will	be	O	1	s	1	+	(1	-	s	1)(O	2	s	2	+	(1	-	s	2)B).	Obviously,	these	two	might
result	in	different	colors.
However,	 to	 achieve	 translucency	 correctly,	 there	 is	 depth	 to	 be	 considered.

Only	 alpha	 channel	manipulation	will	 not	work.	Let	 us	 consider	 the	 following
scenarios	in	Figure	14.25	 to	 illustrate	 this.	Consider	 the	 image	plane	shown	by
the	horizontal	line	and	the	line	of	sight	shown	by	the	vertical	dashed	line.	Three
objects	 are	 shown.	A	 is	 opaque	while	B	 and	C	 are	 translucent.	 Their	 order	 of
rendering	is	shown	by	the	numbers	on	the	right.	In	the	first	case	(left),	B	will	be
rendered	first	and	then	its	color	will	get	attenuated	by	the	alpha	value	of	C,	s	c	.
However,	next	the	attenuated	color	will	be	completely	replaced	by	the	color	of
opaque	A.	However,	physically	since	B	and	C	are	in	front	of	A,	we	should	see	a
combination	of	colors	of	all	of	A,	B	and	C.	Therefore,	the	result	is	wrong.	In	the
second	case	(right),	A	will	be	 rendered.	Following	 this,	 during	 rendering	of	C,
the	 framebuffer	 will	 be	 attenuated	 based	 on	 the	 alpha	 of	 ,	 s	 c	 ,	 and	 then
againattenuated	by	the	alpha	value	of	B,	s	b	.	Therefore,	the	final	color	will	be	the
color	of	A	attenuated	by	s	b	s	c	.	However,	note	that	since	B	is	behind	opaque	A,
physically	 s	 b	 should	 not	 attenuate	 the	 color	 of	 A	 in	 the	 final	 rendering.
Therefore,	this	result	is	also	wrong.

14.8

Figure	14.25	This	shows	different	scenarios	of	depth	order	arrangement	of	translucent	and	opaque	objects	to
evaluate	their	rendering	based	on	alpha	blending.

These	examples	are	designed	to	drive	the	point	that	the	depth	of	a	primitive	is
very	important	for	transparency	or	translucency	and	we	need	to	account	for	that.
In	order	to	achieve	that	without	compromising	performance,	we	assume	that	the
number	of	transparent	objects	in	the	scene	is	relatively	small.	Therefore,	first	all
the	opaque	objects	 are	 rendered	which	 resolves	occlusion	via	 the	depth	buffer.
The	depth	buffer	is	then	set	to	read-only	which	allows	it	to	retain	the	depth	of	the
rendered	opaque	objects.	Then	the	pixel	of	a	translucent	object	is	rendered	only
if	 the	 pixel	 passes	 the	 z-buffer	 test,	 i.e.	 if	 no	 opaque	 object	 is	 in	 front	 of	 it.
Further,	the	translucent/transparent	objects	are	drawn	from	back	to	front	in	order
to	get	the	composition	of	the	colors	correct.	14.26	shows	some	renderings	using
this	technique.

Accumulation	Buffer
An	 accumulation	 buffer	 is	 a	 higher	 precision	 frame	 buffer	 that	 is	 used	 to
accumulate	multiple	 images	 in	real	 time	rendering.	The	higher	precision	of	 the
accumulation	 buffer	 allows	 higher	 precision	 sum,	multiplication	 or	 division	 of
images.	 It	 can	 be	 used	 to	 achieve	 several	 effects	 like	 blending,	 depth	 of	 field
(simulating	the	effect	of	human	eye	where	only	objects	at	a	certain	depth	appear
focused	 while	 others	 are	 blurred)	 or	 anti-aliasing.	 Here	 we	 will	 see	 how	 an
accumulation	 buffer	 can	 be	 used	 for	 anti-aliasing.	 One	 way	 to	 achieve	 anti-
aliasing	 is	 to	 sample	each	pixel	more	 than	once	and	 then	average	 the	samples.
This	achieves	 the	effect	of	 rendering	 the	 image	at	a	higher	 resolution	and	 then
low-pass	filtering	it.

14.9

Figure	 14.26	 The	 figure	 shows	 rendering	 of	 transparency	 using	 alpha	 blending.	 Additional	 effects	 of
lighting,	shadows	and	texture	mapping	are	included	in	the	renderings.

Figure	14.27	The	figure	shows	rendering	anti-aliasing	via	jittering	view	settings	using	an	example	in	2	D	.
The	 red	and	blue	 show	 the	 two	different	view	 frustums	along	with	 the	 rays	 they	sample.	Left:	The	view
frustum	is	jittered.	Right:	The	view	point	is	jittered.

The	 process	 starts	 by	 clearing	 the	 accumulation	 buffer.	 One	way	 to	 sample
multiple	values	for	the	same	pixels	is	to	jitter	the	view	settings	so	that	the	center
of	the	rendering	pixels	moves	slightly	but	remains	within	the	pixel.	This	can	be
easily	achieved	by	moving	the	image	plane	slightly.	The	scene	is	then	rendered
multiple	times,	each	time	with	different	jittered	view	settings	given	by	a	slightly
moved	image	plane	or	slightly	moving	the	view	frustum	or	the	viewer	position
(Figure	 14.27).	 Each	 of	 these	 renderings	 is	 weighted	 by	 a	 fraction	 and
accumulated	in	the	accumulation	buffer	to	achieve	a	low	pass	filtering.	The	final
anti-aliased	result	is	moved	to	the	frame-buffer	for	rendering.

Back	Face	Culling
When	we	 render	 closed	abjects,	 there	are	certain	parts	of	 the	object	which	are
back	facing	and	therefore	occluded	by	its	front	facing	parts.	Consider	a	sphere.

Anytime	we	look	at	it	from	any	conceivable	view	direction,	only	a	hemisphere
can	 be	 seen	 while	 the	 other	 one	 will	 be	 at	 the	 back	 occluded	 by	 this	 visible
hemisphere.	 We	 can	 improve	 the	 rendering	 performance	 considerably	 if	 we
canprevent	the	back	facing	primitives	from	going	through	the	rendering	pipeline.
Back	face	culling	is	a	technique	by	which	we	detect	such	back	facing	polygons
and	 remove	 them	 from	 using	 up	 computational	 resources	 to	 go	 through	 the
model,	view	and	projection	transformations.

Put	a	Face	to	the	Name

Jim	Blinn,	a	retired	scientist,	educator	and	industrial	legend,	is	considered
as	 one	 of	 the	 father	 figures	 of	 computer	 graphics	 (CG),	 in	 particular	 in
light-matter	 interaction.	 He	 is	 the	 first	 person	 to	 introduce	 concepts	 of
bump	and	reflection	mapping	which	provided	a	very	powerful	tool	to	early
computer	 graphics	 animators.	 Though	 the	 shading	 model	 using	 normal
interpolation	goes	by	Phong	 shading	model,	 it	 should	be	more	 accurately
called	Blinn-Phong	shading	model	since	Blinn	worked	together	with	Phong
on	 this	model.	Blinn	was	born	 in	1949	and	 received	his	bachelors	degree
from	University	of	Michigan	in	1970.	He	received	his	PhD	from	University
of	Utah	in	1978.	He	first	became	widely	known	for	his	work	as	a	computer
graphics	expert	at	NASA’s	Jet	Propulsion	Laboratory	(JPL),	particularly	for
his	work	 on	 computer	 graphics	 animations	 for	 various	 space	missions	 to
Jupiter,	 Saturn	 and	 Uranus,	 especially	 the	 Voyager	 project.	 These
animations	 were	 shown	 on	 many	 news	 broadcasts	 as	 part	 of	 the	 press
coverage	of	the	missions	and	were	the	first	exposure	to	computer	animation
for	many	people	 in	 the	 industry	 today.	He	 is	also	known	 in	 the	computer
graphics	 community	 for	 his	 enthusiastic	 and	 inspirational	 role	 as	 an
educator,	mentor	and	a	visionary.	His	columns	“Jim	Blinn’s	Corner”	(today
published	 as	 a	 book	 by	 Morgan	 Kaufman)	 has	 inspired	 many	 to	 take
computer	 graphics	 as	 their	 calling.	 These	 were	 articles,	 covering	 math,
graphics	 pipelines	 and	 a	 wealth	 of	 tips	 and	 tricks	 which	 always	 kept
graduate	 students	 motivated	 to	 work	 on	 the	 next	 big	 thing.	 He	 is	 well

14.10

known	 for	 creating	 animation	 for	 three	 television	 education	 series:	 Carl
Sagan’s	 Cosmos:	 A	 Personal	 Voyage;	 Project	 MATHEMATICS	 and	 the
pioneering	instructional	graphics	in	The	Mechanical	Universe.	His	talks	in
CG	 venues	 are	 still	 very	 popular	 due	 to	 his	 reputation	 of	 throwing	 a
challenge	to	the	community.	In	1998,	in	a	keynote	talk	in	SIGGRAPH	(the
premier	CG	conference)	he	asked	the	CG	community	“to	figure	out	to	drop
a	piece	of	spaghetti	onto	 the	plate	and	how	it	squiggles	up	and	model	 the
sauce	on	there	for	the	frictional	coefficients	and	so	forth”.This	led	to	a	large
amount	of	research	finally	resulting	in	accurate	CG	simulations	of	protein
foldings.

Figure	14.28	The	figure	shows	back	face	culling	in	action	in	wire	frame	rendering	of	a	cylinder	(left)	and
torus	(right).	For	each,	you	see	the	model	rendering	without	back	face	culling	on	the	left	and	with	back	face
culling	from	the	same	or	different	viewpoint	on	the	right.

To	 achieve	 this	we	 can	 apply	 a	 very	 simple	 test.	Note	 that	 any	 front	 facing
primitive	will	have	a	normal	vector	whose	angle	with	 the	view	direction	(from
the	vertex	to	the	view	point)	will	be	within	-	90	to	+	90	degrees	i.e.	its	cosine	is
positive.	 The	 sign	 of	 the	 cosine	 can	 be	 computed	 using	N.V	 where	N	 is	 the
normal	to	the	plane	of	the	triangle	and	V	is	the	view	direction.	Therefore,	if	this
dot	product	is	greater	than0,	then	these	primitives	should	be	rendered,	otherwise
they	are	discarded.	This	process	is	called	back-face	culling.	Obviously,	back-face
culling	 cannot	 be	 used	 with	 transparent	 and	 translucent	 objects.	 Figure	 14.28
illustrates	the	process	of	back	face	culling.

Visibility	Culling
When	we	navigate	a	scene,	usually	the	view	frustum	has	a	limited	horizontal	and
vertical	field	of	view.	Therefore,	objects	which	are	not	within	this	view	frustum
(e.g.	objects	behind	us)	are	invisible	and	we	should	not	spend	resources	to	render
those	objects.	Therefore,	 instead	of	making	 these	objects	go	 through	 the	entire
pipeline	and	be	culled	away	in	the	last	stage	of	clipping,	the	performance	can	be
improved	 tremendously	 if	 objects	 which	 are	 not	 inside	 the	 view	 frustum	 are

14.10.1

culled	 away	 very	 early	 in	 the	 pipeline.	 This	 process	 is	 called	 view	 frustum
culling	and	is	illustrated	in	Figure	14.29.	Only	the	objects	within	the	frustum	or
which	 intersect	 the	 frustum	 are	 rendered.	 The	 purple	 torus	 intersects	 the	 view
frustum	 though	 it	 is	 only	partially	 inside	 the	 frustum.	Such	objects	 are	 special
cases	and	are	handled	appropriately.	In	the	next	few	sections,	we	will	introduce
methods	for	achieving	view-frustum	culling	with	wireframe	objects	 that	shows
exactly	the	triangles	that	are	rendered	and	those	that	are	culled.

Bounding	Volumes
The	 first	 method	 consists	 of	 defining	 a	 simple	 bounding	 volume	 around	 each
object	in	the	scene	e.g.	a	cube	or	a	sphere.	This	bounding	volume	should	be	the
smallest	possible	volume	 that	encloses	 the	object.	Then,	 instead	of	checking	 if
every	triangle	of	the	object	is	inside	the	view	frustum,	we	can	first	check	if	the
bounding	 primitive	 is	 completely	 inside	 or	 outside	 the	 view	 frustum.	 If	 it	 is
completely	 inside,	 the	 whole	 object	 has	 to	 be	 rendered.	 If	 it	 is	 completely
outside,	 the	whole	object	 is	culled.	These	 two	are	 the	most	common	cases	and
lead	to	quick	culling	of	all	the	objects	that	are	clearly	outside	the	view	frustum.
The	 small	 cases	of	objects	whose	bounding	volume	 intersect	 the	view	 frustum
needs	 to	 be	 treated	 differently.	 The	 easiest	way	 to	 deal	with	 them	 is	 to	 retain
them	 for	 rendering	 and	 let	 the	 screen	 space	 clipping	 of	 the	 rendering	 pipeline
clip	 away	 the	 part	 outside	 the	 view	 frustum.	 A	more	 complex	 approach	 is	 to
subdivide	 the	 object	 into	 multiple	 smaller	 objects	 and	 test	 their	 bounding
volumes	 against	 the	 view	 frustum	 and	 go	 down	 the	 hierarchy	 of	 only	 those
smaller	objects	whose	bounding	volume	intersects	the	view	frustum.	The	choice
of	 the	 geometry	 used	 as	 bounding	 volumes	 are	 typically	 simple	 ones	 such	 as
spheres	and	cuboids,	whose	intersection	with	the	view	volume	can	be	efficiently
computed.	Bounding	volumes	should	also	bound	the	given	object	tight	in	order
to	reduce	false	positives	during	intersection	computations.

Figure	14.29	The	figure	shows	the	view	frustum	and	all	the	objects	in	the	scene	(left)	and	then	shows	the
objects	which	has	been	culled	away	by	the	view	frustum	culling	by	(right)	using	no	color	on	them.

Bounding	 Box:	 The	 first	 bounding	 volume	 that	 comes	 to	 mind	 is	 often	 a
bounding	box.	A	simpler	bounding	box	is	an	axis-aligned	bounding	box	that	can
be	computed	using	the	minimum	and	maximum	extents	in	the	X,	Y	and	Z	values
of	the	vertices	of	the	object.	The	box	thus	defined	is	the	smallest	box	enclosing
the	object	such	that	the	the	edges	of	the	box	are	parallel	to	the	X,Y,	Z	axis	of	the
world	coordinate	system.	Note	that	if	the	model	is	rotated,	this	box	may	not	be
axis	 aligned	 anymore	 and	 hence	 a	 new	 axis	 aligned	 bounding	 box	 has	 to	 be
computed	for	the	transformed	object.
Each	plane	of	the	view	frustum	divides	the	3	D	space	into	two	half-spaces	—

one	 that	 is	 inside	 the	 frustum	and	 the	 other	which	 is	 outside	 the	 frustum.	The
bounding	box	is	tested	against	each	of	these	planes	to	see	if	it	is	inside,	outside
or	 intersecting	 the	plane.	 If	 the	bounding	box	 is	outside	any	one	of	 the	planes,
the	 object	 is	 outside	 the	 view	 frustum	 and	 no	 further	 testing	 with	 planes	 is
required.	If	the	object	is	inside	all	the	six	planes,	only	then	is	it	completely	inside
the	view	frustum.	If	 the	object	 is	 intersecting	one	or	more	of	 the	planes	and	 is
not	 outside	 of	 any	 of	 the	 six	 planes,	 then	 it	 is	 intersecting	 the	 view	 frustum.
Figure	14.30	shows	the	axis	aligned	bounding	boxes	for	the	different	objects	in
dotted	blue	lines.	Therefore,	the	next	step	is	how	to	compute	the	intersection	of	a
bounding	 box	 with	 a	 plane	 that	 comprises	 testing	 all	 the	 eight	 points	 of	 the
bounding	 box.	 If	 they	 are	 all	 outside	 or	 all	 inside,	 the	 object	 is	 completely
outside	 or	 on	 the	 same	 side	 of	 the	 frustum	 respectively.	 If	 not,	 then	 it	 is
intersecting	the	frustum.

Figure	14.30	This	shows	the	axis	aligned	bounding	box	(in	dotted	blue)	and	axis	aligned	bounding	box	(in
solid	 blue)	 for	 different	 objects	 and	 the	 trapezoidal	 view	 frustum	 (in	 solid	 blue)	 during	 view	 frustum
culling.	The	ball	 is	culled	out,	 the	 teddy	 is	accepted	 for	 rendering	while	 the	pyramid	 is	considered	 to	be
intersecting	with	the	view	frustum	during	the	process.

14.10.2

Note	 that	 more	 often	 than	 not,	 an	 axis-aligned	 bounding	 box	 has	 a	 large
amount	of	empty	space	and	therefore	is	a	rather	inaccurate	approximation	of	the
volume	occupied	by	the	object.	A	more	accurate	approximation	can	be	achieved
via	 an	 oriented	 bounding	 box	 (OBB),	 as	 shown	 in	 solid	 blue	 lines	 in	 Figure
14.30.	The	three	directions	of	the	OBB	are	computed	via	a	principal	component
analysis	of	 the	vertices	of	 the	objects	and	 then	 finding	 the	maximum	extent	of
the	object	in	those	directions.	The	advantage	of	the	OBB	is	that	the	OBB	need
not	 be	 recomputed	 with	 transformations	—rotations,	 scaling	 and	 translations.
The	 same	 transformation	 applied	 to	 the	 object	 when	 applied	 to	 the	 OBB
generates	 the	OBB	 for	 the	 transformed	object.	To	 learn	 about	OBBs	 in	 detail,
refer	to	[Gottschalk	et	al.	96].
However,	 the	 intersection	 computation	 of	 an	 oriented	 bounding	 box	 with	 a

plane	 of	 the	 view	 frustum	 is	 more	 complicated.	 In	 this	 case,	 first	 the	 two
diagonals	 that	 pass	 through	 the	 center	 of	 the	 oriented	 bounding	 box	 are
computed.	Next,	one	of	these	two	diagonals	which	has	a	closer	alignment	with
the	 normal	 of	 the	 plane	 is	 chosen.	 The	 endpoints	 of	 this	 diagonal	 form	 the
closest	and	farthest	points	 in	 the	OBB	from	the	plane.	 If	both	 the	endpoints	of
this	diagonal	are	inside	or	outside	the
plane,	the	object	is	completely	inside	or	outside	the	plane	respectively.	If	not,

it	is	intersecting	the	plane.	This	is	illustrated	in	Figure	14.30.	Let	us	consider	the
bounding	box	 for	 the	 red	ball.	When	considering	 the	 far	 plane	of	 the	 frustum,
AB	 is	 the	 diagonal	which	 is	 closer	 in	 alignment	 to	 the	 normal	 to	 the	 far	 lane.
Therefore,	the	inclusion	test	has	to	be	run	on	the	nearest	and	farthest	point,	A	and
B,	 respectively.	However,	when	 considering	 the	 left	 plane,	 the	 closest	 and	 the
farthest	points	are	C	and	D	respectively.
Bounding	Sphere:	Bounding	spheres	can	also	be	used	as	bounding	volumes.	In

this	case,	the	intersection	computation	becomes	even	simpler.	First	it	is	detected
whether	the	center	of	the	sphere	is	inside	or	outside	the	plane.	Next	the	distance
of	the	center	of	the	sphere	from	the	plane	is	computed.	If	this	is	smaller	than	the
radius,	 then	 the	 object	 is	 intersecting	with	 the	 view	 frustum.	 If	 the	 distance	 is
bigger	 than	the	radius,	 then	the	object	 is	accepted	or	culled	based	on	its	center
being	inside	or	outside	the	plane	respectively.	Bounding	spheres	are	not	affected
by	 the	 rotation	 of	 the	 enclosed	 object,	 and	 if	 the	 object	 is	 translated,	 the
bounding	sphere	 is	also	 translated	by	 the	same	amount.	So	 it	 is	easy	 to	update
the	bounding	sphere	with	rigid	transformations	of	the	enclosed	object.

Spatial	Subdivision
Object	space	subdivision	using	bounding	volumes	as	seen	in	the	previous	section

can	adapt	to	unique	shapes	of	the	objects	and	are	effective	in	applications	such
as	 collision	 detection	 and	 view	 frustum	 culling.	 However,	 in	 applications	 that
requires	computation	of	relative	positioning	of	objects,	for	example,	from	a	view
point	 in	 a	 particular	 direction,	 spatial	 subdivision	 of	 the	 scene	 becomes	more
useful	than	object	level	subdivision.	A	few	spatial	subdivision	techniques	in	3	D
include	 octree,	 k-d	 tree,	 and	 binary	 space	 partitioning.	We	will	 discuss	 octree
subdivision	 in	 this	 section.	 For	 an	 in-depth	 treatise	 on	 other	 kinds	 of	 spatial
partitioning	techniques,	refer	to	[Jimenez	et	al.	01].
The	octree	is	a	tree	data	structure	where	each	node	has	eight	children	nodes.

The	root	node	corresponds	to	the	axis-aligned	bounding	box	of	the	entire	scene
defined	 by	minimum	 and	maximum	 coordinates	 in	 the	X,	Y	 and	Z	 directions.
This	bounding	box	is	subdivided	into	half	in	each	of	the	X,	Y	and	Z	directions	to
partition	the	space	into	eight	equal	sized	bounding	boxes,	each	associated	with	a
child	 node	 of	 the	 parent.	 Therefore,	 the	 space	 associate	 with	 each	 child	 is
completely	contained	in	the	space	associated	with	its	parent	and	the	union	of	the
spaces	 of	 all	 the	 children	 creates	 the	 space	 of	 its	 parent.	 This	 continues	 in	 a
hierarchical	manner	for	each	child	thus	creating	a	tree	in	which	every	node	has
eight	children,	as	shown	in	Figure	14.31.	Note	that	there	is	no	need	to	associate	a
bounding	box	with	every	node	since	the	bounding	box	at	the	root	node	provides
a	predefined	subdivision	 that	defines	 the	extent	of	every	box	 in	 the	 tree	which
can	be	computed	very	easily	during	the	tree	traversal.
For	 spatial	 subdivision	 in	 graphics	 applications,	 each	 node	 stores	 a	 list	 of

indices	 of	 primitives	 contained	 in	 its	 corresponding	 bounding	 box.	 If	 any	 box
has	only	one	primitive	in	it,	that	node	will	not	be	subdivided	any	further	and	it
becomes	a	leaf	node.	If	a	primitive	intersects	more	than	one	sibling	node,	it	can
be	 handled	 in	 two	 different	ways.	 It	 can	 be	 split	 across	 the	 boundary	 to	 have
different	parts	of	it	contained	in	the	different	boxes.	Or,	it	can	be	repeated	in	all
the	boxes	in	which	it	partially	belongs.	Octree	construction	involves	populating
the	tree	nodes	with	an	index	list	and	is	performed	as	a	pre-processing	step.

14.10.3

Figure	14.31	This	figure	illustrates	how	the	octree	is	build	by	hierarchical	spatial	subdivision.

Let	us	discuss	 the	use	of	octree	 in	view	 frustum	culling	application.	During
runtime,	 the	view	frustum	will	be	cutting	 through	 the	bounding	box	defined	at
the	root.	The	scene	is	rendered	by	the	following	algorithm	starting	at	the	root.	If
the	bounding	box	at	 the	node	 is	completely	 inside	 the	view	frustum	render	 the
triangles	associated	with	it.	If	the	bounding	box	at	the	node	is	completely	outside
the	view	frustum	reject	it	(do	nothing).	If	the	bounding	box	at	the	node	intersects
with	 the	 view	 frustum	 apply	 the	 process	 recursively	 to	 all	 its	 children.	 This
algorithm	achieves	a	depth	first	 traversal	of	 the	octree	and	a	cut	of	 the	tree	for
each	view	frustum	that	is	rendered.	This	is	illustrated	using	a	quadtree	for	a	2D
each	box	will	be	subdivided	into	four	equal	sized	bounding	boxes.

Other	Uses
Bounding	 volumes	 and	 spatial	 subdivision	 techniques	 are	 used	 in	 many
applications	 other	 than	 view	 frustum	 culling.	 One	 common	 application	 is
collision	 detection	widely	 used	 in	 games	 and	 scientific	 simulations.	 Examples
are	 a	 digital	 pool	 game	 or	 a	 simulation	 of	 pistons	 in	 an	 engine.	 In	 such
applications,	objects	move	based	on	some	rules	and	if	they	collide,	it	should	be
detected	and	an	appropriate	action	should	be	taken.	For	example,	in	pool	if	two
balls	 collide	 they	 should	 be	 reflected	 in	 opposite	 directions.	 A	 collision	 is
detected	when	 one	 or	more	 of	 the	 triangles	 in	 an	 object	 intersect	with	 one	 or
more	of	the	triangles	in	another	object	or	with	itself	in	case	of	self	intersections
in	non-rigid	objects.	The	brute	 force	way	 to	 compute	 this	 is	 to	 intersect	 every
triangle	in	one	object	with	every	primitive	in	the	other.	As	is	evident,	this	leads
to	a	tremendous	amount	of	computation.	For	example,	for	objects	with	around	1
million	traingles,	it	will	lead	to	1012	intersection	computations	that	can	hardly	be

achieved	 in	 interactive	 rates,	 a	 mandatory	 requirement	 in	 such	 applications.
Therefore,	 bounding	 volumes	 are	 used	 for	 fast	 rejection	 of	 non-collision	 and
spatial	subdivision	is	used	for	fast	detection	of	candidate	collisions.

Figure	14.32	Left:	We	consider	a	quadtree	for	a	2	D	curve	(instead	of	octree	for	3	D	surface)	to	illustrate	the
concept.	The	tree	created	has	four	children	listed	from	left	to	right	as	the	top-left,	top-right,	bottom-left	and
bottom-right	 boxes	 contained	 in	 the	 node.	 The	 red	 dotted	 line	 shows	 2	 D	 the	 view	 frustum	 and	 the
corresponding	cut	 in	 the	quadtree.	Right:	We	show	the	spatial	 subdivision	of	a	3	D	bunny	model	 into	an
octree.

Each	 object	 maintains	 a	 bounding	 volume	 data	 structure	 using	 hierarchical
spatial	 subdivision	 by	 modifying	 the	 octree-based	 spatial	 subdivision	 slightly.
This	is	called	hierarchical	bounding	volumes	where,	unlike	octree-based	spatial
subdivision,	 the	 bounding	 box	 at	 each	 node	 is	 not	 a	 pre-determined	 half-way
subdivision	of	the	parent	bounding	box.	Instead,	it	is	the	smallest	bounding	box
that	 fits	 all	 the	 triangles	 in	 the	 bounding	 volume	 created	 by	 the	 half-way
subdivision	of	the	parent	bounding	box.	But,	the	list	of	triangles	associated	with
each	node	of	the	hierarchical	bounding	volumes	is	identical	to	the	octree-based
spatial	subdivision.	Therefore,	unlike	octree-based	spatial	subdivision	where	the
bounding	box	at	each	node	need	not	be	stored	but	can	be	easily	derived	from	the
bounding	volume	at	the	root	of	the	tree,	the	bounding	volume	has	to	be	explicitly
stored	 at	 each	 node	 of	 the	 hierarchical	 bounding	 volumes.	 Figure	 14.33
illustrates	this	difference	using	an	example	in	2	D	.	The	green,	red	and	magenta
show	these	tightest	fitting	bounding	boxes	at	 levels	0(root),	1	and	2	of	 the	tree
respectively.
To	 detect	 collision	 between	 two	 objects,	 bounding	 volume	 intersection	 tests

are	 first	 performed	 at	 the	 level	 0	 of	 the	 hierarchical	 bounding	 volume
representation	 of	 the	 objects.	 No	 collision	 between	 the	 bounding	 volumes
implies	 nocollision	 between	 the	 enclosed	 objects.	 If	 the	 bounding	 volumes
collide,	there	is	a	possibility	that	the	enclosed	objects	will	collide.	Note	that	the

bounding	volumes	can	collide	in	 the	empty	regions	of	 its	volume.	Therefore,	a
collision	of	bounding	volumes	does	not	always	 imply	a	collision	of	objects.	 If
the	bounding	volumes	intersect,	pairwise	intersection	tests	between	the	bounding
volumes	 of	 the	 children	 nodes	 are	 performed.	 Therefore,	 the	 above	 process	 is
repeated	on	 the	bounding	volumes	of	 the	children	nodes	 recursively.	The	 trees
are	 thus	 traversed	 in	 depth	 first	 search	 and	 a	 collision	 is	 detected	 when	 one
primitive	remains	in	each	bounding	volume	and	their	intersection	computation	is
essentially	 a	 triangle-triangle	 intersection	 computation	 to	 detect	 the	 point	 of
collision.

Figure	14.33	This	 shows	 the	hierarchical	 bounding	volumes	 for	 a	 2D	object.	Unlike	octree-based	 spatial
subdivision,	at	every	node	the	tightest	bounding	box	enclosing	the	part	of	the	object	subdivided	bounding
box	is	stored.

We	have	discussed	the	use	of	bounding	boxes	for	collision	detection	and	how
hierarchical	 methods	 can	 be	 used	 for	 fast	 collision	 detection.	 However,	 it	 is
important	 to	 note	 that	 different	 types	 of	 bounding	 volumes	 can	 be	 used	 for
collision	detection	like	spheres	or	a	spherical	shell.	In	fact,	three	criteria	dictate
the	choice	of	the	type	of	bounding	volumes	to	be	used	during	collision	detection.
First,	 how	 tightly	 does	 the	 bounding	 volume	hug	 the	 object	 so	 that	 the	 empty
space	 in	 the	 bounding	 volume	 is	 minimized?	 For	 example,	 when	 considering
contemporary	 objects	 (e.g.	 table,	 chair,	 room,	 house	 etc)	 which	 have	 many
straight	edges,	a	box-like	volume	is	probably	most	appropriate.	However,	when
dealing	with	cellular,	biological	or	astronomical	simulations	where	objects	have
closed	 curved	 contours,	 a	 spherical	 volume	 is	 probably	 more	 conducive.	 A
tightly	fit	bounding	volume	will	reduce	false	positives	in	collision	detection	and
will	 minimize	 going	 down	 the	 hierarchy	 for	 collision	 resolution.	 The	 second
criterion	 is	 the	 complexity	 of	 computing	 and	updating	 the	 bounding	box.	This
criterion	 would	 dictate	 if	 the	 system	 can	 be	 used	 for	 collision	 detection	 in
dynamic	 environments.	An	 axis	 aligned	bounding	box	 is	 easy	 to	 construct	 but
more	 expense	 to	 update	 under	 a	 few	 transformations	 such	 as	 rotation	 of	 the

14.11

enclosed	 object.	 An	 oriented	 bounding	 box	 is	 more	 difficult	 to	 construct,	 but
easier	to	update.	Even	for	static	scenes,	since	the	collision	computations	have	to
be	done	many	times	down	the	hierarchy,	the	third	criterion	is	the	complexity	of
computing	 the	 collision	 test	 between	 two	 bounding	 volumes.	 The	 simplest
collision	 test	 is	between	 two	spheres	 if	 the	distance	between	 the	centers	of	 the
sphere	 is	 more	 than	 the	 sum	 of	 the	 radii,	 then	 the	 spheres	 do	 not	 collide,
otherwise,	they	collide.	More	complex	to	compute	an	axis	aligned	bounding	box.
If	at	 least	one	of	the	X,	Y	,	or	Z	ranges	of	 the	bounding	boxes	do	not	overlap,
then	 the	 boxes	 do	 not	 intersect,	 otherwise,	 they	 intersect.	 Finally,	 intersection
computation	of	an	oriented	bounding	box	requires	us	to	find	a	separating	plane
and	 is	more	 complex	 than	 for	 the	 other	 two	 primitives	 [Gottschalk	 et	 al.	 96].
There	 are	 other	 bounding	volumes	 such	 as	 spherical	 shell	 [Krishnan	et	 al.	 98]
which	 is	 the	 region	 enclosed	 between	 two	 concentric	 spheres	 and	 a	 cone.
Spherical	 shells	 can	 provide	 a	 tight	 fit	 for	 higher	 order	 surfaces.	 They	 are
relatively	 more	 complex	 to	 compute,	 easier	 to	 update,	 and	 require	 moderate
computation	for	detecting	collision	between	two	spherical	shells.	An	illustration
of	all	these	bounding	volumes	is	shown	in	Figure	14.34.

Figure	14.34	The	figure	illustrates	the	concepts	of	bounding	volume	of	an	object	(in	blue)	in	2	D	.	From	left
to	right:	axis	aligned	bounding	box,	oriented	bounding	box,	a	sphere,	and	a	spherical	shell.

Conclusion
In	this	chapter	we	introduced	you	to	the	most	common	ways	to	enhance	realism
in	interactive	computer	graphics	through	rudimentary	approximations	of	reality.
Again,	in	this	chapter	concepts	are	explained	in	an	API	independent	manner.	We
hope	these	fundamental	concepts	help	the	readers	to	code	up	using	any	suitable
API.	We	should	also	acknowledge	that	enhancing	realism	does	not	come	free—
and	almost	all	 the	 time	 trades	off	with	performance.	For	example,	bump	maps
come	 at	 no	 cost	 with	 respect	 to	 increased	 geometry	 but	 require	 Phong
illumination	 computation	 during	 rasterization	 and	 cannot	 show	 realism	 at	 the
silhouettes.	While	a	displacement	map	can	alleviate	this	problem,	it	comes	at	the
cost	of	 lower	 rendering	 speed	due	 to	 the	 significant	 increase	 in	geometry.	The

challenge	is	to	make	the	right	choices	that	are	suitable	for	specific	applications.

Bibliography
[Gottschalk	96]	StefanGottschalk,	MingLin,	and	DineshManocha.	“OBB-Tree:	A	Hierarchical	Structure	for

Rapid	Interference	Detection.”	Computer	Graphics	(SIGGRAPH	1996	Proceedings),	pp.	171-180.
[Jimenez	 01]	 P.Jimenez,	 F.Thomas,	 &	 C.Torras.	 “3D	 Collision	 Detection:	 a	 Survey”.	 Computers	 and

Graphics,	25:2	(2001),	269–285.
[Krishnan	98]	ShankarKrishnan,	AmolPattekar,	MingLin,	and	DineshManocha.	“Spherical	Shell:	A	Higher

Order	 Bounding	 Volume	 for	 Fast	 Proximity	 Queries.”	 Robotics:	 The	 Algorithmic	 Perspective:
WAFR,	pp.	177-190.

Summary:	Do	you	know	these	concepts?

Ambient,	Diffuse	and	Specular	Illumination
Flat,	Gouraud,	Phong	Shading
Shadow	Map
Texture	Mapping	and	Mipmap
Environment	Map
Bump	and	Displacement	Map
Alpha	Blending
Accumulation	Buffer
Anti-aliasing
Backface	Culling
Visibility	Culling
Spatial	Subdivision	and	Octree
Bounding	Volumes
Collision	Detection

Exercises
1.	 Consider	 a	 gray	 world	 with	 no	 ambient	 and	 specular	 lighting	 (only

diffuse	lighting).	The	light	is	at	infinity	and	its	direction	and	color	are
(1,	 1,	 1)	 and	 1.0	 respectively.	 The	 coefficient	 of	 diffuse	 reflection	 is
1/2.	The	normals	at	points	P	1,	P	2	and	P	3,are	N	1	=	(0,	0,	1),N	2	=	(1,	0,
0)	and	N	3	=	(0,	1,	0)	respectively.	Find	the	illumination	at	the	points	P

1,	P	2	and	P	3.

2.	 In	 the	 above	 figure,	 the	 light	 and	 the	 eye	 are	 denoted	 by	 L	 and	 E
respectively.	On	the	surface	AC	the	normals	at	A	and	C	are	N	A	=	(-	1,
1,	0)	and	N	C	=	(1,	1,	0)	respectively.	Everything	is	drawn	to	scale.	Use
the	illumination	model	given	by	I	=	I	a	k	a	+	I	L	k	d	(N.L)	+	I	L	k	s	(R.V)	n
where	R	denotes	the	reflected	light	vector	at	the	surface	point,	I	a	=	0.8,
I	L	=	1.0,	k	a	=	0.2,	k	d	=	0.9,	k	s	=	0.5,	n	=	2.	Find	the	illumination	at	A
and	B.	(Hint:	Treat	negative	dot	products	as	0.)

3.	 You	are	rendering	a	black	and	white	checkered	tiled	floor	using	a	single
texture	mapped	polygon.	The	view	is	simulating	a	person	standing	on
the	 floor	 and	 looking	 at	 a	 point	 far	 away	 from	 him	 on	 the	 floor.
(l)Artifacts	at	the	distant	end	of	the	floor	can	be	seen.	How	would	you
remove	 these	 artifacts?	 (2)	 How	 can	 you	 explain	 why	 this	 method
works	using	the	sampling	theorem?

4.	 One	artifact	of	Gouraud	shading	is	that	it	can	miss	specular	highlights
in	the	interior	of	the	triangles.	How	can	this	be	explained	as	an	aliasing
artifact?

5.	 Consider	 five	 objects	 in	 the	 line	 of	 sight	 from	 the	 eye.	 Object	 i	 is
behind	Object	i	-	1.	Object	1,	3	and	5	are	opaque	while	the	others	are
translucent.	 In	 what	 order	 would	 you	 render	 the	 objects	 to	 get	 the
correct	effect	of	translucency?	Justify	your	answer.

6.	 Consider	the	above	2	D	gray	world	and	the	primitive	AB	in	it	(shown
by	the	red	line).	The	blue	vectors	show	the	normal	at	A	and	B.	L	and	E
are	the	position	of	the	light	and	the	eye	respectively.	Let	the	coefficient
of	diffused	illumination	be	0.5	respectively.	Let	the	intensity	of	light	be
0.5.

a.	 What	are	the	coefficients	of	A	and	B	respectively	for	bilinear
interpolation	of	C?

b.	 What	are	the	normals	at	A,	B	and	C?
c.	 Find	the	diffused	illumination	at	A	and	B.
d.	 Find	the	diffused	illumination	at	C	using	Gouraud	shading.
e.	 Find	the	diffused	illumination	at	C	using	Phong	shading.

7.	 Consider	 the	 above	 striped	 texture	 on	 the	 left	 and	 the	 triangle	 ABC
which	we	would	 like	 to	 texture	map	 using	 this	 texture.	 Consider	 the
bottom	left	corner	of	the	texture	to	be	(0,	0)	and	the	top	right	to	be	(1,
1).	Find	the	texture	coordinates	assigned	to	A,	B	and	C	respectively	to
create	the	appearance	of	stripes	in	each	of	the	following	directions:	(a)
horizontal,	 (b)	 vertical,	 (c)	 diagonal	 in	 the	 same	 orientation	 as	 the
texture,	and	(d)	diagonal	in	the	perpendicular	orientation	to	the	texture.

8.	 You	are	seeing	an	object	which	is	either	texture	mapped,	bump	mapped
or	displacement	mapped	but	you	don’t	know	which	one.	However,	You
have	 the	 liberty	 to	move	 the	 light	and	 the	viewpoint	of	an	object	and

see	it	from	different	angles	and	for	different	positions	of	the	light.	How
will	you	figure	out	which	technique	was	used?

9.	 Consider	the	framebuffer	of	size	300	×	100.	ABCD	is	a	rectangle	in	3D
space	 which	 has	 been	 projected	 as	 a	 trapezium	 in	 the	 2	 D	 .	 AB	 is
projected	 on	 (300,	 100)	 the	 bottom	 scanline.	 CD	 is	 projected	 on	 a
scanline	(shown	in	brown)	that	is	3	5	way	above	and	has	a	projection
length	 1	 3	 of	 AB.	 The	 depth	 of	 side	 AB	 and	 CD	 are	 60	 and	 30
respectively.	Consider	a	512	×	512	checkerboard	texture	T	that	will	be
used	 to	 texture	map	ABCD.	T	 is	 stored	 in	 different	 resolutions	using
mipmapping.

a.	 On	which	scanline	is	CD	projected?
b.	 Consider	a	scanline	S	that	is	half	way	in	screen	space	between
AB	and	CD.	Find	the	depth	of	S.	What	level	of	the	T	will	be
used	to	texture	map	AB	and	CD	respectively?

c.	 Find	the	length	of	S	contained	in	the	trapezium.	What	level	of
T	will	be	used	to	texture	map	S?

10.	 Consider	the	figure	above.	Suppose	we	have	a	brick	wall	that	forms	the
left	 hand	 side	 of	 a	 corridor	 in	 a	maze	 game	 as	 shown.	 The	 image	 is
drawn	 to	 scale.	 This	 wall	 is	 defined	 in	 world	 coordinates	 by	 points
ABCD,	 the	projection	of	which	are	shown	 in	 the	 image.	Assume	 that
the	brick	wall	is	16	bricks	high.

a.	 If	we	assume	the	brick	wall	 to	be	16	bricks	high,	how	many
times	 do	 we	 have	 to	 repeat	 the	 texture	 in	 the	 vertical

direction?
b.	 What	level	of	mipmapped	image	pyramid	on	the	right	will	be

used	for	texture	mapping	the	near	end	CD?
c.	 What	 is	 the	 minimum	 number	 of	 pixels	 each	 texel	 should

cover	to	avoid	aliasing?

11.	 Let	 us	 consider	 the	 building	 of	 a	 virtual	 reality	 environment.	 Its	 top
view	is	shown	in	 the	above	figure.	D	is	 the	cylindrical	display	whose
digital	representation	(shape	and	position)	is	known.	The	scene	will	be
projected	 from	 the	projector	P	 .	The	digital	objects	 are	placed	behind
the	screen.	The	user	will	be	tracked.	The	view	seen	from	the	location	V
should	be	projected	on	D	from	P	.	How	can	you	use	projected	texture	to
generate	the	image	that	P	should	project?	How	many	passes	would	this
rendering	take?

12.	 How	can	you	create	 the	effect	of	mirror	 in	a	scene	using	some	of	 the
techniques	you	have	learnt	in	this	chapter?	How	many	rendering	passes
would	it	take?

13.	 Consider	a	scene	in	2	D	.	The	scene	comprises	a	parallelogram	whose
four	vertices	are	(1,0),	(-	1,	0),	(0,	-	1)	and	(0,	1).

a.	 What	would	be	four	vertices	of	the	2	D	axis	aligned	bounding
box	for	this	parallelogram?

b.	 If	we	want	to	translate	this	parallelogram	by	(2,2),	how	would
you	 use	 the	 transformation	 parameters	 to	 find	 the	 new	 axis-
aligned	bounding	box?

c.	 Would	 you	 be	 able	 to	 use	 a	 similar	 approach	 if	we	 have	 to
rotate	the	parallelogram	by	45	degree	(instead	of	translation)?

d.	 Can	you	think	of	any	other	bounding	shape	that	would	allow
you	to	recompute	of	the	bounding	shape	for	all	different	kinds
of	rigid	body	transformations	in	the	same	manner	as	you	did
in	(b)?

14.	 Silhouette	 edges	 are	 the	 edges	 in	 the	 manifold	 that	 have	 one	 back-
facing	polygon	AND	one	front	facing	polygon	incident	on	it.

a.	 How	do	you	compute	the	silhouette	edges	of	a	manifold?
b.	 In	OpenGL	you	can	draw	only	back-facing	polygons,	or	only

front	facing	polygons.	If	you	render	the	manifold	(front	facing
polygons),	 then	 clear	 the	 frame-buffer	 but	 not	 the	 depth
buffer,	then	again	render	only	the	back	facing	polygons.	What
do	expect	to	see?

c.	 Assume	 that	 the	 thickness	 of	 a	 line	 is	 an	 attribute	 of	 a	 line.
Thickness	of	 three	means	that	 the	line	would	be	drawn	three
pixels	 thick.	 If	 the	 thickness	of	 the	 line	was	one	and	now	 is
increased	to	three	only	for	the	second	rendering	(rendering	of
back	faces),	what	do	you	expect	to	see?

15.1

15

Graphics	Programming
Graphics	 programming	 requires	 navigating	 through	 several	 APIs	 and	 libraries
while	 using	 specialized	 graphics	 hardware.	 We	 first	 present	 the	 history	 and
development	 of	 the	 modern	 graphics	 processing	 unit	 (GPU)	 that	 provides	 a
perspective	on	its	existing	form	and	functionalities	in	the	context	of	the	different
interactive	techniques	discussed	in	the	previous	chapters.	Next,	the	fundamental
aspects	 of	 the	modern	 graphics	 hardware	 and	 existing	 APIs	 and	 libraries	 that
facilitate	programming	it	 for	both	graphics	and	general	purpose	computation	 is
presented.

Development	of	Graphics	Processing	Unit
The	graphics	processing	unit	 (GPU)	 is	a	specialized	hardware	unit	designed	 to
off‐load	 and	 accelerate	 2D	 or	 3D	 processing	 from	 the	 central	 processing	 unit
(CPU)	to	assure	interactive	performance.	Today,	almost	all	desktops,	laptops	and
mobile	devices	come	equipped	with	some	kind	of	GPU.	GPUs	have	undergone
revolutionary	transformations	in	recent	years	and	it	is	important	to	know	how	the
GPU	aids	in	the	computations	of	the	effects	we	render	in	the	interactive	graphics
pipeline.
Graphics	hardware	first	came	to	use	in	1980s,	though	they	were	called	GPUs

much	later.	GPU	is	a	term	introduced	by	nVidia	in	1999.	However,	we	will	refer
to	such	hardware	as	GPU	in	the	rest	of	this	chapter	for	the	sake	of	consistency.
The	early	GPUs	were	essentially	integrated	framebuffers	that	could	only	achieve
line	rasterizations,	also	termed	as	wireframe	rasterizations,	thereby	off‐loading	to
the	 GPU,	 the	 rendering	 of	 the	 edges	 of	 the	 polygonal	 primitives.	 The	 first
hardware	dedicated	to	the	graphics	pipeline	was	the	IBM	professional	graphics
controller	 (PGA)	 that	 used	 a	 microprocessor	 hardware	 to	 off‐load	 the	 simple
tasks	 of	 rendering,	 like	 drawing	 and	 coloring	 filled	 polygons,	 from	 the	 CPU
opening	up	CPU	cycles	for	other	general	purpose	processing	while	the	graphics
processing	was	done	in	parallel	on	the	PGA	card.	A	separate	PGA	card	onboard
marked	 an	 important	 step	 in	 the	 evolution	 of	 a	 separate	GPU.	 By	 1987	more

features	 were	 added	 to	 the	 GPUs	 including	 shaded	 solids,	 vertex	 lighting,
rasterization	of	filled	polygons,	depth	buffer,	and	alpha	blending.	However,	there
was	still	a	huge	reliance	on	 the	CPUs	where	most	of	 the	computations	used	 to
happen	and	the	data	transfer	from	the	CPU	to	the	GPU	was	a	major	bottleneck.
The	 GPU	 evolution	 got	 a	 boost	 from	 the	 release	 of	 the	 graphics	 industry’s

most	widely	used	application	programming	 interface	 (API)	of	SGI‐GL	by	SGI
(Silicon	Graphics	 Inc.)	 in	 1989,	which	 later	 gained	 popularity	 as	OpenGL.	 In
1993,	 SGI	 released	 its	 first	 graphics	 cards	 for	workstations	while	 the	 first	 3D
consumer	 graphics	 hardware	 was	 offered	 by	 companies	 like	 Matrox,	 nVidia,
3DFX	 and	ATI.	However,	 the	distinction	between	GPU	and	CPU	was	not	 that
clear	 in	 this	hardware.	While	much	of	 the	 later	 stages	of	 the	graphics	pipeline
were	instrumented	in	the	GPU	hardware,	there	was	still	a	significant	reliance	on
the	CPU,	especially	 for	 the	 first	part	of	 the	pipeline	 involving	 transformations.
Games	like	Quake	and	Doom	drove	the	fast	adoption	of	the	graphics	cards	in	the
gaming	industry.

Figure	15.1	Evolution	of	early	graphicsspipeline	leading	to	a	fixed	function	pipeline	in	1999.

The	first	graphics	processing	unit	close	to	its	current	form	was	introduced	in
1996	by	3DFX	 and	was	 called	 the	Voodoo	 card.	The	CPU	 still	 did	 the	 vertex
transformation	and	lighting	while	Voodoo	provided	shading,	texture	mapping,	z-
buffering	and	rasterization.	It	was	still	not	possible	to	evaluate	the	lighting	model
at	every	pixel	and	therefore	effects	of	Phong	shading	or	bump	mapping	were	still
not	 possible	 at	 interactive	 rates.	 In	 1999,	 the	 first	 present‐day	GPU	 hardware
became	a	reality	via	the	introduction	of	nVidia’s	Geforce	256	and	ATI’s	Radeon
7500	(Figure	15.1)	where	 the	 vertex	 transformation	 and	 lighting	 computations
were	also	moved	to	the	GPU.	Four	parallel	pipelines	aided	faster	rendering	with
new	 features	 of	 multi‐texturing	 and	 bump‐mapping.	 A	 faster	 communication
channel	 between	 CPU	 and	 GPU	 allowed	 even	 higher	 performance.	 However,
this	hardware	still	followed	a	fixed	function	pipeline	since	once	the	data	was	sent

to	the	GPU	pipeline,	it	could	not	be	modified.	Fixed	functions	were	achieved	via
feature	 sets	 defined	 by	 APIs	 like	 OpenGL	 and	 DirectX.	 Therefore,	 if	 newer
features	were	added	to	the	graphics	API,	the	fixed	function	hardware	could	not
take	advantage	of	 them.	Figure	15.2	shows	 the	different	stages	of	such	a	 fixed
pipeline.	The	vertex	control	receives	the	triangle	data	from	the	CPU.	The	V	S	/	T
&	 L	 (Vertex	 Shader/Texture	 and	 Lighting)	 stage	 transforms	 the	 vertices	 and
assigns	 attributes	 to	 each	 vertex	 (e.g.	 color,	 texture	 coordinates,	 tangents).
Lighting	 computation	 can	 also	 take	 place	 in	 the	V	 S	 /	 T	&	L	 stage	 to	 assign
colors	 to	 the	 vertices.	 Clipping	 and	 interpolation	 of	 attributes	 at	 the	 clipped
vertices	 occur	 in	 the	 next	 stage.	 Following	 this,	 rasterization	 happens	 to	mark
pixels	covered	by	the	clipped	triangles.	The	shader	achieves	the	interpolation	of
attributes	 (e.g.	 texture	coordinates,	colors,	normals)	 for	every	pixel	 touched	by
the	traingle.

Figure	15.2	A	fixed	graphics	hardware	pipeline.

Finally,	the	raster	operations	are	performed	to	blend	colors	for	anti‐aliasing	or
translucency	effects.	Depth	buffer	tests	are	performed	to	resolve	occlusion.	The
frame	buffer	interface	manages	the	reads	and	writes	out	of	the	framebuffer.
In	2001,	we	saw	 the	advent	of	 the	 first	programmable	graphics	pipeline	 via

ATI	Radeon	8500	and	Microsoft	X‐box,	where	unlike	ever	before,	parts	of	 the
GPU	 could	 be	 programmed.	 Instead	 of	 sending	 all	 the	 data	 to	 the	 GPU	 and
simply	 letting	 it	 flow	through	 the	fixed	pipeline,	programmers	could	now	send
this	data	along	with	vertex	programs	(commonly	called	shaders)	 that	would	be
operating	on	the	data	while	it	was	passing	through	the	GPU.	These	shaders	were
small	kernels	written	in	assembly‐like	specific	shader	language	giving	a	limited
amount	of	programmability	 in	 the	vertex	processing	 stage	of	 the	pipeline.	The
programmable	 graphics	 pipeline	was	 followed	 by	 the	 advent	 of	 the	 first	 fully
programmable	GPU	 in	 2002	via	 nVidia	GeForce	FX	and	Radeon	9700.	These
graphics	 card	 allowed	 for	 per‐pixel	 operations	 with	 dedicated	 hardware	 for
programming	 both	 the	 vertex	 and	 the	 pixel(fragment)	 shaders.	 By	 2003,	 full

floating	point	 support	and	advanced	 texture	processing	started	 to	appear	 in	 the
cards	 enabling	 the	 first	 wave	 of	 applications	 that	 started	 using	 GPUs	 for
nongraphics	computing	as	well.
By	2006,	 the	graphics	hardware	started	 to	capitalize	on	 the	 tremendous	data

independence	 provided	 by	 the	 graphics	 pipeline.	 The	 goal	 was	 to	 push	 the
flexibility	 to	 the	shader	programs.	Early	high	 level	 shader	 languages	 started	 to
appear	 to	 provide	 easier	 programming	 interface.	 The	 GeForce	 6	 was	 the	 first
GPU	 that	 streamlined	 the	 data	 independence	 to	 create	 a	 pipeline	 that	 has
multiple	parallel	multi‐core	stages	with	fixed	stages	in	between.	The	first	parallel
stage	 is	 that	 of	 a	 vertex	 shader	 that	 reads	 a	 vertex	 position	 and	 computes	 its
position	 on	 the	 framebuffer.	 Multiple	 threads	 process	 different	 vertices
independently.	 A	 fragment	 shader	 processed	 the	 floating	 point	 RGBA	 color
contributing	 to	 every	 pixel.	 Similarly,	multiple	 threads	 process	 different	 pixels
independently	as	well.

Figure	15.3	This	shows	the	programmable	GPU	via	the	abstraction	of	the	GeForce	6	card	(a)	and	GeForce	8
card	(b).

In	 between	 these	 two	 parallel	 stages	 is	 the	 fixed	 stage	 of	 clipping,	 and
rasterization.	 Similarly,	 the	 operations	 of	 blending	 and	 processing	 the	 depth
buffer	 can	 also	 be	 performed	 in	 parallel	 in	 units	 called	 raster	 operations
processors	 (ROP).	 In	 between	 the	 parallel	 fragment	 shaders	 and	 the	 ROP
processors,	 there	 is	 a	 fixed	 operation	 that	 assembles	 the	 fragments	 from	 the
different	 threads	 together.	Therefore,	 such	 alternating	 parallel	 and	 fixed	 stages
turn	the	GPUs	into	massively	parallel	and	programmable	processors.	Figure	15.3
shows	an	abstraction	of	such	a	pipeline	in	nVidia	GeForce	6.	Note	that	the	vertex
shader	has	6	 threads,	 the	pixel	 shaders	have	4	 threads	and	 the	ROP	opertaions
have	16	 threads	 in	 this	case.	Also,	 the	partitioning	of	 the	 framebuffer	memory

15.2

allows	 much	 higher	 resolution	 graphics	 without	 reducing	 the	 frame‐rate.
Therefore,	from	this	time	GPUs	have	been	viewed	as	a	powerful	programmable
floating	point	computational	and	storage	unit	that	can	be	exploited	for	compute
intensive	applications	that	need	not	have	anything	to	do	with	graphics.
At	this	stage,	the	graphics	hardware	still	had	specialized	shaders	for	vertices,

pixels	and	ROP	operations.	The	GeForce	8	changed	that	by	unifying	the	shaders
and	making	them	into	a	fully	programmable	unified	processors	which	are	called
streamlined	 processors	 or	 SP	 (Figure	 15.3).	 With	 this	 change,	 the	 graphics
pipeline	 model	 became	 a	 purely	 software	 abstraction.	 To	 harness	 the	 GPU
power,	 new	 programming	 languages	 were	 devised.	 CUDA	 is	 such	 a	 language
provided	by	nVidia	for	nVidia	cards.	Similarly,	there	is	ATI	Stream	for	ATI	cards
and	DirectX	10	for	either	cards.

Development	of	Graphics	APIs	and
Libraries

Computer	graphics	has	become	very	popular,	especially	in	the	video	games	and
simulation	 community.	 Therefore,	 there	 are	 several	 specialized	 API	 to	 ease
programming	 of	 different	 stages	 of	 the	 graphics	 pipeline	 and	 application
requirements.	These	APIs	provide	a	way	 to	access	 the	hardware	 in	an	abstract
manner	while	taking	advantage	of	the	special	hardware	capabilities	of	a	specific
graphics	 card.	 However,	 since	 even	 a	 few	 years	 back	 a	 fixed	 pipeline	was	 in
vogue,	 several	 APIs,	 especially	 those	 which	 evolved	 in	 the	 age	 of	 the	 fixed
graphics	pipeline,	have	evolved	to	adapt	to	the	programmable	pipeline.
OpenGL	is	one	of	the	oldest	cross‐language	cross‐platform	interfaces	for	3D

graphics	rendering	providing	a	way	to	interact	with	GPUs.	GLUT	is	the	OpenGL
Utility	toolkit	for	writing	OpenGL	programs	independent	of	the	window	system
used	 for	 rendering	 the	 scene.	 It	 implements	 a	 simple	 windowing	 API	 for
OpenGL	 making	 it	 much	 easier	 to	 learn	 OpenGL.	 GLUT	 also	 provides	 a
portable	 API	 across	 multiple	 OS	 and	 PCs.	 OpenGL	 is	 defined	 as	 a	 set	 of
functions	which	can	be	called	by	 the	client	program.	The	 functions	are	similar
superficially	 to	 C,	 but	 are	 language	 independent.	 OpenGL’s	 popularity	 is
primarily	 due	 to	 its	 quality	 of	 official	 documentation	which	 are	 known	by	 the
colors	 of	 their	 covers	 (the	 red,	 orange,	 green	 and	 blue	 books	 are	 the	 first	 to
fourth	 edition	 of	 the	 OpenGL	 Programming	 Guide).	 Often	 accompanying
libraries	 like	 GLU,	 GLEE	 or	 GLEW	 bind	 with	 OpenGL	 to	 support	 useful
features	that	may	not	be	supported	in	contemporary	hardware	like	mipmapping
or	 tessellation.	 OpenGL	 Shading	 language	 (GLSL)	 is	 a	 high	 level	 shading

language	based	on	the	syntax	of	C,		first	designed	to	allow	OpenGL	to	access	the
programmable	GPUs	with	using	assembly	level	or	hardware	specific	languages.
OpenGL	 ES	 is	 an	 extension	 of	 OpenGL	API	 for	 programming	 for	 embedded
devices.	WebGL	 is	 a	 Javascript	API	 for	 rendering	 3D	 graphics.	Direct3D	 is	 a
similar	 API	 offered	 by	 Microsoft	 which	 promises	 better	 performance	 on
Windows	OS	while	Metal	is	an	API	that	debuted	for	Apple’s	iOS8.
Vulkan	 is	 a	more	 recent	 cross‐platform	API.	 It	was	 initially	 referred	 to	as	a

“next	 generation	 openGL	 initiative”	 It	 was	 build	 upon	 AMD’s	 API	 called
Mantle.	In	addition	to	optimizing	performance	on	GPUs	like	OpenGL,	Vulkan	is
also	 optimized	 to	 reduce	CPU	use	 and	 distribute	whatever	 is	 needed	 from	 the
CPU	across	multiple	cores.	It	works	for	both	high	end‐graphics	cards	and	mobile
devices.	Unlike	OpenGL,	it	provides	a	unified	management	of	compute	kernels
and	graphics	shaders	removing	the	need	to	use	a	shader	API	in	conjunction	with
a	graphics	API.
The	modern	GPU	offers	 tremendous	potential	 to	 solve	 largely	parallelizable

general	 purpose	 problems	 using	 the	 GPU.	 However,	 this	 means	 that	 the
programmer	 must	 know	 the	 graphics	 API	 and	 GPU	 hardware	 well	 to	 map
general	 purpose	 problems	 onto	 the	 vertex,	 textures	 and	 shader	 programs.	 To
alleviate	 this	 problem,	 nVidia	 has	 developed	CUDA,	 a	 programming	 language
that	 offers	 a	 parallel	 computing	 platform	 and	 API	 for	 programmers	 to	 use	 a
CUDA	enabled	nVidia	GPU	for	general	purpose	computing.	CUDA	gives	direct
access	 to	 GPU’s	 instruction	 set	 and	 parallel	 computing	 elements	 to	 general
purpose	programmers.

Fun	Facts

Today’s	 generation	 won’t	 know	 much	 about	 SGI

(Silicon	Graphics	Inc),	the	company	which	pioneered	graphics	workstations

15.3

15.3.1

in	the	early	days	of	computer	graphics	and	to	whom	we	owe	much	of	the
advancement	of	 the	graphics	hardware.	SGI	introduced	the	concept	of	 the
geometry	engine	resulting	in	the	first	very	large	scale	integration	(VLSI)	of
the	graphics	pipeline	with	specialized	hardware	to	accelerate	the	geometric
computations	 needed	 to	 display	 three	 dimensional	 imagery.	 SGI	 was
founded	by	yet	another	father	figure	of	computer	graphics	who	also	got	his
PhD	from	the	University	of	Utah,	Jim	Clark	(top	left).	Jim	Clark	was	born
in	Texas	and	had	a	difficult	childhood	and	dropped	out	of	high	school	after
being	 suspended.	 However,	 his	 life	 turned	 with	 his	 4	 year	 tenure	 in	 the
Navy	where	he	was	 introduced	 to	 electronics	 and	 fell	 in	 love	with	 it.	He
worked	hard	with	night	courses	at	Tulane	University	which	opened	up	the
doors	 of	 the	University	 of	 New	Orleans	 for	 a	 B.S.	 and	M.S.	 in	 physics.
After	 his	PhD	 from	University	 of	Utah	 in	 1974	 Jim	Clark	was	 a	 faculty
member	at	UC‐Santa	Cruz	before	moving	to	Stanford	University	in	1979.
Jim	Clark	founded	SGI	in	1982	with	seven	of	his	graduate	students,	one	of
whom,	 Kurt	 Akeley,	 played	 a	 major	 role	 in	 recent	 years	 in	 bringing	 the
light	field	camera,	Lytro,	to	the	market.	SGI	spearheaded	the	development
of	several	graphics	workstations	including	the	indigo,	prism,	onyx,	crimson
and	finally	the	high	performance	computing	multi‐core	room‐size	machine
called	 infinite	 reality	 engine	 (from	 top	 right	 in	 counter	 clockwise	 order).
SGI’s	core	market	was	impacted	adversely	by	the	advent	of	 the	consumer
graphics	card	(e.g.	nVidia,	ATI)	and	the	company	moved	its	thrust	area	to
high	performance	computing	in	1999.

The	Modern	GPU	and	CUDA
Modern	 GPUs	 are	 no	 longer	 tied	 to	 their	 graphics	 ancestry	 but	 have	 proven
themselves	 to	 be	 the	most	 successful	 desktop	 supercomputing	 architecture	 for
general	purpose	computing.	Once	thought	to	be	for	video	games,	today’s	GPUs
find	their	place	in	solving	varied	problems	in	varied	areas	from	astrophysics	and
arts	to	seismology	and	surgery	[Luebke	09].	In	this	chapter	we	will	describe	the
modern	GPU	architecture	in	brief.	More	details	are	available	in	[Azad	16].	We
specifically	 focus	 on	 nVidia’s	 GPU	 architecture	 and	 CUDA	 programming
language.

GPU	Architecture
The	CUDA	programming	model	is	a	parallel	programming	model	that	provides

an	 abstract	 view	 of	 how	 the	 processes	 can	 be	 run	 on	 underlying	 GPU
architectures.	The	 evolution	of	GPU	architecture	 and	 the	CUDA	programming
language	 have	 been	 quite	 parallel	 and	 interdependent.	 While	 the	 CUDA
programming	model	has	stabilized	over	time,	the	architecture	is	still	evolving	in
its	 capabilities	 and	 functionality.	GPU	architecture	 has	 also	 grown	 in	 terms	 of
number	 of	 transistors,	 and	 number	 of	 computing	 units	 over	 years,	 while	 yet
supporting	the	CUDA	programming	model.	The	CUDA	programming	model	has
been	 used	 to	 implement	 many	 other	 algorithms	 and	 applications	 other	 than
graphics	 and	 this	 explosion	 of	 use	 and	 permeability	 of	 CUDA	 in	 hitherto
unknown	 applications	 has	 catapulted	 the	 GPU’s	 near	 ubiquitous	 use	 in	 many
domains	of	science	and	technology.	Since	then	all	the	GPUs	designed	are	CUDA
capable.	It	should	be	noted	that	before	CUDA	was	released,	there	were	attempts
to	create	high	level	languges	and	template	libraries	such	as	Glift	[[Lefohn	et	al.
06]	and	Scout	 [[McCormick	et	al.	07].	But	 such	efforts	 tapered	down	with	 the
introduction	 of	 CUDA,	 and	 more	 effort	 was	 spent	 on	 refining	 CUDA	 and
building	libraries	using	its	constructs.
One	 of	 the	 conceptual	 differences	 between	 CPU	 and	 GPU	 is	 that	 CPU	 is

defined	 for	 minimum	 latency	 so	 that	 context	 switch	 time	 is	 minimum,	 while
GPU	 is	 primarily	 designed	 for	 maximum	 throughput	 through	 fine	 grain
pipelining	 (and	 hence	 more	 latency	 than	 CPU).	 In	 other	 words,	 in	 the	 CPU
design,	there	is	plenty	of	cache	memory	and	control	logic	that	would	reduce	the
time	taken	to	bring	the	data	to	the	ALU	and	thus	reduce	the	wait	and	latency.	On
the	other	hand,	GPU	has	a	lot	of	ALUs	and	may	wait	for	the	data	to	be	fetched
from	external	DRAM	to	its	local	cache.	The	fundamental	optimization	of	GPU
programming	hence	 focusses	on	hiding	 this	 latency	by	providing	enough	work
for	the	ALUs	while	the	data	is	fetched	from	DRAM.
The	two	main	components	of	the	GPU	board	that	go	into	the	PCI	express	bus

in	 the	 PC	 are	 the	 global	 memory	 (around	 12	 GB	 currently)	 and	 the	 actual
streaming	multiprocessor	 chip	 along	with	 associated	 circuitry.	 The	 basic	GPU
processing	 flow	consists	of	 three	 steps:	 (1)	moving	data	 from	 the	host’s	 (main
CPU,	memory,	etc.)	main	memory	to	the	device’s	(GPU	board)	global	memory,
(2)	the	CPU	issuing	instructions	to	the	GPU	while	the	data	for	this	computation
is	 taken	 from	 the	 GPU’s	 global	 memory	 and	 the	 results	 are	 put	 back	 in	 that
global	memory,	 and	 finally	 (3)	 the	 results	 transferring	 from	 the	GPU’s	 global
memory	back	to	the	host’s	main	memory	through	the	PCI	express	bus.
In	latest	GPU	architectures	starting	from	Kepler,	it	is	possible	to	communicate

between	multiple	GPUs	 directly	 from	 one	GPU’s	 global	memory	 to	 another’s
through	 MPI	 calls,	 without	 going	 through	 the	 intermediate	 host’s	 memory.
Further,	not	all	jobs	that	the	GPU	is	doing	need	to	be	instructed	by	the	CPU	—

15.3.2

the	 GPUs	 can	 launch	 their	 own	 jobs.	 The	 latter	 feature	 is	 also	 called	 CUDA
dynamic	 parallelism	 and	 can	 be	 useful	 in	 several	 ways:	 It	 would	 reduce	 the
communication	 required	 between	GPU	and	CPU	 through	 the	 slow	PCI	 bus;	 it
can	 be	 used	 to	 program	 recursive	 parallel	 algorithms	 and	 dynamic	 load
balancing;	 features	 like	 adaptive	 hierarchical	 spatial	 subdivision	 and
computational	fluid	dynamic	grid	simulation	can	effectively	be	done	for	efficient
and	 accurate	 simulation.	 Conceptually,	 dynamic	 parallelism	 moves	 the	 GPU
from	being	a	co‐processor	to	an	autonomous,	dynamic	parallel	processor.
Each	multiprocessing	 chip	 has	many	 processors.	Each	 processor	 can	 handle

thousands	 of	 threads	 of	 processes.	 Each	 basic	 hardware	 unit	 that	 handles	 one
thread	 is	 called	 a	 core,	 also	 called	 a	 CUDA	 core.	 For	 example,	 the	 Kepler
streaming	 multiprocessor	 chip	 has	 15	 processors,	 and	 each	 processor	 can
manage	2048	 threads	—it	has	2048	CUDA	cores.	Each	of	 these	15	processors
have	 plenty	 of	 registers	 (over	 64K32‐bit	 registers)	 and	 also	 shared	 memory
(around	48KB)	that	are	accessible	to	all	the	threads	running	in	a	processor.	The
threads	 running	 in	 the	 same	 processor	 can	 cooperate	 and	 share	 data	 using	 the
registers	and	shared	memory.

CUDA	Programming	Model
CUDA	is	basically	an	extension	of	C	+	+	.	The	goal	of	CUDA	design	is	to	let	the
programmer	 focus	 on	 parallel	 algorithms	 rather	 than	 the	 underlying
multiprocessor	 architecture.	 It	 is	 both	 a	 programming	 model	 as	 well	 as	 a
memory	model.	A	 typical	CUDA	application	 has	 a	mixture	 of	 serial	 code	 and
parallel	code.	The	serial	segments	of	the	code	run	on	the	host	(CPU)	while	the
parallel	 code,	 also	 called	 kernels,	 run	 on	 the	 device	 (GPU)	 across	 multiple
processing	elements.	While	the	parallel	code	is	run	on	the	GPU,	the	serial	code
can	continue	to	work	on	the	CPU.
A	kernel	 is	a	piece	of	code	for	one	 thread.	Many	 instances	of	 the	kernel	are

executed	 in	 parallel	 with	 potentially	 different	 data	 for	 each	 thread	 under	 the
Single	Instruction	Multiple	Data	(SIMD)	model.	All	 the	 threads	 that	 run	 in	 the
same	processor	are	grouped	together	and	are	called	a	block.	Each	block	is	run	on
different	processor	in	the	multiprocessor	chip,	and	potentially	at	different	times.
A	group	of	these	blocks	is	called	a	grid.	In	other	words,	a	grid	consists	of	all	the
instances	of	the	kernel	partitioned	as	thread	blocks.	The	hardware	takes	care	of
scheduling	these	thread	blocks	on	each	of	the	cores	in	the	processor	and	there	is
no	cost	associated	with	switching	between	threads.	When	the	number	of	blocks
exceed	 the	 number	 of	 available	 processors,	 multiple	 thread	 blocks	 may	 be
scheduled	 to	 the	 same	 streaming	 processor	 and	 in	 any	 arbitrary	 order.	 Hence

15.3.3

there	 is	 no	 simple	way	 to	 communicate	between	 threads	 in	different	blocks	 as
they	may	be	separated	both	in	space	(different	processors)	and	time.	The	goal	of
efficient	CUDA	code	is	to	make	sure	that	the	task	is	partitioned	into	sufficiently
fine	grained	threads	such	that	the	latency	of	data	transfer	from	the	DRAM	to	the
multiprocessor	chip	is	well	hidden	through	overlap	of	computation	tasks	of	the
threads.
Each	block	has	a	unique	id,	and	each	thread	within	a	block	also	has	a	unique

id.	They	are	referred	using	the	built‐in	variables	threadIdx	and	blockIdx.	These
ids	can	be	one,	two	or	three	dimensional	entities.	The	number	of	threads	within	a
block	can	be	read	back	from	the	variable	blockDim	and	the	number	of	blocks	in
a	grid	is	stored	in	the	variable	gridDim.	The	linear	id	of	a	thread	among	all	the
threads	 spawned	 by	 the	 kernel	 is	 given	 by	 blockDim.x*	 	 blockIdx.x	 +	
threadIdx.x.	 The.	 x	 refers	 to	 the	 first	 dimension	 of	 the	 three	 dimensions
assuming	 that	 the	 other	 two	 dimensions	 have	 values	 1	 each,	 thus	 representing
just	a	linear	array	of	one	dimensional	threads.	(Note	that	the	maximum	number
of	the	block	index	value	is	64K.	So	if	you	need	more	than	64K	blocks,	you	may
need	to	fold	that	vector	into	two	dimensional	array	of	blocks	in	which	the	index
of	each	dimension	can	go	upto	64K.)	The	3D	representation	of	block	and	thread
indices	is	just	to	give	flexibility	in	representation	that	might	implicitly	align	with
the	problem	description.	For	example,	a	kernel	operating	on	each	element	of	a
dense	matrix	might	need	to	refer	to	each	thread	using	a	2D	index.	Linearization
of	 the	 index	 of	 a	 thread	 in	 a	 2D	 array	 of	 threads	 is	 done	 as	 follows:

Kepler	 architecture	 can	 keep	 track	 of	 2048	 threads	 or	 64	warps	 (number	 of
threads	that	can	run	in	lock‐step	at	 the	same	time	in	a	processor),	or	16	blocks
per	stream	processor.	In	other	words,	each	block	should	have	at	least	128	threads
to	keep	the	GPU	compute‐busy.	It	is	good	to	have	a	number	of	threads	per	block
that	is	a	multiple	of	32	since	that	is	the	warp	size.	For	each	device	there	are	14
stream	processors.	So	we	need	to	have	at	least	224	blocks	to	keep	the	GPU	busy,
and	typically	will	have	1000	or	more	blocks	 in	a	grid.	This	will	also	make	 the
code	future	GPU	ready.

CUDA	Memory	Model
There	 is	 a	memory	 hierarchy	 used	 by	CUDA	 and	 supported	 by	 the	 streaming
multiprocessor	and	GPU	architectures.	Within	each	processor	inside	the	chip,	we
noted	that	there	are	registers	that	are	accessible	per	thread	and	this	space	is	valid
until	 that	 thread	 is	alive.	 If	a	 thread	uses	more	 registers	 than	are	available,	 the

15.4

system	 automatically	 uses	 “Local	 memory”	 which	 is	 actually	 the	 off‐chip
memory	on	 the	GPU	card	 (device).	So,	 although	 the	data	 can	be	 transparently
fetched	from	the	local	memory	as	if	it	is	in	the	register,	the	latency	of	this	data
fetch	is	as	high	as	the	data	fetched	from	the	global	memory,	for	a	simple	reason
that	 “local”	 memory	 is	 just	 a	 part	 of	 allocated	 global	 memory.	 The	 “shared”
memory	is	an	on‐chip	memory	like	registers,	but	is	allocated	per‐block,	and	the
data	 in	 the	 shared	 memory	 is	 valid	 until	 the	 block	 is	 being	 executed	 by	 the
processor.	 Global	 memory,	 as	 mentioned	 earlier,	 is	 off‐chip,	 but	 on	 the	 GPU
card.	This	memory	is	accessible	by	all	threads	of	all	kernels,	as	well	as	the	host
(CPU).	Data	 sharing	between	 threads	 in	different	blocks	of	 the	same	kernel	or
even	 different	 kernels	 can	 be	 done	 using	 the	 global	memory.	 The	 host	 (CPU)
memory,	 which	 is	 the	 slowest	 from	 the	 GPU	 perspective	 is	 not	 directly
accessible	by	CUDA	threads,	but	 the	data	has	 to	be	explicitly	 transferred	 from
the	 host	memory	 to	 the	 device	memory	 (global	memory).	However,	 CUDA	 6
introduces	 unified	 memory	 using	 which	 the	 data	 in	 the	 host	 memory	 can	 be
directly	indexed	from	the	GPU	side	without	explicitly	transfering	data	between
the	host	and	the	device.	Finally,	communication	between	different	GPUs	have	to
go	through	the	PCI	express	bus	and	through	the	host	memory.	This	is	clearly	the
most	 expensive	 communication.	However,	 the	 latest	NVLink	a	power‐efficient
high‐speed	bus	between	the	CPU	and	GPU,	and	between	multiple	GPUs,	allows
much	higher	transfer	speeds	than	those	achievable	by	using	PCI	Express.

Conclusion
This	chapter	gives	you	a	very	brief	overview	of	the	graphics	hardware	and	API
to	bootstrap	your	process	of	 learning	a	graphics	API	for	programming.	Several
books	 exist	 that	 teach	 graphics	 using	APIs,	mostly	 using	OpenGL	 [Angel	 02,
Hill	 and	Kelly	06,	Hearn	 and	Baker	 03]	 or	WebGL	 [[Angel	 and	 Shreiner	 14].
These	 can	 be	 a	 great	 starting	 point	 for	 graphics	 programming.	 The	 famous
redbook	[Kessenich	et	 al.	 16]	 is	 a	 great	 handbook	 for	 any	questions	 about	 the
OpenGL	API.	Several	 books	 exist	 to	 get	 an	 in	 depth	knowledge	 about	CUDA
programming	[Sanders	10,	Cheng	and	Grossman	14]	which	can	help	you	get	the
maximum	mileage	out	of	your	GPU.

Bibliography
[Angel	 and	 Shreiner	 14]	 EdwardAngel	 and	 DaveShreiner.Interactive	 Computer	 Graphics:	 A	 Top‐Down

Approach	with	WebGL,	7th	edition.	Pearson,	2014.

[Angel	 02]	 EdwardAngel.	 Interactive	 Computer	 Graphics,	 Third	 edition.	 Addison‐Wesley	 Longman
Publishing	Co.	Inc.,	2002.

[Azad	16]	Azad,	Hamid,	2016.	Advances	in	GPU	Research	and	Practice.	1st	ed.	Morgan	Kaufman,	2016
[Cheng	 and	 Grossman	 14]	 JohnCheng	 and	MaxGrossman.	 Professional	 CUDA	 C	 Programming.	 Wrox,

2014.
[Hearn	 and	 Baker	 03]	 DonaldD.	 Hearn	 and	M.Pauline	 Baker.	Computer	 Graphics	 with	 OpenGL,	 Third

edition.	Prentice	Hall	Professional	Technical	Reference,	2003.
[Hill	and	Kelly	06]	Hill,	F.S.	and	Stephen,M.Kelly.	Computer	Graphics	using	OpenGL:	Prentice	Hall,	2006.
[Kessenich	 16]	 JohnKessenich,	 GrahamSellers,	 and	 DaveShreiner.	 OpenGL	 Programming	 Guide:	 The

Official	Guide	to	Learning	OpenGL,	Version	4.5,	9th	edition.	Addison‐Wesley	Longman	Publishing
Co.,	Inc.,	2016.

[Lefohn	06]	Aaron	E.Lefohn,	ShubhabrataSengupta,	JoeKniss,	RobertStrzodka,	and	John	D.Owens.	“Glift:
Generic,	 efficient,	 random‐access	 GPU	 data	 structuresACM	 Trans.	 Graph.	 25:1	 (2006),	 60‐99.
Available	online	(http://doi.acm.org/10.1145/1122501.1122505).

[Luebke	 09]	 David	 P.Luebke.	 “Graphics	 hardware	 &	 GPU	 computing:	 past,	 present,	 and	 future.”	 In
Proceedings	 of	 the	 Graphics	 Interface	 2009	 Conference,	 May	 25‐27,	 2009,	 Kelowna,	 British
Columbia,	Canada,	p.	6,	2009.	Available	online	(http://doi.acm.org/10.1145/1555880.1555888).

[McCormick	 07]	 PatrickMcCormick,	 JeffInman,	 JamesAhrens,	 Jamaludin	 Mohd-Yusof,	 GregRoth,	 and
SharenCummins.	“Scout:	A	Dataparallel	Programming	Language	for	Graphics	Processors.”	Parallel
Comput.	33:10‐11	(2007),	648‐662.	Available	online	(https://doi.org/10.1016/j.parco.2007.09.001).

[Sanders	 10]	 Sanders,	 Jason,	 2010.	 CUDA	 by	 Example:	 An	 Introduction	 to	 General-Purpose	 GPU
Programming.	1st	ed.	Addison	Wesley.

Summary:	Do	you	know	these	concepts?

Graphics	Processing	Unit	(GPU)
Vertex	Shaders
Fragment	Shaders
Unified	Shaders
Rasterizing	Operations	(ROP)
OpenGL
CUDA

http://doi.acm.org/10.1145/1122501.1122505
http://doi.acm.org/10.1145/1555880.1555888
https://doi.org/10.1016/j.parco.2007.09.001

Index
A

Abyss,	The,,	336
Accumulation	buffer,	339–340
Affine	transformations,	130
3D,	136
concatenate	transformations,	136–137
translations,	131–132

Al-Haytham,	Ibn,	159
Aliasing,	6,	81–83
2D	images,	87
All	pass	filters,	40,	44,	45,	53
Alpha	blending,	337,	357
Alpha	masks,	258–260
Amplitude	modulation,	78–79
Amplitude	plots,	10,	11,	85
Analog	Fourier	transform,	71,	72
AND	operation,	109
Animation,	visual	content	synthesis	in,	283,	284,	288
Application	programming	interfaces	(APIs),	295,	357,	358,	361–362
Arvo,	James,	218
Audio	data,	3,	4–5,	8
Augmented	reality	(AR),	286,	287

B

Back	facing,	340–341,	342
Barnack,	Oskar,	159
Barycentric	coordinates,	26
Bezier	patches,	238
Bidirectional	Reflectance	Distribution	Function	(BRDF),	203–205
Blinn,	Jim,	341
Bonaparte,	Napoleon,	73
Bounding	boxes,	306–307,	343–344,	345,	346,	348
Box	filters,	43,	47,	92,	118

2D,	55
convolution,	55
sampling,	50–51

Brownie	camera,	159
Bump	mapping,	332–334
Burn	and	dodge	artifacts,	254,	255

C

Calibrated	cameras,	163
Camera	calibration	matrix,	161–163
Camera	obscura,	159
Canny	edge	detector,	108–110
Canny,	John	F.,	110
Cathode	ray	tube	(CRT)	displays,	233–234
Catmull,	Edwin,	309
Chasles,	Michael,	183
Chou,	Michael,	336
Circle	of	confusion,	169–170
Clark,	Jim,	362
Color	and	photometry,	relationship	between.	See	photometry	and	color,
relationship	between,
Color	management,
gamut	matching,	237–238
gamut,
transformation,	236–237,	243
out-of-gamut	color,	236–237
overview,	235
subtractive	color	mixtures,	modeling,	238–239

Color	reproduction,
3D	color	gamut,	227
additive	mixing,	223,	224,	225
black	offset,	229
color	balance,	231
convex	combinations,	226
high	dynamic	range	imaging	(see	high	dynamic	range	imaging),
illumination	levels,	240
limitations	of,	240
multi-spectral	imaging	(see	multi-spectral	imaging),

overview,	223,	245
subtractive	mixing,	223–224,	238
tone	mapping	operator,	230–231
transfer	function,	231
XYZ	values,	224,	225,	226,	227

Color,	use	in	encoding	data,	4
Comb	function,	87
Complex	conjugate,	77
Computer-aided	design	and	modeling	(CAD,	CAM),	288
Convolution,
all	pass	filters,	44
all	pass	systems,	40
associative	properties,	40
box	filters,	with,	55
cascading,	40
correlations,	56
cross-correlation	(see	cross-correlation),
delay	systems,	40
design	of	systems,	role	in,	41
distributive	properties,	40–41
image	alignment,	61
image	storage,	61
implementation,	60–61
impulse	response,	59
input	side	algorithm,	39
out-of-range	values,	handling	of,	61
output	side	algorithm,	39
overview,	38–39
pattern	making,	55–56
similarity,	measurement	of,	57–58

Cook	Torrance	model,	318
Cross-correlation,	59–60
CUDA,	361,	362,	363,	364–365,	366

D

Daguerre,	Louis,	159
Darwin,	Charles,	28
Data,	audio.	See	audio	data,

Data,	visual.	See	visual	data,
Delta	functions,	41,	42
Depth	buffers,	309,	311,	357
Depth	of	field,	297
Desargues,	Girard,	150
Descartes,	Rene,	150
Digital	light	processing	(DLP),	235
Digital	micromirrors	(DMD),	235
Discrete	Fourier	transform	(DFT),
2D	data,	83–85
additivity,	76
correlation,	as,	72
cosine	waves,	67,	68,	69,	70,	71,	72,	73–74,	75,	79,	80,	83
digital	signals,	use	on,	67–68
duality,	89–92
frequency	domain,	periodicity	of,	80–81,	85
homogeneity,	76
inverse,	81,	82
linear	phase	shift,	76
overview,	67–68
sine	waves,	67,	68,	70,	71,	73–74,	75
spectral	analysis,	use	in,	67

Disney	Animation	studios,	309
Displacement	map,	334
Disquisitiones	Arithmeticae,	50
Dynamic	range,	230

E

Eastman,	George,	159,	168
Edge	detection,
Canny	edge	detector,	108–110
direction	of	edge,	101
edgel	detection	(see	edgels),
finite	differences,	101
Marr-Hildreth	edge	detector,	106,	109
multi-resolution	edge	detector,	111–113
overview,	100
path	detection,	114

strength	of	edge,	101
Edgels,
aggregating,	113,	114–116
Canny	edge	detector,	108–110
curvature-based	detection,	105–108
defining,	100
gradient-based	detection,	100–104
multi-resolution	edge	detector,	111–113

Environment	mapping,	335–337
Epipolar	geometry.	See	also	Epipoles,
camera	setups,	185–186
depth	from	disparity,	reconstructing,	190–192
depth	from	optical	flow,	192–194
fundamental	matrix,	182,	183,	184
mathematical	implications,	194
multi-view	geometries,	179–181
overview,	177–179,	194

Epipoles,	180,	181,	183,	186.
Essential	matrixes,	187
Euclid,	131,	150
Euclidean	transformations,	130
affine,
transformations,	relationship	between,	136
rotations,	132–134
translations,	131–132

Euler	characteristics,	14
Evans,	David,	286
Extrinsic	parameter	matrix,	161,	162,	163

F

Fermat,	Pierre	de,	150
Field-of-view	(FOV),	297
Flight	of	the	Navigator,,	336
Focus	of	expansion,	194
Fourier	decomposition,	7
Fourier	transform,
discrete	Fourier	transform	(DFT)	(see	discrete	Fourier	transform	(DFT)),
human	ear,	performed	by,	92

Fourier,	Jean-Baptiste	Joseph,	73
Framebuffer,	311,	312
Frequency	domain	representation,	10,	16,	75
Frequency	modulation,	80
Frustrum,	342,	346
Futureworld,,	309

G

Gadbled,	Christophe,	59
Galton,	Francis,	28
Gamma	function,	8
Gauss,	Johann	Carl	Friedrich,	49–50
Gaussian	filter,	53,	90,	108,	110
Gaussian	functions,
1D,	55–56
periodicity,	relationship	between,	85

Gaussian	pyramid,	48,	50–51,	111
applications,	51
Gaussian	filter,	versus,,	53–54
subsamples,	51

Gaze	direction,	297
GeForce	6,	359,	360
Geometric	data,
analytical	representation,	11
discrete	representation,	13
explicit	representation,	11,	12
implicit	representation,	11–12
mesh	(see	meshes),
parametric	equations,	representation,	12–13

Geometric	intersections,	26–29
Geometric	modeling,	288
Geometric	transformations,
affine	transformations	(see	affine	transformations),
arbitrary	axis,	rotation	about,	138–141
concatenate	transformations,	138
coordinate	systems,	141–142,	143,	145
Euclidean	transformations	(see	Euclidean	transformations),
freedom,	degrees	of,	148–149

homogenous	coordinates,	127–129
linear	transformations,	129–130
overview,	127
projective	transformations	(see	projective	transformations),
scaling,	134,	137–138
shear,	135–136

Gibbs	effect,	73
GLEW,	361
GLUT,	361
Google	cardboard,	285
Gourand	shading,	322
Gourand,	Henri,	322
Graphics	pipeline,	interactive,
attributes,	clipping	of,	291,	305–311
attributes,	pixel	interpolation	of,	292–293
attributes,	rasterization	of,	292–293,	311–312
attributes,	vertex	interpolation	of,	291–292
occlusion	resolution,	299–304
perspective	projection	transformation,	297–299
vertices,	geometric	transformation	of,	291,	293–294,	294–295
window	coordinate	transformation,	304–305

Graphics	processing	units	(GPUs),	288,	289
APIs,	development	of,	361
architecture,	363–364
data	independence,	359
development	of,	357–358
features,	357–358
overview,	357–358
pixels,	processing	of,	359–360
programmable	graphics	pipeline,	359
vertex	control,	358

H

Harris	and	Stephens-Plessey	corner	detector,	117
Hauck,	von	Guido,	182–183
Head	mounted	display	(HMD),	285,	286
Height	field,	4,	9
Hellig,	Morton,	286

High	dynamic	range	imaging,	240–243,	245
High	pass	filters,
2D,	54–55
design	of,	52–53

Hildreth,	Ellen,	109
Histogram	processing,
burn	and	dodge	artifacts,	254,	255
contrast	enhancement,	253
hue	preserving	contrast	enhancement,	255–256
images,	color,	255–257
images,	examples,	252–253
stretching,	253–255

Histograms,	definition	of,	252
Homography,	164–167
Horopter,	191
Hough	transform,	114–116
Hysteresis,	109

I

Illumination,
ambient,	317–318,	319
diffused	component,	318,	319,	320
direct,	317,	318
indirect,	317
intensity,	320
parameters,	319
Phong	illumination	model	(see	Phong	illumination	model),
shading,	321–322
shadows,	322–325
specular,	319,	320

Image	composition,
alpha	blending,	258,	260
alpha	masks,	258–260
blending,	image,	257–261,	263
cuts,	image,	263–264
overview,	257
sprites	(see	sprite	masks;	sprites),

Intensity	resolution,	231–233

Interpolation,
bilinear,	22,	23–26
function	estimations,	21–22
linear,	22–23,	24
overview,	21
techniques,	21

Intrinsic	parameter	matrix,	160,	161,	162,	163

J

Jet	Propulsion	Laboratory	(JPL),	341
Jobs,	Steve,	288
Joules,	201

K

Kelin,	Felix,	15
Kepler	architecture,	364
Khayyan,	150
Klein	bottle,	15
Kleiser,	Randal,	336

L

Lagrange,	Joseph-Louis,	73
Lambertian	objects,	266,	272
Laplace	transform,	58
Laplace,	Pierre-Simon,	58–59,	73
Laplacian	of	Gaussian,	107
Laplacian	operators,	106
Laplacian	pyramid,	54,	263
Lawrence,	George	R.,	163
Le	Canu,	Pierre,	59
Leica	cameras,	159
Leitz	cameras,	159
Light,	human	perception	of,	229
Linear	filtering,
edge	detection	(see	edge	detection),
feature	detection,	99,	116

Linear	regression,	27–28
Linear	systems,

additivity,	35
box	filters,	43
commutative	properties,	36
convolution	(see	convolution),
decomposition	processes,	36
filters,	41–43
homogeneity,	35
impulses,	36–37,	36–38
overview,	35
shift	invariance,	35–36
superposition	properties,	36
synthesis	processes,	36

Linear	transformations,	145
Liquid	crystal	displays	(LCDs),	234–235
Low	pass	filters,	43,	45,	47,	91,	104,	111
defining,	52
increasing	size	of,	48
sampling,	47
sampling	consequences	of,	48

M

Mach	bands,	261,	322
Maddox,	Robin	Leach,	159
Marr,	David	Courtney,	109
Marr-Hildreth	edge	detector,	106,	109
Matrix	multiplication,	145
Mecanique	Celeste,	58
Mcmillan,	Leonard,	194
Mean	filter,	118,	119
Median	filters,	118
Meshes,
closed,	14
genuses	of,	15
geometry	of,	14
manifolds,	14
non-manifolds,	14
non-orientable,	15
orientable,	15

primitives,	13
processing	of,	14
topological	properties	of,	14
triangular,	13,	15

Microsoft	Hololens,	286
Miller,	Gene,	336
Mipmapping,	330–331
Modeling,
natural	phenomena,	of,	280–281
objects,	of,	280
overview,	279–280
representations,	280

Morovac	operator,	116
Morphing,	14
Motion	blur,	172
Multi-spectral	imaging,	243–244
Munsell,	Albert	Henry,	211

N

Nipce,	Nicphore,	159
Noise,
causes,	15,	16
description	of,	15
outliers,	16
random,	16
salt	and	pepper,	16

Non-linear	filtering,	118–119
Non-linear	transformations,	149–150
Notch	filters,	79,	80,	81,	85–87
Nyquist	sampling	criteria,	47,	48,	51,	68,	82,	87–88
Nyquist.	Harry	Theodore,	8

O

Object	specific	coordinate	systems,	293
Occulus	Rift,	285
Octrees,	345,	346,	347
OpenGL,	289,	361

P

Panorama	camera	view,	166
Pearson,	Karl,	29
Perception,	human,	8
Perlin,	Ken,	336
Phase	plots,	84–85
Phong	illumination	model,	318,	319–320
Phong,	Bui	Tuong,	324
Photographs,	non-digital,	large,	262
Photometric	processing,
histogram	processing	(see	histogram	processing),
image	composition	(see	image	composition),
overview,	251–252
photometric	stereo	(see	photometric	stereo),
shadows,	handing	of,	270

Photometric	stereo,
color,	handling	of,	271
illumination	directions,	computing,	270–271
process	overview,	265–269
shadows,	handling	of,	270

Photometry	and	color,	relationship	between,
achromatic	color,	207,	214
brightness,	perceived,	216
chromaticity,	213,	214,	215,	227
CIE	XYZ	color	space,	208–210,	211–216
color	matching,	216
complimentary	wavelengths,	216
dominant	wavelength,	215
hue,	213,	215
monochromatic	color,	207,	215,	216
overview,	205–207
perceptually	uniform	corlor	spaces,	216–217,	218
polychromatic	color,	207
saturation,	212–213
tristimulus	theory	of	color	(see	tristimulus	theory	of	color),
white	point	(see	white	point),

Photoshop,	257
Pinhole	camera,

focal	depth,	172
light	inefficiency,	168–169
overview,	157
practical	camera,	168–172
schematic	for,	157–161

Pixar	Animation	Studios,	288,	309
Point	spread	function	(PSF),	88
Polar	notation,	74–76
Polar	representation,	75
Primitives,	13
Processing,
detail,	level	of,	281
overview,	281–282
rendering	(see	rendering),

Professional	graphics	controller	(PGA),	357
Projection	displays,	235
Projective	transformations,	130,	146–148
Pythagoras,	150

Q

Quantization,	7–8
Quantization	error,	7,	8

R

Radiant	existence,	202
Radiometry,
irradiance,	202,	203
light,	201–202

Raster	operations	processors	(ROP),	360
Reconstruction,	7,	87
Rectangular	representation,	74–75
Rectification,	187–189
Rendering,	282–284
Rigid	transformations,	136,	148,	149
Rotation	matrix,	145

S

Salt	and	pepper	noise,	119

Sampling,
adequate,	7
continuous	function,	6–7,	8
cosine	waves,	7,	10–11
density,	6
discrete	function,	6–7
non-uniform,	6
rates,	10
sine	waves,	7
uniform,	6,	10

Scale	Invariant	Feature	Transform	(SIFT),	120
Shirley,	Peter,	306
SIGGRAPH,	306,	341
Signals,	analyzing,
amplitude	modulation	(see	amplitude	modulation),
complex	conjugates,	77
non-symmetric,	77–78
symmetric,	77–78

Silicon	Graphics,	Inc.,	362
Singular	value	decomposition	(SVD),	28
Sobel	operator,	103,	104
Spatial	domain	representation,	75,	87
Spectral	analysis,	279
discrete	Fourier	transform	(DFT),	use	of	(see	discrete	Fourier	transform
(DFT)),
overview,	67

Spectral	energy,	201
Spline	function,	261
Spotlights,	321
Sprite	masks,	257,	259
Sprites,	257
Stereo	cameras,	184,	187
Stereo	reconstruction,	172
Stereo	rigs,	164
Strip	generation,	282
Subsurface	scattering,	281
Surface	radiance,	203
Sutherland,	Ivan,	309
Systems,	definition	of,	35

Systems,	linear.	See	linear	systems,

T

Talbot,	Henry	Fox,	159
Televisions,	color	standards,	244–245
Terminator	2,,	336
Texture	mapping,	3,	34–334
mipmapping	(see	mipmapping),
object	to	screen	space	mapping,	329–330
overview,	325
texture	to	object	space	mapping,	325–329

Thresholding,	102,	107–108
Time	domain	representation,	16,	43,	44,	75
Toy	Story,,	288–289
Transfer	function,	4
Translation	matrix,	136
Transparency,
depth,	338,	339
overview,	337
pixels,	338
process	of	rendering,	338–339
rendering,	337

Triangle	strips,	282
Tristimulus	theory	of	color,	210,	211,	212,	214,	227
Two-dimensional	filters	separability,	54–55

U

Uncalibrated	cameras,	186–187
Utah	teapot	model,	306

V

Vanishing	points,	130
Very	large	scale	integration	(VLSI),	362
Virtual	reality	(VR),	285,	286,	287
Visibility	culling,
applications,	346–349
bounding	box,	343–344,	346,	348
bounding	sphere,	345

bounding	volumes,	342–345
overview,	342
spatial	subdivision,	345–346,	347

Visual	computing,
analog	representation,	8–9
color	images,	representation,	9–10
data	representation,	8–9
digital	representation,	8–9
frequency	domain	representation	(see	frequency	domain	representation),
structured	data,	9

Visual	content	synthesis,	285
Visual	data,
continuous	function,	6–7
coordinates,	3,	6
discrete	function,	6–7
discretization,	5,	7
three-dimensional,	3
visualization	of,	4

Vulkan,	361

W

WebGL,	366
Westworld,,	309
White	point,	214,	230
Williams,	Lance,	336

Z

Z-axis,	133,	145
Z-buffer,	309,	311,	323,	324
Zero	crossing,	106–107

	Halftitle
	Title page
	Copyright Page
	Table of Contents
	Preface
	I Fundamentals
	1. Data
	1.1 Visualization
	1.2 Discretization
	1.2.1 Sampling
	1.2.2 Quantization

	1.3 Representation
	1.3.1 Geometric Data

	1.4 Noise
	1.5 Conclusion
	Bibliography
	Summary
	Exercises

	2. Techniques
	2.1 Interpolation
	2.1.1 Linear Interpolation
	2.1.2 Bilinear interpolation

	2.2 Geometric intersections
	2.3 Conclusion
	Bibliography
	Summary
	Exercises

	II Image Based Visual Computing
	3. Convolution
	3.1 Linear Systems
	3.1.1 Response of a Linear System
	3.1.2 Properties of Convolution

	3.2 Linear Filters
	3.2.1 All, Low, Band and High Pass Filters
	3.2.2 Designing New Filters
	3.2.3 2D Filter Separability
	3.2.4 Correlation and Pattern Matching

	3.3 Implementation Details
	3.4 Conclusion
	Bibliography
	Summary
	Exercises

	4. Spectral Analysis
	4.1 Discrete Fourier Transform
	4.1.1 Why Sine and Cosine Waves?

	4.2 Polar Notation
	4.2.1 Properties
	4.2.2 Example Analysis of Signals

	4.3 Periodicity of Frequency Domain
	4.4 Aliasing
	4.5 Extension for 2D Interpretation
	4.5.1 Effect of Periodicity
	4.5.2 Notch Filter
	4.5.3 Example of Aliasing

	4.6 Duality
	4.7 Conclusion
	Bibliography
	Summary
	Exercises

	5. Feature Detection
	5.1 Edge Detection
	5.1.1 Edgel Detectors
	5.1.2 Multi-Resolution Edge Detection
	5.1.3 Aggregating Edgels

	5.2 Feature Detection
	5.3 Other Non-Linear Filters
	5.4 Conclusion
	Bibliography
	Summary
	Exercises

	III Geometric Visual Computing
	6. Geometric Transformations
	6.1 Homogeneous Coordinates
	6.2 Linear Transformations
	6.3 Euclidean and Affine Transformations
	6.3.1 Translation
	6.3.2 Rotation
	6.3.3 Scaling
	6.3.4 Shear
	6.3.5 Some Observations

	6.4 Concatenation of Transformations
	6.4.1 Scaling About the Center
	6.4.2 Rotation About an Arbitrary Axis

	6.5 Coordinate Systems
	6.5.1 Change of Coordinate Systems

	6.6 Properties of Concatenation
	6.6.1 Global vs Local Coordinate System

	6.7 Projective Transformation
	6.8 Degrees of Freedom
	6.9 Non-Linear Transformations
	6.10 Conclusion
	Bibliography
	Summary
	Exercises

	7. The Pinhole Camera
	7.1 The Model
	7.1.1 Camera Calibration
	7.1.2 3D Depth Estimation
	7.1.3 Homography

	7.2 Considerations in the Practical Camera
	7.3 Conclusion
	Bibliography
	Summary
	Exercises

	8. Epipolar geometry
	8.1 Background
	8.2 Correspondences in Multi-View Geometry
	8.3 Fundamental matrix
	8.3.1 Properties
	8.3.2 Estimating Fundamental Matrix
	8.3.3 Camera Setup Akin to Two Frontal Eyes

	8.4 Essential Matrix
	8.5 Rectification
	8.6 Applying Epipolar Geometry
	8.6.1 Depth from Disparity
	8.6.2 Depth from Optical Flow

	8.7 Conclusion
	Bibliography
	Summary
	Exercises

	IV Radiometric Visual Computing
	9. Light
	9.1 Radiometry
	9.1.1 Bidirectional Reflectance Distribution Function
	9.1.2 Light Transport Equation

	9.2 Photometry and Color
	9.2.1 CIE XYZ Color Space
	9.2.2 Perceptual Organization of CIE XYZ Space
	9.2.3 Perceptually Uniform Color Spaces

	9.3 Conclusion
	Bibliography
	Summary
	Exercises

	10. Color Reproduction
	10.1 Modeling Additive Color Mixtures
	10.1.1 Color Gamut of a Device
	10.1.2 Tone Mapping Operator
	10.1.3 Intensity Resolution
	10.1.4 Example Displays

	10.2 Color Management
	10.2.1 Gamut Transformation
	10.2.2 Gamut Matching

	10.3 Modeling Subtractive Color Mixture
	10.4 Limitations
	10.4.1 High Dynamic Range Imaging
	10.4.2 Multi-Spectral Imaging

	10.5 Conclusion
	Bibliography
	Summary
	Exercises

	11. Photometric Processing
	11.1 Histogram processing
	11.1.1 Handling color images

	11.2 Image Composition
	11.2.1 Image Blending
	11.2.2 Image Cuts

	11.3 Photometric Stereo
	11.3.1 Handling shadows
	11.3.2 Computing illumination directions
	11.3.3 Handling Color

	11.4 Conclusion
	Bibliography
	Summary
	Exercises

	V Visual Content Synthesis
	12. The Diverse Domain
	12.1 Modeling
	12.2 Processing
	12.3 Rendering
	12.4 Application
	12.5 Conclusion
	Bibliography

	13. Interactive Graphics Pipeline
	13.1 Geometric Transformation of Vertices
	13.1.1 Geometric Transformation of Vertices
	13.1.2 View Transformation
	13.1.3 Perspective Projection Transformation
	13.1.4 Occlusion Resolution
	13.1.5 Window Coordinate Transformation
	13.1.6 The Final Transformation

	13.3 Rasterization and Pixel Interpolation of Attributes
	13.4 Conclusion
	Bibliography
	Summary
	Exercises

	14. Realism and Performance
	14.1 Illumination
	14.2 Shading
	14.3 Shadows
	14.4 Texture Mapping
	14.4.1 Texture to Object Space Mapping
	14.4.2 Object to Screen Space Mapping
	14.4.3 Mipmapping

	14.5 Bump Mapping
	14.6 Environment Mapping
	14.7 Transparency
	14.8 Accumulation Buffer
	14.9 Back Face Culling
	14.10 Visibility Culling
	14.10.1 Bounding Volumes
	14.10.2 Spatial Subdivision
	14.10.3 Other Uses

	14.11 Conclusion
	Bibliography
	Summary
	Exercises

	15. Graphics Programming
	15.1 Development of Graphics Processing Unit
	15.2 Development of Graphics APIs and Libraries
	15.3 The Modern GPU and CUDA
	15.3.1 GPU Architecture
	15.3.2 CUDA Programming Model
	15.3.3 CUDA Memory Model

	15.4 Conclusion
	Bibliography
	Summary

	Index

